Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

AKT1S1 (AKT1 substrate 1 (proline-rich))

Written2014-11Claudia Wiza, Emmani BM Nascimento, D Margriet Ouwens
German Diabetes Centre, Institute for Clinical Biochemistry, Pathobiochemistry, Duesseldorf, Germany (CW, DMO); German Centre for Diabetes Research (DZD e.V.), Partner Duesseldorf, Germany (CW, DMO); Department of Human Biology, Maastricht University Medical Center, Maastricht, The Netherlands (EBMN); Department of Endocrinology, Ghent University Hospital, Ghent, Belgium (DMO); Department of Internal Medicine, division 1, University Hospital Cologne, Cologne, Germany (CW)

Abstract Review on AKT1S1, with data on DNA/RNA, on the protein encoded and where the gene is implicated.

Keywords AKT1S1, cancer, type 2 diabetes

(Note : for Links provided by Atlas : click)


Alias (NCBI)Lobe
HGNC (Hugo) AKT1S1
HGNC Alias symbPRAS40
HGNC Alias nameproline-rich Akt substrate, 40 kDa
HGNC Previous nameAKT1 substrate 1 (proline-rich)
LocusID (NCBI) 84335
Atlas_Id 44289
Location 19q13.33  [Link to chromosome band 19q13]
Location_base_pair Starts at 49869033 and ends at 49877387 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping AKT1S1.png]
  Figure 1. Genomic location of the AKT1S1 gene at chromosome 19.
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
UBAP2L (1q21.3)::AKT1S1 (19q13.33)
Note Akt1 substrate 1 (AKT1S1), also known as proline-rich Akt substrate of 40-kDa (PRAS40) is a component of the (Nascimento and Ouwens, 2009; Wang et al., 2012; Wiza et al., 2012). AKT1S1 can act as a negative regulator of the mTORC1 complex, and binds YWHAZ (14-3-3) when phosphorylated (Nascimento and Ouwens, 2009; Wang et al., 2012; Wiza et al., 2012). Several tumors and tumor cell lines display increased levels of phosphorylated AKT1S1 (Andersen et al., 2010; Huang and Porter, 2005), but it is incompletely understood to what extent AKT1S1 participates in tumorigenesis. Finally, AKT1S1 function is critical for the regulation of insulin sensitivity in skeletal muscle (Wiza et al., 2014; Wiza et al., 2013a).


  Figure 2. AKT1S1 transcript variants and isoforms.
Description The gene for AKT1S1 spans a genomic region of 9324 bases, and is composed of seven exons.
Transcription The gene encodes five transcript variants, which result in two protein isoforms. The longest one, transcript variant one, differs from the other variants in the 5' untranslated region and results in the 276 amino acid protein isoform A. Transcript variants 2-5 all result in the 256 amino acid protein isoform B. The gene for PRAS40 is ubiquitously expressed, but there is no information on changes in the expression of the various transcript variants among tissues and organs.


