Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

CHST11 (carbohydrate (chondroitin 4) sulfotransferase 11)

Written2014-04Michael Klüppel
Ann, Robert H. Lurie Children's Hospital of Chicago Research Center, Chicago, IL, USA, Department of Pediatrics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

(Note : for Links provided by Atlas : click)

Identity

Alias_namescarbohydrate (chondroitin 4) sulfotransferase 11
Alias_symbol (synonym)C4ST1
C4St-1
C4ST
HSA269537
Other aliasC4ST-1
HGNC (Hugo) CHST11
LocusID (NCBI) 50515
Atlas_Id 50474
Location 12q23.3  [Link to chromosome band 12q23]
Location_base_pair Starts at 104456914 and ends at 104762014 bp from pter ( according to hg19-Feb_2009)  [Mapping CHST11.png]
Local_order Centromere - NFYB - TXNRD1 - CHST11 - SLC41A2 - ALDH1L2.
Fusion genes
(updated 2016)
CHST11 (12q23.3) / ARHGEF1 (19q13.2)CHST11 (12q23.3) / ATP1B4 (Xq24)CHST11 (12q23.3) / CHST11 (12q23.3)
CHST11 (12q23.3) / CLPTM1L (5p15.33)CHST11 (12q23.3) / FARP1 (13q32.2)CHST11 (12q23.3) / HCFC2 (12q23.3)
CHST11 (12q23.3) / IGH (14q32.33)CHST11 (12q23.3) / RFX4 (12q23.3)CHST11 (12q23.3) / SLC41A2 (12q23.3)
CHST11 (12q23.3) / TXNRD1 (12q23.3)FBXW8 (12q24.22) / CHST11 (12q23.3)IGH (14q32.33) / CHST11 (12q23.3)
IGHG1 (14q32.33) / CHST11 (12q23.3)PPDPF (20q13.33) / CHST11 (12q23.3)TXNRD1 (12q23.3) / CHST11 (12q23.3)

DNA/RNA

 
  Genomic organization of the CHST11 locus on chromosome 12q23.3, encompassing nucleotides 104850692 to 105155792. Orientation (5' to 3') of CHST11, and neighbouring genes TXNRD1, SCL41A2, and ALDH1L2 are indicated by arrowheads. cen: centromere; qter: telomere of q-arm. Adapted from USCS Genome Browser, hg19 (November 2013).
Description The CHST11 gene spans 305 kb on chromosome 12q23.3.
Transcription The CHST11 gene contains one 5' non-coding exon and three coding exons and is transcribed into a 5.7 kb mRNA. Transcription of CHST11 has been shown to be positively regulated by signaling through transforming growth factor-beta (TGFβ) pathways (Klüppel et al., 2002). Using a bioinformatical approach, conserved long-range cis-regulatory modules were identified in the CHST11 locus. Luciferase reporter assays identified a functional CHST11 promoter, as well as a number of cis-regulatory modules able to positively and negatively regulate CHST11 expression in a TGFβ-dependent as well as -independent manner (Willis et al., 2009).

Protein

 
  Schematic illustration of the protein structure of CHST11 with known motifs indicated. CHST11 contains a transmembrane domain (TMD) for anchorage in the Golgi membrane (encoded by exon III), and a large luminal catalytic domain harboring a sulfotransferase domain, which contains a 5'-phosphosulfate site (PSB), a 3' phosphate binding site (PB), as well as four C-terminal N-glycosylation sites (N1-N4) (all encoded by exon IV).
Description The CHST11 protein contains 352 amino acids, and has an approximate molecular mass of 43 kDa. CHST11 is a single pass type II membrane-bound protein (Klüppel, 2010). CHST11 protein contains a transmembrane domain (TMD) for anchorage in the Golgi mebrane, a 5' phosposulfate binding site (PSB), a 3' phosphate binding site (PB), required for binding of the phosphate donor PAPS and transfer of sulfate groups, and four N-linked glycosylation sites (N1 to N4) in the C-terminal end of the protein.
Expression CHST11 has a highly specific temporal and spatial expression pattern during mouse embryogenesis, and has been detected in notocord, heart valves and myocardium, apical ectodermal ridge during limb generation, neural tube, hair follicles, kidney, and proliferating chondrocytes in the cartilage growth plate during skeletal development (Klüppel et al., 2002; Klüppel et al., 2005). In adult tissues, CHST11 has been reported to be widely expressed, including in spleen, thymus, bone marrow, peripheral blood leukocytes, lymph node, heart, brain, lung and placenta (Habuchi and Miyashita, 1982; Hiraoka et al., 2000; Okuda et al., 2000; Yamauchi et al., 2000).
Localisation CHST11 is a single pass type II membrane-bound protein localized to the Golgi (Klüppel, 2010). However, CHST11 was initially identified as a protein secreted from chondrocytes and chondrosarcoma cells (Habuchi et al., 1991; Yamauchi et al., 1999).
Function Role in carbohydrate metabolism:
CHST11 catalyzes the transfer of sulfate from the universal intracellular sulfate donor PAPS (3'-Phosphoadenosine 5'-phosphosulfate) to the C4 position of the glycosaminoglycan chondroitin, generating chondroitin-4-sulfate (C4S) and adenosine 3',5'-bisphosphate (Habuchi, 2000; Klüppel, 2010). Through a subsequent CHST11-independent enzymatic sulfation reaction, C4S can be transformed into the double-sulfated chondroitin sulfate-E (CS-E) (Habuchi, 2000; Klüppel, 2010). Different chondroitin sulfation forms have been shown to have distinct biological functions. CHST11 has also been shown to positively regulate chondroitin sulfate chain elongation (Anggraeni et al., 2011). N-glycosylation of CHST11 is required for its enzymatic function and heat stability (Yusa et al., 2005).

