Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

BRD3 ((bromodomain containing 3)

Written2015-08Michael T. Werner, Sarah C. Hsu,, Gerd A. Blobel
Division of Hematology, Childrens Hospital of Philadelphia, Philadelphia, PA, United States (MTW, SCH, GAB); Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States (MTW, SCH);

Abstract BRD3 is a ubiquitously expressed member of the bromodomain and extraterminal motif (BET) family of proteins that use their tandem N-terminal bromodomains to associate with acetylated histones and transcription factors. Translocations involving BRD3 and NUT generate oncogenic fusion proteins that drive NUT midline carcinoma (NMC), an aggressive squamous cell malignancy. In addition, small molecule inhibitors that target the bromodomain-acetyl lysine interaction of all BET proteins are in clinical development for both hematologic malignancies and diverse solid tumors.

Keywords BRD3, ORFX, RING3L, bromodomain-containing protein 3, RING3-like protein, BRD3-NUT, NUT midline carcinoma

(Note : for Links provided by Atlas : click)


HGNC (Hugo) BRD3
HGNC Alias symbRING3L
HGNC Alias nameRING3-like
HGNC Previous namebromodomain-containing 3
LocusID (NCBI) 8019
Atlas_Id 43171
Location 9q34.2  [Link to chromosome band 9q34]
Location_base_pair Starts at 134030324 and ends at 134068026 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping BRD3.png]
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
BRD3 (9q34.2) / NUTM1 (15q14)NUTM1 (15q14) / BRD3 (9q34.2)


Description BRD3 maps to chromosome 9 on the reverse strand and spans 37.7kb. The gene consists of 12 exons, with the translation initiation codon present in exon 2 and the stop codon in exon 12. BRD3 exhibits a high degree of homology to BRD2, which sits in the MHC locus. In addition to BRD3, chr9q34 contains other MHC-homologous genes, suggesting that BRD2 and BRD3 may have arisen through a gene duplication event (Kasahara et al., 1996; Thorpe et al., 1997).
Transcription BRD3 mRNA (NM_007371.3) is 5,673 base pairs in length. It is expressed across at least fifty adult and fetal tissues (Thorpe et al., 1997). BRD3 has an expression pattern that is similar to BRD2, although the expression levels vary between cell and tissue type. It is not known how BRD3 expression is regulated. An alternatively spliced transcript with a predicted structure missing the C-terminal 170 amino acids has been reported, however there is no experimental validation of this shorter isoform (UniProtKB Q15059-2).