Note The protein encoded by the AKT1S1 gene has been identified as YWHAZ (also known as 14-3-3) binding protein in lysates from PC12 cells treated with epidermal growth factor or nerve growth factor, and was termed p39 (Harthill et al., 2002). This protein is identical to the YWHAZ-binding protein 'proline-rich Akt-substrate of 40-kDa' purified from insulin-treated hepatoma cells (Kovacina et al., 2003), and the nuclear phosphoprotein AKT1S1 purified from HeLa cells (Beausoleil et al., 2004). Furthermore, AKT1S1 is a component of the cytosolic mammalian target of rapamycin complex 1 (mTORC1) (Fonseca et al., 2007; Oshiro et al., 2007; Sancak et al., 2007; Thedieck et al., 2007; Vander Haar et al., 2007; Wang et al., 2007), and a nuclear complex containing the ribosomal protein L11 (RPL11) (Havel et al., 2014).
Description The AKT1S1 proteins occur as two single polypeptide chain proteins of 276 (isoform A) and 256 (isoform B) amino acids, respectively. Isoform A differs from isoform B by a 20 amino acid extension at the amino terminus. Both isoforms share multiple conserved regions. At the amino terminus there are two proline-rich stretches with an as yet undefined function. These are followed by two short sequences, the TOS- and RAIP-motif that mediate the interaction with mTORC1 (Fonseca et al., 2007; Oshiro et al., 2007; Vander Haar et al., 2007; Wang et al., 2007). The FVMDE-stretch (amino acids 149-153 of isoform A and amino acids 129-133 of isoform B) represents the TOS motif, while the KSLP-stretch (amino acids 202-205 of isoform A and 182-185 of isoform B) resembles the RAIP-motif. Furthermore, the proteins contain a leucine-enriched nuclear export sequence (amino acids 238-247 of isoform A and amino acids 218-227 of isoform B) (Havel et al., 2014; Wiza et al., 2013b). Finally, AKT1S1 is phosphorylated on multiple sites (Wiza et al., 2012) (Figure 3). While Akt, Pim-1 and AGC-kinase have been linked to the phosphorylation of Thr266/Thr246 (isoform A and B, respectively), all other phosphorylations on AKT1S1 have been ascribed to mTORC1 (Figure 3).
  Figure 3. Primary structure of the AKT1S1 protein and phosphorylation sites. The amino acid numbering refers to protein isoform B.
Expression The protein shows a ubiquitous expression, but there is no information available regarding the protein abundance of the two isoforms in various tissues and organs.
Localisation The protein is found both in the cytosol and in the nucleus. The transport from the nucleus to the cytosol is mediated by the leucine-enriched nuclear export sequence at the carboxy terminus of the protein (Havel et al., 2014; Wiza et al., 2013b).
Function Regulation of mTORC1 activity
AKT1S1 acts as an inhibitor of mTORC1 activity (Wiza et al., 2012). Phosphorylation of AKT1S1 results in the dissociation of the AKT1S1 from raptor within the mTORC1 complex thereby promoting the activity of mTORC1 (Oshiro et al., 2007; Sancak et al., 2007; Vander Haar et al., 2007). However, knock-down of AKT1S1 impairs the phosphorylation of mTORC1-substrates in certain cell types, suggesting that AKT1S1 is also important for mTORC1 signaling via mechanisms which are still incompletely understood (Fonseca et al., 2007; Hong-Brown et al., 2010; Wiza et al., 2013a).

Nucleolar stress response
Nuclear AKT1S1 binds to the ribosomal protein L11 (RPL11) (Havel et al., 2014). This interaction is dependent on the phosphorylation of Ser221 and Thr246 within AKT1S1 (Havel et al., 2014). RPL11 has been linked to the inhibition of the E3 ubiquitin ligase HDM2. This results in increased p53 protein stability and activation of the nucleolar stress response pathway, which is defined as the activation of a specific transcriptional program resulting in cell cycle arrest, apoptosis or senescence. The activation of this pathway is prevented when RPL11 is bound to AKT1S1 (Havel et al., 2014).

Cell survival
Akt1S1 protects neurons against cell death following spinal cord injury (Saito et al., 2004). Overexpression of AKT1S1 in rats reduces infarct size following cerebral ischemia (Saito et al., 2006; Yu et al., 2008).

Proteasome activity and insulin sensitivity
The silencing of AKT1S1 promotes the degradation of insulin receptor substrate 1 (IRS1) in skeletal muscle through activation of the proteasome (Wiza et al., 2013a). As a consequence, the insulin-mediated activation of IRS1/Akt signaling pathway regulating glucose uptake is impaired (Wiza et al., 2013a). Conversely, overexpression of AKT1S1 inhibits proteasome activation and increases IRS1 stability (Wiza et al., 2014). This results in increased insulin sensitivity even under conditions of insulin resistance. Overexpression of AKT1S1 improves insulin signaling via the IRS1/Akt-axis in the heart and liver of a high-fat diet mouse model for insulin resistance (Völkers et al., 2014).

Homology AKT1S1 homologs in higher species are almost identical to human AKT1S1 with conservation of the regulatory domains and phosphorylation sites. In lower species, like amphibians, fish, and insects, proteins almost identical to the carboxy terminus of human AKT1S1 have been reported (Wiza et al., 2012). These proteins show conservation of the TOS- and RAIP-motif as well as of the key phosphorylation sites equivalent to Ser183 and Thr246 of human AKT1S1. Importantly, in D. melanogaster, dPRAS40 is also a component of the dTORC1-complex, indicating that it is appropriate to consider the variants found in these lower species as homologs for human AKT1S1 (Pallares-Cartes et al., 2012; Sancak et al., 2007; Vander Haar et al., 2007).


Note No specific mutations in AKT1S1 have been associated with pathological conditions.