Role in cartilage development and osteoarthritis (OA):
Mouse CHST11 has been shown to be required for cartilage growth plate morphogenesis (Klüppel et al., 2005). Loss of CHST11 caused chondrodysplasia with severely shortened long bones, caused by shortened and thickened cartilage growth plates with disorganized and hypo-cellular cartilage growth plates with fibrillated ECM and an overall loss of chondroitin sulfate. Increased apoptosis of mutant chondrocytes was observed, and TGFbeta and BMP signaling was disturbed in mutant growth plates (Klüppel et al., 2005). Many of these cartilage deficiencies are characteristic of the degenerative alterations observed in OA, a degenerative disease characterized by loss of matrix GAGs and cartilage integrity. Increased CHST11 expression has been observed in OA (Zeggini et al., 2012). Combined, these data suggest a requirement for tightly controlled regulation of CHST11 expression in the development and maintenance of healthy cartilage.

Role in HSV infection:
Herpes simplex virus (HSV) envelope glycoproteins utilize cell-surface GAGs to efficiently bind to and infect host cells. The gC HSV envelope protein has been suggested to bind cell-surface CS-E-proteoglycans with high affinity, and treatment with exogenous CS-E could potently inhibit HSV infectivity, thus identifying CS-E chains of cell-surface proteoglycans as key receptors for HSV entry into a host cell. Deficiency in CHST11 expression leads to drastically reduced susceptibility to HSV infection in L-cell fibroblasts, presumably through the absence of CHST11-mediated CS-E synthesis (Uyama et al., 2006).

Role in malaria:
Malaria is caused by the parasites of the species Plasmodium, and is transmitted through infected mosquitos. High affinity adherence of P. falciparum-infected erythrocytes to endothelial cells is mediated by the CHST11 product C4S on endothelial cell-surface proteoglycans (Rogerson et al., 1995; Cooke et al., 1996; Pouvelle et al., 1997; Beeson et al., 1998).

Role in Costello syndrome:
Costello syndrome is a pediatric genetic disorder linked to oncogenic germline mutations in the HRAS gene (Gripp, 2005; Quezada and Gripp, 2007; Rauen, 2007; Gripp and Lin, 2012). The disease is characterized by multiple developmental abnormalities as well as predisposition to malignancies (White et al., 2005; Quezada and Gripp, 2007; Rauen et al., 2008). Reduction in CHST11 mRNA and protein expression, as well as loss of C4S has been identified in primary fibroblasts derived from Costello syndrome patients (Hinek et al., 2005; Klüppel et al., 2012). Oncogenic HRAS in normal fibroblasts can repress CHST11 expression, while interference with oncogenic HRAS signaling in these cells elevated CHST11 expression, thus identifying CHST11 as a negatively regulated target gene of HRAS signaling (Klüppel et al., 2012). Forced expression of CHST11 in Costello fibroblasts rescued the proliferation and elastogenesis defects associated with oncogenic HRAS signaling in these cells (Klüppel et al., 2012). These results indicate that reduced CHST11 expression and a subsequent chondroitin sulfation imbalance mediate the effects of oncogenic HRAS signaling in the pathogenesis of Costello syndrome.