Description BRD3 is a member of the bromodomain and extraterminal motif (BET) family of proteins that includes BRD2, BRD4 and BRDT. BET family members, including BRD3, possess conserved tandem amino-terminal bromodomains that bind to acetylated lysine residues on histones and other proteins. The conserved extraterminal (ET) motif facilitates interactions with several transcriptional regulatory complexes (Rahman et al., 2011), and may be important for the association of BRD3 with viral proteins such as Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA-1) (Ottinger et al., 2006). BRD3 contains two additional domains conserved in other BET family members, motif A and motif B (Paillisson et al., 2007). It has been reported that motif B is important for homo- and heterodimerization of BET proteins, as well as their association with mitotic chromosomes (Garcia-Gutierrez et al., 2012). The function of motif A is unknown.
Expression Based on antibody staining, BRD3 is ubiquitously expressed in most tissues, including in cell lines generated from normal and malignant myeloid and lymphoid cells and non-hematopoietic tumors. Most primary tissues demonstrate significant expression, with the exception of lymphoid tissues, which were observed to have lower relative levels (Uhlen et al., 2015).
Localisation BRD3 is a predominantly nuclear protein (Uhlen et al., 2015) that binds to chromatin (LeRoy et al., 2008; Lamonica et al., 2011; Stonestrom et al., 2015). Like other members of the BET family, BRD3 localizes to mitotic chromosomes (Garcia-Gutierrez et al., 2012) although the functional significance of this has not been determined. In a murine erythroid cell line BRD3 was found to exhibit strong colocalization with enhancers and promoters bound by the hematopoietic transcription factor GATA1 (Lamonica et al., 2011; Stonestrom et al., 2015). Although BRD3 is broadly expressed, little is known about BRD3 chromatin occupancy in other tissues or its association with other tissue-specific transcription factors.
Function Like BRD2 (Kanno et al., 2004) and BRD4 (Dey et al., 2003), BRD3 is associated with acetylated lysines on histones H3 and H4 (LeRoy et al., 2008). BRD3 was shown to activate transcription in vitro by promoting RNA polymerase II activity on nucleosomal templates in a manner that required the bromodomain-acetyl lysine interaction (LeRoy et al., 2008). Proteomic analysis of BET proteins indicates that BRD3 can bind to transcription elongation complexes such as PTEF-b and PAF (Dawson et al., 2011). In addition, the extraterminal (ET) domain of BRD3 can associate with the histone methyltransferase NSD3 and a component of the Nucleosome Remodeling and Deacetylase (NuRD) complex, CHD4, suggesting that BRD3 has transcriptional regulatory function in vivo as well (Rahman et al., 2011).
BRD3 has also interacts with an acetylated peptide of the hematopoietic transcription factor GATA1 (Gamsjaeger et al., 2011; Lamonica et al., 2011). However, despite strong colocalization at GATA1-occupied sites genome-wide in an erythroid cell line, BRD3 depletion affected GATA1-mediated gene expression only in the setting of BRD2 loss. In addition, overexpression of BRD3 is able to partially rescue the erythroid maturation defects observed with BRD2 deficiency, suggesting that the functions of BRD2 and BRD3 are additive and at least partially redundant in erythroid cells, with BRD2 being the dominant protein (Stonestrom et al., 2015). It remains unclear how BRD2 and BRD3 can substitute for one another and whether BRD3 can functionally replace BRD2 at all genes. While knockout of BRD2 or BRD4 in mice results in early embryonic lethality (Houzelstein et al., 2002; Gyuris et al., 2009; Shang et al., 2009), a BRD3 knockout mouse has not been reported.
Homology BRD3 shares functional domains with BRD2, BRD4, and BRDT. The tandem amino-terminal bromodomains, BD1 and BD2, are highly conserved between BET family members. Indeed BD1 of BRD3 is more similar to the first bromodomains of other BET proteins than it is to BD2 (Florence and Faller, 2002; Belkina and Denis, 2012). However, BET bromodomains - both BD1 and BD2 - can be selectively targeted with competitive small molecule inhibitors such as JQ1 (Filippakopoulos et al., 2010) and I-BET (Dawson et al., 2011), and thus are structurally distinct from other bromodomain-containing proteins. The carboxy-terminal extraterminal (ET) domain is about 80% conserved among BET proteins and facilitates shared protein-protein interactions with chromatin modifying proteins (Rahman et al., 2011). The remainder of the C-terminus is more divergent; however, little is understood about how this region contributes to BRD3-specific functions.
BRD3, like the other BET proteins, is evolutionarily conserved in diverse species including mice and zebrafish (NCBI). In addition BET homologs exist in Drosophila as FS(1)H (Haynes et al., 1992), and in yeast, where BDF1 and BDF2 also exhibit functional redundancy (Matangkasombut and Buratowski, 2000).


Note Although there are 459 SNPs associated with the Brd3 mRNA transcript, only a small fraction have been validated and at present there are no clinically significant variants reported (dbSNP). Translocations involving BRD3 and Nuclear protein in testes (NUT) are found in NUT midline carcinoma (French et al., 2008), a rare squamous cell malignancy described below.