Implicated in

Entity Various cancers
Note Multiple cancers and cancer cell lines display elevated levels of (phosphorylated) AKT1S1 (Huang and Porter, 2005; Jiang et al., 2014). The elevated levels of phosphorylated AKT1S1 are mostly found in associated with increased activity of kinases regulating the phosphorylation of AKT1S1, such as Akt, Pim-1 and mTORC1. Nevertheless, some of the cellular functions of AKT1S1, such as the regulation of the nucleolar stress response, proteasome activity and cell survival, suggest that AKT1S1 may participate in tumor progression. Finally, pharmacological studies have identified phosphorylated AKT1S1-Thr246 as suitable biomarker to predict the sensitivity to Akt-inhibitors in multiple cancers (Andersen et al., 2010; Madhunapantula et al., 2011).
Entity Meningioma
Note Immunohistochemical examination of 25 WHO grade I and 25 WHO grade II meningiomas showed that 56% and 36% of the tumors were positive for AKT1S1-Thr246 (Johnson et al., 2009).
Entity Melanoma
Note Phosphorylation of AKT1S1 was increased during melanoma tumor progression and closely related to elevated Akt3 activity (Madhunapantula et al., 2007). Knock-down of AKT1S1 decreased anchorage-independent growth and increased apoptosis in melanoma cell lines (Madhunapantula et al., 2007).
Entity Non-small-cell lung cancer
Note In radiation-resistant non-small cell lung cancer cells, phosphorylation of AKT1S1 promotes the formation of a complex with YWHAZ and FOXO3, and the translocation of this trimeric complex from the nucleus to the cytosol (Kim et al., 2011). This translocation prevents the induction of pro-apoptotic genes by FOXO3, such as Bim and FasL. Treatment with PIM-1 kinase inhibitors reduces the levels of phosphorylated AKT1S1 thereby increasing the amount of nuclear FOXO3 and the radiation sensitivity of the non-small cell lung cancer cells (Kim et al., 2013; Kim et al., 2011).
Entity Gastric cancer
Note Immunohistochemical examination of 114 gastric cancer tumors showed that 45% of the tumors were positive for phosphorylated AKT1S1-Thr246. Furthermore, phosphorylated AKT1S1-Thr246 associated with malignant progression and poor prognosis of the patients (Lu et al., 2014).
Entity Type 2 diabetes
Note The insulin-mediated phosphorylation of AKT1S1 on Ser183 and Thr246 in skeletal muscle is increased after weight loss in obese patients with type 2 diabetes, indicating impaired phosphorylation of AKT1S1 in patients with type 2 diabetes (Jazet et al., 2008; Nascimento et al., 2010).
Entity Diabetic nephropathy
Note Glucose-induced phosphorylation of AKT1S1 on Thr246 associates with mesangial cell hypertrophy in a streptozotocin-induced rat model for type 1 diabetes, and lipid droplet accumulation in human kidney cells (Dey et al., 2010; Hao et al., 2014).
Entity Diabetic cardiomyopathy
Note Overexpression of AKT1S1 protects against the development of diabetic cardiomyopathy in mice hearts by inhibition of hypertrophy and improved insulin signaling (Völkers et al., 2014).


Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors.
Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH, Dolinski B, Kraus M, Roberts B, Arthur W, Klinghoffer RA, Gargano D, Li L, Feldman I, Lynch B, Rush J, Hendrickson RC, Blume-Jensen P, Paweletz CP.
Sci Transl Med. 2010 Aug 4;2(43):43ra55. doi: 10.1126/scitranslmed.3001065.
PMID 20686178
Large-scale characterization of HeLa cell nuclear phosphoproteins.
Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP.
Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12130-5. Epub 2004 Aug 9.
PMID 15302935
PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy.
Dey N, Ghosh-Choudhury N, Das F, Li X, Venkatesan B, Barnes JL, Kasinath BS, Ghosh Choudhury G.
J Cell Physiol. 2010 Oct;225(1):27-41. doi: 10.1002/jcp.22186.
PMID 20629086
PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex.
Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG.
J Biol Chem. 2007 Aug 24;282(34):24514-24. Epub 2007 Jun 29.
PMID 17604271
Phosphorylation of PRAS40-Thr246 involved in renal lipid accumulation of diabetes.
Hao J, Li F, Liu W, Liu Q, Liu S, Li H, Duan H.
J Cell Physiol. 2014 Aug;229(8):1069-77. doi: 10.1002/jcp.24533.
PMID 24347388
Regulation of the 14-3-3-binding protein p39 by growth factors and nutrients in rat PC12 pheochromocytoma cells.
Harthill JE, Pozuelo Rubio M, Milne FC, MacKintosh C.
Biochem J. 2002 Dec 1;368(Pt 2):565-72.
PMID 12217078
Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway.
Havel JJ, Li Z, Cheng D, Peng J, Fu H.
Oncogene. 2014 Apr 7. doi: 10.1038/onc.2014.91. [Epub ahead of print]
PMID 24704832
Alcohol and PRAS40 knockdown decrease mTOR activity and protein synthesis via AMPK signaling and changes in mTORC1 interaction.
Hong-Brown LQ, Brown CR, Kazi AA, Huber DS, Pruznak AM, Lang CH.
J Cell Biochem. 2010 Apr 15;109(6):1172-84. doi: 10.1002/jcb.22496.
PMID 20127721
Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis.
Huang B, Porter G.
Acta Pharmacol Sin. 2005 Oct;26(10):1253-8.
PMID 16174443
Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients.
Jazet IM, Schaart G, Gastaldelli A, Ferrannini E, Hesselink MK, Schrauwen P, Romijn JA, Maassen JA, Pijl H, Ouwens DM, Meinders AE.
Diabetologia. 2008 Feb;51(2):309-19. Epub 2007 Dec 14.
PMID 18080107
In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth.
Jiang N, Hjorth-Jensen K, Hekmat O, Iglesias-Gato D, Kruse T, Wang C, Wei W, Ke B, Yan B, Niu Y, Olsen JV, Flores-Morales A.
Oncogene. 2014 Jul 28. doi: 10.1038/onc.2014.206. [Epub ahead of print]
PMID 25065596
Increased STAT-3 and synchronous activation of Raf-1-MEK-1-MAPK, and phosphatidylinositol 3-Kinase-Akt-mTOR pathways in atypical and anaplastic meningiomas.
Johnson MD, O'Connell M, Vito F, Bakos RS.
J Neurooncol. 2009 Apr;92(2):129-36. doi: 10.1007/s11060-008-9746-7. Epub 2008 Nov 26.
PMID 19034385
PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells.
Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B.
Pharmacol Res. 2013 Apr;70(1):90-101. doi: 10.1016/j.phrs.2013.01.005. Epub 2013 Jan 23.
PMID 23352980
Identification of a proline-rich Akt substrate as a 14-3-3 binding partner.
Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA.
J Biol Chem. 2003 Mar 21;278(12):10189-94. Epub 2003 Jan 10.
PMID 12524439
Prognostic role of phospho-PRAS40 (Thr246) expression in gastric cancer.
Lu YZ, Deng AM, Li LH, Liu GY, Wu GY.
Arch Med Sci. 2014 Feb 24;10(1):149-53. doi: 10.5114/aoms.2013.36927. Epub 2013 Aug 12.
PMID 24701227