Role in cancer:
Changes in CS levels and chondroitin sulfation balance have been described during tumor progression (Ricciardelli et al., 1997; Suwiwat et al., 2004; Theocharis et al., 2006; Sakko et al., 2008; Teng et al., 2008; Svensson et al., 2011; Vallen et al., 2012). Experimental elimination of chondroitin sulfate in orthotopic breast cancer mouse models lead to increased metastasis, demonstrating a critical role of chondroitin epitopes in tumor progression in vivo (Prinz et al., 2011). The CHST11 gene was highly expressed in aggressive breast cancer cells, but significantly less so in less aggressive breast cancer cell lines (Cooney et al., 2011). Moreover, a positive correlation was observed between the expression levels of CHST11 and P-selectin-mediated adherence of breast cancer cells to endothelial cells (Cooney et al., 2011). Increased expression of the CHST11 gene has been observed in multiple myeloma (Bret et al., 2009). One case report of a patient with B-cell chronic lymphocytic leukemia (B-CLL), a chromosomal translocation with breakpoints in the IGH locus on chromosome 14, and the CHST11 locus on chromosome 12 [t(12;14)(q23;q32)] was identified. The translocation breakpoint mapped to intron 2 of the CHST11 locus, and resulted in the expression of two truncated forms of CHST11 (Schmidt et al., 2004).

Role in Wnt-β-catenin signaling:
Studies were performed in mutant sog9 L-cell fibroblasts, which lack the expression of both EXT1 (Extosis-1, required for heparan sulfate biosynthesis) and CHST11 genes (Nadanaka et al., 2008). Mutant cells had a significant decrease in Wnt3a-stimulated β-catenin accumulation, which could be rescued by stably expressing CHST11, but not EXT-1 (Nadanaka et al., 2008). In addition, this study showed that the specific chondroitin sulfate form CS-E, but not the other chondroitin sulfate forms, was able to bind Wnt3a ligand with high affinity. Addition of CS-E to normal L-cells reduced β-catenin levels, much like what was seen in the sog9 mutant L-cells lacking CHST11 expression (Nadanaka et al., 2008). Together, this data suggested that the CHST11, through its ability to produce CS-E containing proteoglycans, might play a role in the Wnt/β-catenin signaling pathway. The investigators of this study suggested a model in which CHST11 expression increases the level of CS-E containing proteoglycans, which can then bind Wnt3a, and facilitate the binding of Wnt ligands to its receptor complex, thus increasing the efficiency of ligand-receptor interactions. In a follow-up study, Nadanaka et al. (2011) show that L-cells stably expressing the Wnt3a ligand had a reduction in CHST11 gene expression, and subsequently a change in sulfation balance with a higher concentration of chondroitin sulfate products with low affinity for Wnt3a ligand binding (Nadanaka et al., 2011). This allows the Wnt3a ligand to freely diffuse across L-cell fibroblast cultures. Forced expression of CHST11 was suggested to inhibit the diffusion of Wnt3a ligand in L-cell fibroblast cultures, because of the increase in production of CS-E containing proteoglycans (Nadanaka et al., 2011). These and previous studies suggested that CHST11 expression is able to inhibit Wnt3a diffusion and sustained signaling, but CHST11 gene expression is negatively regulated by active Wnt/β-catenin signaling (Nadanaka et al., 2011). We reported the identification of the CHST11 product CS-E as an inhibitor of specific molecular and biological outcomes of Wnt3a signaling in NIH3T3 fibroblasts (Willis and Klüppel, 2012). CS-E could decrease Wnt3a signaling through negative regulation of LRP6 receptor activation. However, this inhibitory effect of CS-E only affected Wnt3a-mediated induction, but not repression, of target gene expression (Willis and Klüppel, 2012). We went on to identify a critical Wnt3a signaling threshold that differentially affects target gene induction versus repression. This Wnt3a signaling threshold also differentially controlled the effects on proliferation and serum starvation-induced apoptosis (Willis and Klüppel, 2012). These data established the feasibility to manipulate the chondroitin sulfate biosynthesis machinery, in particular CHST11, to selectively inhibit Wnt/β-catenin transcriptional programs and biological outcomes through the exploitation of intrinsic signaling thresholds (Willis and Klüppel, 2012).

Homology Homologous genes: CHST12, CHST13.

Mutations

Note A chromosomal translocation t(12;14)(q23;q32) has been described in one patient with B-cell chronic lymphocytic leukemia (B-CLL) (Schmidt et al., 2004). Breakpoints of this have been mapped to the IGH locus on chromosome 14, and the CHST11 locus on chromosome 12 [t(12;14)(q23;q32)] (Schmidt et al., 2004). The translocation breakpoint mapped to intron 2 of the CHST11 locus, and resulted in the expression of three CHST11-IgH fusion transcripts (Schmidt et al., 2004). It was not determined whether these fusion transcripts lead to the expression of truncated CHST11 proteins, or whether the expression of the observed fusion transcripts might have any functional consequences on chondroitin sulfate biosynthesis and/or disease development or severity.
 