Implicated in

Entity NUT midline carcinoma
Disease NUT midline carcinomas (NMCs) are rare but lethal tumors consisting of undifferentiated or poorly differentiated squamous cells. Two thirds of NMCs result from a translocation of NUTM1 to the 3' end of BRD4 (t(15;19)(q14;p13) (French et al., 2003). The remaining NMCs involve a similar translocation to BRD3 (French et al., 2008) or WHSC1L1 (NSD3) (t(8;15)(p11;q14) WHSC1L1/NUTM1 )(French et al., 2014).
Prognosis The first two patients in whom this translocation was described lived 148 weeks and 8 weeks post diagnosis, respectively (French et al., 2008). Median survival of all NMCs is 6.7 months (Bauer et al., 2012).
Cytogenetics BRD3/NUT fusion proteins are generated from a translocation involving t(9;15)(q34;q14). NMC typically involves only a single cytogenetic abnormality, in contrast to other carcinomas (French, 2010).
Abnormal Protein The predicted protein based on the mRNA analysis above is expected to contain the majority of the BRD3 protein, including the tandem bromodomains and the ET motif, attached to a version of NUT lacking the first 6 amino acids (French et al., 2008). This protein is structurally similar to that reported for BRD4-NUT (French et al., 2003). The BRD3-NUT and BRD4-NUT fusion proteins were noted to reside within the nucleus in a speckled pattern, in contrast to NUT alone, which was either cytoplasmic or nuclear. This suggests that the chromatin binding function of BRD3 and BRD4 inappropriately targets NUT to the nucleus (French et al., 2008). The reciprocal translocation product NUT-BRD3 exhibits no detectable expression (French et al., 2008).
Oncogenesis The exact mechanism by which BRD3-NUT facilitates oncogenesis is not understood, but treatment of NMC cells with a BET-specific bromodomain inhibitor causes NMC cells to differentiate, suggesting that the fusion protein blocks the cells in an undifferentiated, proliferative state (Filippakopoulos et al., 2010). Deregulation of MYC expression by BRD3-NUT is one potential mechanism (Grayson et al., 2013). NUT is also known to interact with the histone acetyltransferase p300. This suggests that BRD-NUT fusion proteins can inappropriately bind p300 and redirect its activity away from its normal targets, resulting in decreased transcription of genes important for differentiation (Reynoird et al., 2010; Schwartz et al., 2011).
Entity Prostate cancer
Disease Depletion of BRD3 in androgen-receptor positive prostate cancer cell lines inhibited growth and invasion, suggesting that BRD3 promotes a malignant phenotype. BRD2 and BRD4 depletion had similar effects, suggesting shared functionality in this disease (Asangani et al., 2015).
Oncogenesis It is not known how BRD3 promotes prostate cancer cell growth or whether this function is also important in human patients. In cell lines, BRD2, BRD3, and BRD4 can associate with the androgen receptor (AR), and global BET inhibition reduces AR chromatin binding (Asangani et al., 2015). Thus one possible mechanism is that BRD3, along with BRD2 and BRD4, may act to load or stabilize AR at its target sites.


Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, Escara-Wilke J, Wilder-Romans K, Dhanireddy S, Engelke C, Iyer MK, Jing X, Wu YM, Cao X, Qin ZS, Wang S, Feng FY, Chinnaiyan AM
Nature 2014 Jun 12;510(7504):278-82
PMID 24759320
Clinicopathologic features and long-term outcomes of NUT midline carcinoma
Bauer DE, Mitchell CM, Strait KM, Lathan CS, Stelow EB, Lüer SC, Muhammed S, Evans AG, Sholl LM, Rosai J, Giraldi E, Oakley RP, Rodriguez-Galindo C, London WB, Sallan SE, Bradner JE, French CA
Clin Cancer Res 2012 Oct 15;18(20):5773-9
PMID 22896655
BET domain co-regulators in obesity, inflammation and cancer
Belkina AC, Denis GV
Nat Rev Cancer 2012 Jun 22;12(7):465-77
PMID 22722403
Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia
Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T
Nature 2011 Oct 2;478(7370):529-33
PMID 21964340
The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis
Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K
Proc Natl Acad Sci U S A 2003 Jul 22;100(15):8758-63
PMID 12840145
Selective inhibition of BET bromodomains
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE
Nature 2010 Dec 23;468(7327):1067-73
PMID 20871596
You bet-cha: a novel family of transcriptional regulators
Florence B, Faller DV
Front Biosci 2001 Aug 1;6:D1008-18
PMID 11487468
NUT midline carcinoma
French CA
Cancer Genet Cytogenet 2010 Nov;203(1):16-20
BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma
French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA
Cancer Res 2003 Jan 15;63(2):304-7
PMID 12543779
NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism
French CA, Rahman S, Walsh EM, Kühnle S, Grayson AR, Lemieux ME, Grunfeld N, Rubin BP, Antonescu CR, Zhang S, Venkatramani R, Dal Cin P, Howley PM
Cancer Discov 2014 Aug;4(8):928-41
PMID 24875858
Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3
Gamsjaeger R, Webb SR, Lamonica JM, Billin A, Blobel GA, Mackay JP
Mol Cell Biol 2011 Jul;31(13):2632-40
PMID 21555453
Association of bromodomain BET proteins with chromatin requires dimerization through the conserved motif B
Garcia-Gutierrez P, Mundi M, Garcia-Dominguez M
J Cell Sci 2012 Aug 1;125(Pt 15):3671-80
PMID 22595521
MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma
Grayson AR, Walsh EM, Cameron MJ, Godec J, Ashworth T, Ambrose JM, Aserlind AB, Wang H, Evan GI, Kluk MJ, Bradner JE, Aster JC, French CA
Oncogene 2014 Mar 27;33(13):1736-42
PMID 23604113
The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis
Gyuris A, Donovan DJ, Seymour KA, Lovasco LA, Smilowitz NR, Halperin AL, Klysik JE, Freiman RN
Biochim Biophys Acta 2009 May;1789(5):413-21
PMID 19362612
The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins
Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB
Nucleic Acids Res 1992 May 25;20(10):2603
PMID 1350857
Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4
Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RS
Mol Cell Biol 2002 Jun;22(11):3794-802
PMID 11997514
Selective recognition of acetylated histones by bromodomain proteins visualized in living cells
Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K
Mol Cell 2004 Jan 16;13(1):33-43
PMID 14731392
Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex
Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T
Proc Natl Acad Sci U S A 1996 Aug 20;93(17):9096-101
PMID 8799160
Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes
Lamonica JM, Deng W, Kadauke S, Campbell AE, Gamsjaeger R, Wang H, Cheng Y, Billin AN, Hardison RC, Mackay JP, Blobel GA
Proc Natl Acad Sci U S A 2011 May 31;108(22):E159-68
PMID 21536911
The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription
LeRoy G, Rickards B, Flint SJ
Mol Cell 2008 Apr 11;30(1):51-60
PMID 18406326
Bromodomain factor 1 corresponds to a missing piece of yeast TFIID
Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S
Genes Dev 2000 Apr 15;14(8):951-62
PMID 10783167
Kaposi's sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest
Ottinger M, Christalla T, Nathan K, Brinkmann MM, Viejo-Borbolla A, Schulz TF
J Virol 2006 Nov;80(21):10772-86
PMID 16928766
Bromodomain testis-specific protein is expressed in mouse oocyte and evolves faster than its ubiquitously expressed paralogs BRD2, -3, and -4
Paillisson A, Levasseur A, Gouret P, Callebaut I, Bontoux M, Pontarotti P, Monget P
Genomics 2007 Feb;89(2):215-23
PMID 17049203
The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3
Rahman S, Sowa ME, Ottinger M, Smith JA, Shi Y, Harper JW, Howley PM
Mol Cell Biol 2011 Jul;31(13):2641-52
PMID 21555454
Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains
Reynoird N, Schwartz BE, Delvecchio M, Sadoul K, Meyers D, Mukherjee C, Caron C, Kimura H, Rousseaux S, Cole PA, Panne D, French CA, Khochbin S
EMBO J 2010 Sep 1;29(17):2943-52
PMID 20676058
Differentiation of NUT midline carcinoma by epigenomic reprogramming
Schwartz BE, Hofer MD, Lemieux ME, Bauer DE, Cameron MJ, West NH, Agoston ES, Reynoird N, Khochbin S, Ince TA, Christie A, Janeway KA, Vargas SO, Perez-Atayde AR, Aster JC, Sallan SE, Kung AL, Bradner JE, French CA
Cancer Res 2011 Apr 1;71(7):2686-96
PMID 21447744
Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse
Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ
Dev Dyn 2009 Apr;238(4):908-17
PMID 19301389
Functions of BET proteins in erythroid gene expression
Stonestrom AJ, Hsu SC, Jahn KS, Huang P, Keller CA, Giardine BM, Kadauke S, Campbell AE, Evans P, Hardison RC, Blobel GA
Blood 2015 Apr 30;125(18):2825-34
PMID 25696920
Chromosomal localization, gene structure and transcription pattern of the ORFX gene, a homologue of the MHC-linked RING3 gene
Thorpe KL, Gorman P, Thomas C, Sheer D, Trowsdale J, Beck S
Gene 1997 Oct 24;200(1-2):177-83
PMID 9373153
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F
Tissue-based map of the human proteome Science
PMID 25613900