The Akt signaling pathway: an emerging therapeutic target in malignant melanoma.
Madhunapantula SV, Mosca PJ, Robertson GP.
Cancer Biol Ther. 2011 Dec 15;12(12):1032-49. doi: 10.4161/cbt.12.12.18442. Epub 2011 Dec 15. (REVIEW)
PMID 22157148
Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1.
Nascimento EB, Snel M, Guigas B, van der Zon GC, Kriek J, Maassen JA, Jazet IM, Diamant M, Ouwens DM.
Cell Signal. 2010 Jun;22(6):961-7. doi: 10.1016/j.cellsig.2010.02.002. Epub 2010 Feb 6.
PMID 20138985
The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1.
Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K.
J Biol Chem. 2007 Jul 13;282(28):20329-39. Epub 2007 May 21.
PMID 17517883
Tissue-specific coupling between insulin/IGF and TORC1 signaling via PRAS40 in Drosophila.
Pallares-Cartes C, Cakan-Akdogan G, Teleman AA.
Dev Cell. 2012 Jan 17;22(1):172-82. doi: 10.1016/j.devcel.2011.10.029.
PMID 22264732
Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia.
Saito A, Hayashi T, Okuno S, Nishi T, Chan PH.
Stroke. 2006 Feb;37(2):513-7. Epub 2006 Jan 5.
PMID 16397181
Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor.
Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH.
J Neurosci. 2004 Feb 18;24(7):1584-93.
PMID 14973226
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase.
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM.
Mol Cell. 2007 Mar 23;25(6):903-15.
PMID 17386266
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis.
Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, Arrieumerlou C, Hall MN.
PLoS One. 2007 Nov 21;2(11):e1217.
PMID 18030348
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40.
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH.
Nat Cell Biol. 2007 Mar;9(3):316-23. Epub 2007 Feb 4.
PMID 17277771
PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity.
Volkers M, Doroudgar S, Nguyen N, Konstandin MH, Quijada P, Din S, Ornelas L, Thuerauf DJ, Gude N, Friedrich K, Herzig S, Glembotski CC, Sussman MA.
EMBO Mol Med. 2014 Jan;6(1):57-65. doi: 10.1002/emmm.201303183.
PMID 24408966
Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway.
Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H, Lin J, Zheng W.
Cell Signal. 2012 Jan;24(1):17-24. doi: 10.1016/j.cellsig.2011.08.010. Epub 2011 Aug 31. (REVIEW)
PMID 21906675
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.
Wang L, Harris TE, Roth RA, Lawrence JC Jr.
J Biol Chem. 2007 Jul 6;282(27):20036-44. Epub 2007 May 17.
PMID 17510057
Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle.
Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, Mueller H, Nascimento EB, Schurmann A, Al-Hasani H, Ouwens DM.
Arch Physiol Biochem. 2014 May;120(2):64-72. doi: 10.3109/13813455.2014.894076. Epub 2014 Feb 27.
PMID 24576065
Knockdown of PRAS40 inhibits insulin action via proteasome-mediated degradation of IRS1 in primary human skeletal muscle cells.
Wiza C, Herzfeld de Wiza D, Nascimento EB, Lehr S, Al-Hasani H, Ouwens DM.
Diabetologia. 2013a May;56(5):1118-28. doi: 10.1007/s00125-013-2861-9. Epub 2013 Mar 5.
PMID 23460019
Proline-rich Akt substrate of 40-kDa contains a nuclear export signal.
Wiza C, Nascimento EB, Linssen MM, Carlotti F, Herzfeld de Wiza D, van der Zon GC, Maassen JA, Diamant M, Guigas B, Ouwens DM.
Cell Signal. 2013b Sep;25(9):1762-8. doi: 10.1016/j.cellsig.2013.05.022. Epub 2013 May 24.
PMID 23712034
Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury.
Yu F, Narasimhan P, Saito A, Liu J, Chan PH.
J Cereb Blood Flow Metab. 2008 Jan;28(1):44-52. Epub 2007 Apr 25.
PMID 17457363