  CHST11-IgH fusion transcripts generated by a chromosomal translocation t(12;14)(q23;q32) in a patient with B-cell chronic lymphocytic leukemia. Fusions I and II retain 3' parts of the CHST11 coding sequence, including the sulfotransferase domain in exon IV. Fusion III retains the 5' part of the CHST11 transcript, including non-coding exons I and exon II, which encodes the transmembrane domain. Thus, fusions I and II are predicted to lack transmembrane domains, but retain sulfotransferase activity, whereas fusion III contains the CHST11 transmembrane domain, but lacks the sulfotransferase domain. The IgH components in all fusion transcripts are mainly non-coding sequences; the largest reading frame in the IgH-derived sequences are 36 bp in length (Schmidt et al., 2004). Figure adapted and modified from Schmidt et al., 2004.
Somatic This is a somatic mutation in B-CLL cells (Schmidt et al., 2004).

Implicated in

Note
  
Entity B-cell chronic lymphocytic leukemia (B-CLL)
Cytogenetics Translocation t(12;14)(q23;q32).
Hybrid/Mutated Gene This translocation generates a IGH-CHST11 hybrid gene, with breakpoints in the IGH locus on chromosome 14, and the CHST11 locus on chromosome 12. A functional role of this hybrid gene in tumor progression has not been elucidated (Schmidt et al., 2004).
  
  
Entity Multiple myeloma
Note Microarray analysis identified increased expression of a number genes involved in glycosaminoglycan biosynthesis, including CHST11 (Bret et al., 2009). The authors hypothesized that heparan sulphate and chondroitin sulphate side chains of the proteoglycan syndecan-1 play critical roles in mediating the biological changes from memory B cells to malignant plasma cells (Bret et al., 2009).
  
  
Entity Breast cancer
Note The CHST11 gene is highly expressed in aggressive breast cancer cells, but significantly less so in less aggressive breast cancer cell lines (Cooney et al., 2011). Moreover, a positive correlation was observed between the expression levels of CHST11 and P-selectin-mediated adherence of breast cancer cells to endothelial cells (Cooney et al., 2011).
  

Bibliography

Correlation of C4ST-1 and ChGn-2 expression with chondroitin sulfate chain elongation in atherosclerosis.
Anggraeni VY, Emoto N, Yagi K, Mayasari DS, Nakayama K, Izumikawa T, Kitagawa H, Hirata K.
Biochem Biophys Res Commun. 2011 Mar 4;406(1):36-41. doi: 10.1016/j.bbrc.2011.01.096. Epub 2011 Feb 1.
PMID 21284936
 
Inhibition of binding of malaria-infected erythrocytes by a tetradecasaccharide fraction from chondroitin sulfate A.
Beeson JG, Chai W, Rogerson SJ, Lawson AM, Brown GV.
Infect Immun. 1998 Jul;66(7):3397-402.
PMID 9632611
 
Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells.
Bret C, Hose D, Reme T, Sprynski AC, Mahtouk K, Schved JF, Quittet P, Rossi JF, Goldschmidt H, Klein B.
Br J Haematol. 2009 May;145(3):350-68. doi: 10.1111/j.1365-2141.2009.07633.x. Epub 2009 Mar 2.
PMID 19298595
 
Adhesion of malaria-infected red blood cells to chondroitin sulfate A under flow conditions.
Cooke BM, Rogerson SJ, Brown GV, Coppel RL.
Blood. 1996 Nov 15;88(10):4040-4.
PMID 8916971
 
Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells.
Cooney CA, Jousheghany F, Yao-Borengasser A, Phanavanh B, Gomes T, Kieber-Emmons AM, Siegel ER, Suva LJ, Ferrone S, Kieber-Emmons T, Monzavi-Karbassi B.
Breast Cancer Res. 2011 Jun 9;13(3):R58. doi: 10.1186/bcr2895.
PMID 21658254
 
Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations.
Gripp KW, Lin AE.
Genet Med. 2012 Mar;14(3):285-92. doi: 10.1038/gim.0b013e31822dd91f. (REVIEW)
PMID 22261753
 
Tumor predisposition in Costello syndrome.
Gripp KW.
Am J Med Genet C Semin Med Genet. 2005 Aug 15;137C(1):72-7. (REVIEW)
PMID 16010679
 
Separation and characterization of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase from chick embryo cartilage.
Habuchi O, Miyashita N.
Biochim Biophys Acta. 1982 Aug 27;717(3):414-21.
PMID 6957247
 
Secretion of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase from cultured chick embryo chondrocytes.
Habuchi O, Tsuzuki M, Takeuchi I, Hara M, Matsui Y, Ashikari S.
Biochim Biophys Acta. 1991 Dec 3;1133(1):9-16.
PMID 1751554
 