This paper should be referenced as such :
Michael T Werner, Sarah C Hsu, Gerd A Blobel
BRD3 (bromodomain containing 3)
Atlas Genet Cytogenet Oncol Haematol. 2016;20(5):238-242.
Free journal version : [ pdf ]   [ DOI ]

Other Solid tumors implicated (Data extracted from papers in the Atlas) [ 1 ]
  t(9;15)(q34;q14) BRD3/NUTM1

External links

HGNC (Hugo)BRD3   1104
Entrez_Gene (NCBI)BRD3    bromodomain containing 3
GeneCards (Weizmann)BRD3
Ensembl hg19 (Hinxton)ENSG00000169925 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000169925 [Gene_View]  ENSG00000169925 [Sequence]  chr9:134030324-134068026 [Contig_View]  BRD3 [Vega]
ICGC DataPortalENSG00000169925
TCGA cBioPortalBRD3
AceView (NCBI)BRD3
Genatlas (Paris)BRD3
SOURCE (Princeton)BRD3
Genetics Home Reference (NIH)BRD3
Genomic and cartography
GoldenPath hg38 (UCSC)BRD3  -     chr9:134030324-134068026 -  9q34.2   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)BRD3  -     9q34.2   [Description]    (hg19-Feb_2009)
GoldenPathBRD3 - 9q34.2 [CytoView hg19]  BRD3 - 9q34.2 [CytoView hg38]
genome Data Viewer NCBIBRD3 [Mapview hg19]  
Gene and transcription
Genbank (Entrez)AA766480 AF052138 AK026880 AK123322 AK299519
RefSeq transcript (Entrez)NM_007371
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)BRD3
Alternative Splicing GalleryENSG00000169925
Gene ExpressionBRD3 [ NCBI-GEO ]   BRD3 [ EBI - ARRAY_EXPRESS ]   BRD3 [ SEEK ]   BRD3 [ MEM ]
Gene Expression Viewer (FireBrowse)BRD3 [ Firebrowse - Broad ]
GenevisibleExpression of BRD3 in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)8019
GTEX Portal (Tissue expression)BRD3
Human Protein AtlasENSG00000169925-BRD3 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ15059   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ15059  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ15059
Splice isoforms : SwissVarQ15059
Domaine pattern : Prosite (Expaxy)BROMODOMAIN_1 (PS00633)    BROMODOMAIN_2 (PS50014)    NET (PS51525)   
Domains : Interpro (EBI)Bromodomain    Bromodomain-like_sf    Bromodomain_CS    NET_dom    NET_sf   
Domain families : Pfam (Sanger)BET (PF17035)    Bromodomain (PF00439)   
Domain families : Pfam (NCBI)pfam17035    pfam00439   
Domain families : Smart (EMBL)BROMO (SM00297)  
Conserved Domain (NCBI)BRD3
Blocks (Seattle)BRD3
PDB (RSDB)2E7N    2NXB    2OO1    2YW5    3S91    3S92    5A7C    5HFR    5HJC    6BGG    6BGH    6I41    6I5P    6I68    6I7A   
PDB Europe2E7N    2NXB    2OO1    2YW5    3S91    3S92    5A7C    5HFR    5HJC    6BGG    6BGH    6I41    6I5P    6I68    6I7A   
PDB (PDBSum)2E7N    2NXB    2OO1    2YW5    3S91    3S92    5A7C    5HFR    5HJC    6BGG    6BGH    6I41    6I5P    6I68    6I7A   
PDB (IMB)2E7N    2NXB    2OO1    2YW5    3S91    3S92    5A7C    5HFR    5HJC    6BGG    6BGH    6I41    6I5P    6I68    6I7A   
Structural Biology KnowledgeBase2E7N    2NXB    2OO1    2YW5    3S91    3S92    5A7C    5HFR    5HJC    6BGG    6BGH    6I41    6I5P    6I68    6I7A   