This paper should be referenced as such :
Claudia Wiza, Emmani BM Nascimento, Margriet D Ouwens
AKT1S1 (AKT1 substrate 1 (proline-rich))
Atlas Genet Cytogenet Oncol Haematol. 2015;19(12):679-683.
Free journal version : [ pdf ]   [ DOI ]

External links


HGNC (Hugo)AKT1S1   28426
Atlas Explorer : (Salamanque)AKT1S1
Entrez_Gene (NCBI)AKT1S1    AKT1 substrate 1
AliasesLobe; PRAS40
GeneCards (Weizmann)AKT1S1
Ensembl hg19 (Hinxton)ENSG00000204673 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000204673 [Gene_View]  ENSG00000204673 [Sequence]  chr19:49869033-49877387 [Contig_View]  AKT1S1 [Vega]
ICGC DataPortalENSG00000204673
TCGA cBioPortalAKT1S1
AceView (NCBI)AKT1S1
Genatlas (Paris)AKT1S1
SOURCE (Princeton)AKT1S1
Genetics Home Reference (NIH)AKT1S1
Genomic and cartography
GoldenPath hg38 (UCSC)AKT1S1  -     chr19:49869033-49877387 -  19q13.33   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)AKT1S1  -     19q13.33   [Description]    (hg19-Feb_2009)
GoldenPathAKT1S1 - 19q13.33 [CytoView hg19]  AKT1S1 - 19q13.33 [CytoView hg38]
Genome Data Viewer NCBIAKT1S1 [Mapview hg19]  
Gene and transcription
Genbank (Entrez)AK055511 AK092610 AK123687 AK226004 AK316603
RefSeq transcript (Entrez)NM_001098632 NM_001098633 NM_001278159 NM_001278160 NM_032375
Consensus coding sequences : CCDS (NCBI)AKT1S1
Gene ExpressionAKT1S1 [ NCBI-GEO ]   AKT1S1 [ EBI - ARRAY_EXPRESS ]   AKT1S1 [ SEEK ]   AKT1S1 [ MEM ]
Gene Expression Viewer (FireBrowse)AKT1S1 [ Firebrowse - Broad ]
GenevisibleExpression of AKT1S1 in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)84335
GTEX Portal (Tissue expression)AKT1S1
Human Protein AtlasENSG00000204673-AKT1S1 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ96B36   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ96B36  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ96B36
Domains : Interpro (EBI)AKT1S1   
Domain families : Pfam (Sanger)PRAS (PF15798)   
Domain families : Pfam (NCBI)pfam15798   
Conserved Domain (NCBI)AKT1S1
PDB (RSDB)5WBL    5WBU    5WBY    6SB0   
PDB Europe5WBL    5WBU    5WBY    6SB0   
PDB (PDBSum)5WBL    5WBU    5WBY    6SB0   
PDB (IMB)5WBL    5WBU    5WBY    6SB0   
Structural Biology KnowledgeBase5WBL    5WBU    5WBY    6SB0   
SCOP (Structural Classification of Proteins)5WBL    5WBU    5WBY    6SB0   
CATH (Classification of proteins structures)5WBL    5WBU    5WBY    6SB0   
AlphaFold pdb e-kbQ96B36   
Human Protein Atlas [tissue]ENSG00000204673-AKT1S1 [tissue]
Protein Interaction databases
IntAct (EBI)Q96B36
Ontologies - Pathways
Ontology : AmiGOprotein binding  nucleoplasm  cytoplasm  cytosol  cytosol  cytosol  negative regulation of protein kinase activity  negative regulation of protein kinase activity  negative regulation of TOR signaling  negative regulation of TOR signaling  regulation of apoptotic process  regulation of neuron apoptotic process  negative regulation of cell size  neurotrophin TRK receptor signaling pathway  
Ontology : EGO-EBIprotein binding  nucleoplasm  cytoplasm  cytosol  cytosol  cytosol  negative regulation of protein kinase activity  negative regulation of protein kinase activity  negative regulation of TOR signaling  negative regulation of TOR signaling  regulation of apoptotic process  regulation of neuron apoptotic process  negative regulation of cell size  neurotrophin TRK receptor signaling pathway  
NDEx NetworkAKT1S1
Atlas of Cancer Signalling NetworkAKT1S1
Wikipedia pathwaysAKT1S1
Orthology - Evolution
GeneTree (enSembl)ENSG00000204673
Phylogenetic Trees/Animal Genes : TreeFamAKT1S1
Homologs : HomoloGeneAKT1S1
Homology/Alignments : Family Browser (UCSC)AKT1S1
Gene fusions - Rearrangements
Fusion : FusionHubAKT1S1--TBC1D17    IL4I1--AKT1S1    RPS19--AKT1S1    TAGLN--AKT1S1    TNRC18--AKT1S1    UBAP2L--AKT1S1   
Fusion : QuiverAKT1S1
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerAKT1S1 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)AKT1S1
Exome Variant ServerAKT1S1
GNOMAD BrowserENSG00000204673
Varsome BrowserAKT1S1
ACMGAKT1S1 variants
Genomic Variants (DGV)AKT1S1 [DGVbeta]
DECIPHERAKT1S1 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisAKT1S1 
ICGC Data PortalAKT1S1 
TCGA Data PortalAKT1S1 
Broad Tumor PortalAKT1S1
OASIS PortalAKT1S1 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICAKT1S1  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DAKT1S1
Mutations and Diseases : HGMDAKT1S1
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
DgiDB (Drug Gene Interaction Database)AKT1S1
DoCM (Curated mutations)AKT1S1
CIViC (Clinical Interpretations of Variants in Cancer)AKT1S1
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry AKT1S1
NextProtQ96B36 [Medical]
Target ValidationAKT1S1
Huge Navigator AKT1S1 [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTDAKT1S1
Pharm GKB GenePA134943587
Clinical trialAKT1S1
DataMed IndexAKT1S1
PubMed75 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Thu Jan 20 14:01:38 CET 2022

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us