[Biological function of chondroitin sulfate and sulfotransferases].
Habuchi O.
Seikagaku. 2000 Jun;72(6):427-36. (REVIEW)
PMID 10918817
 
Myocardial storage of chondroitin sulfate-containing moieties in Costello syndrome patients with severe hypertrophic cardiomyopathy.
Hinek A, Teitell MA, Schoyer L, Allen W, Gripp KW, Hamilton R, Weksberg R, Kluppel M, Lin AE.
Am J Med Genet A. 2005 Feb 15;133A(1):1-12.
PMID 15637729
 
Molecular cloning and expression of two distinct human chondroitin 4-O-sulfotransferases that belong to the HNK-1 sulfotransferase gene family.
Hiraoka N, Nakagawa H, Ong E, Akama TO, Fukuda MN, Fukuda M.
J Biol Chem. 2000 Jun 30;275(26):20188-96.
PMID 10781601
 
C4ST-1/CHST11-controlled chondroitin sulfation interferes with oncogenic HRAS signaling in Costello syndrome.
Kluppel M, Samavarchi-Tehrani P, Liu K, Wrana JL, Hinek A.
Eur J Hum Genet. 2012 Aug;20(8):870-7. doi: 10.1038/ejhg.2012.12. Epub 2012 Feb 8.
PMID 22317973
 
A high-throughput induction gene trap approach defines C4ST as a target of BMP signaling.
Kluppel M, Vallis KA, Wrana JL.
Mech Dev. 2002 Oct;118(1-2):77-89.
PMID 12351172
 
Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis.
Kluppel M, Wight TN, Chan C, Hinek A, Wrana JL.
Development. 2005 Sep;132(17):3989-4003. Epub 2005 Aug 3.
PMID 16079159
 
The roles of chondroitin-4-sulfotransferase-1 in development and disease.
Kluppel M.
Prog Mol Biol Transl Sci. 2010;93:113-32. doi: 10.1016/S1877-1173(10)93006-8. (REVIEW)
PMID 20807643
 
Down-regulation of chondroitin 4-O-sulfotransferase-1 by Wnt signaling triggers diffusion of Wnt-3a.
Nadanaka S, Kinouchi H, Taniguchi-Morita K, Tamura J, Kitagawa H.
J Biol Chem. 2011 Feb 11;286(6):4199-208. doi: 10.1074/jbc.M110.155093. Epub 2010 Dec 1.
PMID 21123170
 
Molecular cloning, expression, and chromosomal mapping of human chondroitin 4-sulfotransferase, whose expression pattern in human tissues is different from that of chondroitin 6-sulfotransferase.
Okuda T, Mita S, Yamauchi S, Matsubara T, Yagi F, Yamamori D, Fukuta M, Kuroiwa A, Matsuda Y, Habuchi O.
J Biochem. 2000 Nov;128(5):763-70.
PMID 11056388
 
Chondroitin-4-sulfate impairs in vitro and in vivo cytoadherence of Plasmodium falciparum infected erythrocytes.
Pouvelle B, Meyer P, Robert C, Bardel L, Gysin J.
Mol Med. 1997 Aug;3(8):508-18.
PMID 9307979
 
Elimination of breast tumor-associated chondroitin sulfate promotes metastasis.
Prinz RD, Willis CM, Viloria-Petit A, Kluppel M.
Genet Mol Res. 2011 Dec 8;10(4):3901-13. doi: 10.4238/2011.December.8.9.
PMID 22183949
 
Costello syndrome and related disorders.
Quezada E, Gripp KW.
Curr Opin Pediatr. 2007 Dec;19(6):636-44.
PMID 18025929
 
Molecular aspects, clinical aspects and possible treatment modalities for Costello syndrome: Proceedings from the 1st International Costello Syndrome Research Symposium 2007.
Rauen KA, Hefner E, Carrillo K, Taylor J, Messier L, Aoki Y, Gripp KW, Matsubara Y, Proud VK, Hammond P, Allanson JE, Delrue MA, Axelrad ME, Lin AE, Doyle DA, Kerr B, Carey JC, McCormick F, Silva AJ, Kieran MW, Hinek A, Nguyen TT, Schoyer L.
Am J Med Genet A. 2008 May 1;146A(9):1205-17. doi: 10.1002/ajmg.a.32276.
PMID 18412122
 
HRAS and the Costello syndrome.
Rauen KA.
Clin Genet. 2007 Feb;71(2):101-8. (REVIEW)
PMID 17250658
 