SCOP (Structural Classification of Proteins)2E7N    2NXB    2OO1    2YW5    3S91    3S92    5A7C    5HFR    5HJC    6BGG    6BGH    6I41    6I5P    6I68    6I7A   
CATH (Classification of proteins structures)2E7N    2NXB    2OO1    2YW5    3S91    3S92    5A7C    5HFR    5HJC    6BGG    6BGH    6I41    6I5P    6I68    6I7A   
Human Protein Atlas [tissue]ENSG00000169925-BRD3 [tissue]
Peptide AtlasQ15059
IPIIPI00014266   IPI00410716   IPI01013919   IPI00880042   IPI00879885   
Protein Interaction databases
IntAct (EBI)Q15059
Ontologies - Pathways
Ontology : AmiGOchromatin binding  protein binding  nucleus  chromatin organization  regulation of transcription by RNA polymerase II  lysine-acetylated histone binding  
Ontology : EGO-EBIchromatin binding  protein binding  nucleus  chromatin organization  regulation of transcription by RNA polymerase II  lysine-acetylated histone binding  
NDEx NetworkBRD3
Atlas of Cancer Signalling NetworkBRD3
Wikipedia pathwaysBRD3
Orthology - Evolution
GeneTree (enSembl)ENSG00000169925
Phylogenetic Trees/Animal Genes : TreeFamBRD3
Homologs : HomoloGeneBRD3
Homology/Alignments : Family Browser (UCSC)BRD3
Gene fusions - Rearrangements
Fusion : MitelmanBRD3/NUTM1 [9q34.2/15q14]  
Fusion : COSMICBRD3 [NUTM1]  -  973 [975]  
Fusion : TICdbBRD3 [9q34.2]  -  NUTM1 [15q14]
Fusion : Fusion_HubBRD3--ANKMY1    BRD3--BRD1    BRD3--BRD3    BRD3--C15ORF55    BRD3--CDK5RAP3    BRD3--CTBP1    BRD3--NUP214    BRD3--NUT    BRD3--NUTM1    BRD3--PIP5KL1    BRD3--PTPN1    BRD3--RAI1    BRD3--SKI    BRD3--TG    CCDC64B--BRD3   
HAUS7--BRD3    KANK3--BRD3    MFSD7--BRD3    NUT--BRD3    VAV2--BRD3   
Fusion : QuiverBRD3
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerBRD3 [hg38]
Exome Variant ServerBRD3
GNOMAD BrowserENSG00000169925
Varsome BrowserBRD3
Genomic Variants (DGV)BRD3 [DGVbeta]
DECIPHERBRD3 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisBRD3 
ICGC Data PortalBRD3 
TCGA Data PortalBRD3 
Broad Tumor PortalBRD3
OASIS PortalBRD3 [ Somatic mutations - Copy number]
Cancer Gene: CensusBRD3 
Somatic Mutations in Cancer : COSMICBRD3  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DBRD3
Mutations and Diseases : HGMDBRD3
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch BRD3
DgiDB (Drug Gene Interaction Database)BRD3
DoCM (Curated mutations)BRD3 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)BRD3 (select a term)
NCG6 (London) select BRD3
Cancer3DBRD3(select the gene name)
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry BRD3
NextProtQ15059 [Medical]
Target ValidationBRD3
Huge Navigator BRD3 [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTD
Pharm GKB GenePA25415
Clinical trialBRD3
canSAR (ICR)BRD3 (select the gene name)
DataMed IndexBRD3
PubMed64 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Feb 19 17:46:48 CET 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us