Elevated stromal chondroitin sulfate glycosaminoglycan predicts progression in early-stage prostate cancer.
Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K, Marshall VR, Tilley WD, Skinner JM, Horsfall DJ.
Clin Cancer Res. 1997 Jun;3(6):983-92.
PMID 9815775
 
Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes.
Rogerson SJ, Chaiyaroj SC, Ng K, Reeder JC, Brown GV.
J Exp Med. 1995 Jul 1;182(1):15-20.
PMID 7790815
 
Immunohistochemical level of unsulfated chondroitin disaccharides in the cancer stroma is an independent predictor of prostate cancer relapse.
Sakko AJ, Butler MS, Byers S, Reinboth BJ, Stahl J, Kench JG, Horvath LG, Sutherland RL, Stricker PD, Henshall SM, Marshall VR, Tilley WD, Horsfall DJ, Ricciardelli C.
Cancer Epidemiol Biomarkers Prev. 2008 Sep;17(9):2488-97. doi: 10.1158/1055-9965.EPI-08-0204.
PMID 18768520
 
Deregulation of the carbohydrate (chondroitin 4) sulfotransferase 11 (CHST11) gene in a B-cell chronic lymphocytic leukemia with a t(12;14)(q23;q32).
Schmidt HH, Dyomin VG, Palanisamy N, Itoyama T, Nanjangud G, Pirc-Danoewinata H, Haas OA, Chaganti RS.
Oncogene. 2004 Sep 9;23(41):6991-6.
PMID 15273723
 
Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer.
Suwiwat S, Ricciardelli C, Tammi R, Tammi M, Auvinen P, Kosma VM, LeBaron RG, Raymond WA, Tilley WD, Horsfall DJ.
Clin Cancer Res. 2004 Apr 1;10(7):2491-8.
PMID 15073129
 
Chondroitin sulfate expression predicts poor outcome in breast cancer.
Svensson KJ, Christianson HC, Kucharzewska P, Fagerstrom V, Lundstedt L, Borgquist S, Jirstrom K, Belting M.
Int J Oncol. 2011 Dec;39(6):1421-8. doi: 10.3892/ijo.2011.1164. Epub 2011 Aug 17.
PMID 21850370
 
Increased expression of non-sulfated chondroitin correlates with adverse clinicopathological parameters in prostate cancer.
Teng YH, Tan PH, Chia SJ, Zam NA, Lau WK, Cheng CW, Bay BH, Yip GW.
Mod Pathol. 2008 Jul;21(7):893-901. doi: 10.1038/modpathol.2008.70. Epub 2008 May 16.
PMID 18487997
 
Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression.
Theocharis AD, Tsolakis I, Tzanakakis GN, Karamanos NK.
Adv Pharmacol. 2006;53:281-95. (REVIEW)
PMID 17239771
 
Chondroitin 4-O-sulfotransferase-1 regulates E disaccharide expression of chondroitin sulfate required for herpes simplex virus infectivity.
Uyama T, Ishida M, Izumikawa T, Trybala E, Tufaro F, Bergstrom T, Sugahara K, Kitagawa H.
J Biol Chem. 2006 Dec 15;281(50):38668-74. Epub 2006 Oct 13.
PMID 17040900
 
Highly sulfated chondroitin sulfates, a novel class of prognostic biomarkers in ovarian cancer tissue.
Vallen MJ, Massuger LF, ten Dam GB, Bulten J, van Kuppevelt TH.
Gynecol Oncol. 2012 Oct;127(1):202-9. doi: 10.1016/j.ygyno.2012.06.022. Epub 2012 Jun 23.
PMID 22733095
 
The adult phenotype in Costello syndrome.
White SM, Graham JM Jr, Kerr B, Gripp K, Weksberg R, Cytrynbaum C, Reeder JL, Stewart FJ, Edwards M, Wilson M, Bankier A.
Am J Med Genet A. 2005 Jul 15;136(2):128-35.
PMID 15940703
 
Inhibition by chondroitin sulfate E can specify functional Wnt/?-catenin signaling thresholds in NIH3T3 fibroblasts.
Willis CM, Kluppel M.
J Biol Chem. 2012 Oct 26;287(44):37042-56. doi: 10.1074/jbc.M112.391490. Epub 2012 Aug 22.
PMID 22915582
 
Identification and characterization of TGFbeta-dependent and -independent cis-regulatory modules in the C4ST-1/CHST11 locus.
Willis CM, Wrana JL, Kluppel M.
Genet Mol Res. 2009 Nov 3;8(4):1331-43. doi: 10.4238/vol8-4gmr673.
PMID 19937589
 
Molecular cloning and expression of chondroitin 4-sulfotransferase.
Yamauchi S, Mita S, Matsubara T, Fukuta M, Habuchi H, Kimata K, Habuchi O.
J Biol Chem. 2000 Mar 24;275(12):8975-81.
PMID 10722746
 
N-linked oligosaccharides are required to produce and stabilize the active form of chondroitin 4-sulphotransferase-1.
Yusa A, Kitajima K, Habuchi O.
Biochem J. 2005 May 15;388(Pt 1):115-21.
PMID 15628971
 
Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study.
arcOGEN Consortium; arcOGEN Collaborators, Zeggini E, Panoutsopoulou K, Southam L, Rayner NW, Day-Williams AG, Lopes MC, Boraska V, Esko T, Evangelou E, Hoffman A, Houwing-Duistermaat JJ, Ingvarsson T, Jonsdottir I, Jonnson H, Kerkhof HJ, Kloppenburg M, Bos SD, Mangino M, Metrustry S, Slagboom PE, Thorleifsson G, Raine EV, Ratnayake M, Ricketts M, Beazley C, Blackburn H, Bumpstead S, Elliott KS, Hunt SE, Potter SC, Shin SY, Yadav VK, Zhai G, Sherburn K, Dixon K, Arden E, Aslam N, Battley PK, Carluke I, Doherty S, Gordon A, Joseph J, Keen R, Koller NC, Mitchell S, O'Neill F, Paling E, Reed MR, Rivadeneira F, Swift D, Walker K, Watkins B, Wheeler M, Birrell F, Ioannidis JP, Meulenbelt I, Metspalu A, Rai A, Salter D, Stefansson K, Stykarsdottir U, Uitterlinden AG, van Meurs JB, Chapman K, Deloukas P, Ollier WE, Wallis GA, Arden N, Carr A, Doherty M, McCaskie A, Willkinson JM, Ralston SH, Valdes AM, Spector TD, Loughlin J.
Lancet. 2012 Sep 1;380(9844):815-23. doi: 10.1016/S0140-6736(12)60681-3. Epub 2012 Jul 3.
PMID 22763110
 

Citation

This paper should be referenced as such :
M Klüppel
CHST11 (carbohydrate (chondroitin 4) sulfotransferase 11)
Atlas Genet Cytogenet Oncol Haematol. 2014;18(12):932-937.
Free journal version : [ pdf ]   [ DOI ]
On line version : http://AtlasGeneticsOncology.org/Genes/CHST11ID50474ch12q23.html


External links

Nomenclature
HGNC (Hugo)CHST11   17422
Cards
AtlasCHST11ID50474ch12q23
Entrez_Gene (NCBI)CHST11  50515  carbohydrate sulfotransferase 11
AliasesC4ST; C4ST-1; C4ST1; HSA269537
GeneCards (Weizmann)CHST11
Ensembl hg19 (Hinxton)ENSG00000171310 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000171310 [Gene_View]  chr12:104456914-104762014 [Contig_View]  CHST11 [Vega]
ICGC DataPortalENSG00000171310
TCGA cBioPortalCHST11
AceView (NCBI)CHST11
Genatlas (Paris)CHST11
WikiGenes50515
SOURCE (Princeton)CHST11
Genetics Home Reference (NIH)CHST11
Genomic and cartography
GoldenPath hg38 (UCSC)CHST11  -     chr12:104456914-104762014 +  12q23.3   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)CHST11  -     12q23.3   [Description]    (hg19-Feb_2009)
EnsemblCHST11 - 12q23.3 [CytoView hg19]  CHST11 - 12q23.3 [CytoView hg38]
Mapping of homologs : NCBICHST11 [Mapview hg19]  CHST11 [Mapview hg38]
OMIM610128   
Gene and transcription
Genbank (Entrez)AB042326 AF131762 AF239820 AJ269537 AJ289134
RefSeq transcript (Entrez)NM_001173982 NM_018413
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)CHST11
Cluster EST : UnigeneHs.17569 [ NCBI ]
CGAP (NCI)Hs.17569
Alternative Splicing GalleryENSG00000171310
Gene ExpressionCHST11 [ NCBI-GEO ]   CHST11 [ EBI - ARRAY_EXPRESS ]   CHST11 [ SEEK ]   CHST11 [ MEM ]
Gene Expression Viewer (FireBrowse)CHST11 [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevisibleExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)50515
GTEX Portal (Tissue expression)CHST11
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ9NPF2   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ9NPF2  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ9NPF2
Splice isoforms : SwissVarQ9NPF2
Catalytic activity : Enzyme2.8.2.5 [ Enzyme-Expasy ]   2.8.2.52.8.2.5 [ IntEnz-EBI ]   2.8.2.5 [ BRENDA ]   2.8.2.5 [ KEGG ]   
PhosPhoSitePlusQ9NPF2
Domains : Interpro (EBI)Carb_sulfotrans_8-10    Sulfotransferase   
Domain families : Pfam (Sanger)Sulfotransfer_2 (PF03567)   
Domain families : Pfam (NCBI)pfam03567   
Conserved Domain (NCBI)CHST11
DMDM Disease mutations50515
Blocks (Seattle)CHST11
SuperfamilyQ9NPF2
Human Protein AtlasENSG00000171310
Peptide AtlasQ9NPF2
HPRD13055
IPIIPI00099831   IPI00554485   IPI01022439   IPI01021355   IPI01022147   
Protein Interaction databases
DIP (DOE-UCLA)Q9NPF2
IntAct (EBI)Q9NPF2
FunCoupENSG00000171310
BioGRIDCHST11
STRING (EMBL)CHST11
ZODIACCHST11
Ontologies - Pathways
QuickGOQ9NPF2
Ontology : AmiGOGolgi membrane  N-acetylgalactosamine 4-O-sulfotransferase activity  chondrocyte development  respiratory gaseous exchange  post-embryonic development  membrane  integral component of membrane  carbohydrate biosynthetic process  chondroitin sulfate biosynthetic process  chondroitin sulfate biosynthetic process  negative regulation of transforming growth factor beta receptor signaling pathway  polysaccharide localization  post-anal tail morphogenesis  regulation of cell proliferation  embryonic digit morphogenesis  negative regulation of apoptotic process  chondroitin 4-sulfotransferase activity  chondroitin 4-sulfotransferase activity  developmental growth  embryonic viscerocranium morphogenesis  N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase activity  
Ontology : EGO-EBIGolgi membrane  N-acetylgalactosamine 4-O-sulfotransferase activity  chondrocyte development  respiratory gaseous exchange  post-embryonic development  membrane  integral component of membrane  carbohydrate biosynthetic process  chondroitin sulfate biosynthetic process  chondroitin sulfate biosynthetic process  negative regulation of transforming growth factor beta receptor signaling pathway  polysaccharide localization  post-anal tail morphogenesis  regulation of cell proliferation  embryonic digit morphogenesis  negative regulation of apoptotic process  chondroitin 4-sulfotransferase activity  chondroitin 4-sulfotransferase activity  developmental growth  embryonic viscerocranium morphogenesis  N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase activity  
Pathways : KEGGGlycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate   
REACTOMEQ9NPF2 [protein]
REACTOME PathwaysR-HSA-2022870 [pathway]   
NDEx NetworkCHST11
Atlas of Cancer Signalling NetworkCHST11
Wikipedia pathwaysCHST11
Orthology - Evolution
OrthoDB50515
GeneTree (enSembl)ENSG00000171310
Phylogenetic Trees/Animal Genes : TreeFamCHST11
HOVERGENQ9NPF2
HOGENOMQ9NPF2
Homologs : HomoloGeneCHST11
Homology/Alignments : Family Browser (UCSC)CHST11
Gene fusions - Rearrangements
Fusion : MitelmanCHST11/ATP1B4 [12q23.3/Xq24]  
Fusion : MitelmanCHST11/HCFC2 [12q23.3/12q23.3]  [t(12;12)(q23;q23)]  
Fusion : MitelmanCHST11/RFX4 [12q23.3/12q23.3]  [t(12;12)(q23;q23)]  
Fusion : MitelmanFBXW8/CHST11 [12q24.22/12q23.3]  [t(12;12)(q23;q24)]  
Fusion : MitelmanIGH/CHST11 [14q32.33/12q23.3]  [t(12;14)(q23;q32)]  
Fusion: TCGACHST11 12q23.3 ATP1B4 Xq24 LAML
Fusion: TCGACHST11 12q23.3 HCFC2 12q23.3 HNSC
Fusion: TCGACHST11 12q23.3 RFX4 12q23.3 HNSC
Fusion: TCGAFBXW8 12q24.22 CHST11 12q23.3 BRCA
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerCHST11 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)CHST11
dbVarCHST11
ClinVarCHST11
1000_GenomesCHST11 
Exome Variant ServerCHST11
ExAC (Exome Aggregation Consortium)CHST11 (select the gene name)
Genetic variants : HAPMAP50515
Genomic Variants (DGV)CHST11 [DGVbeta]
DECIPHERCHST11 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisCHST11 
Mutations
ICGC Data PortalCHST11 
TCGA Data PortalCHST11 
Broad Tumor PortalCHST11
OASIS PortalCHST11 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICCHST11  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDCHST11
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
BioMutasearch CHST11
DgiDB (Drug Gene Interaction Database)CHST11
DoCM (Curated mutations)CHST11 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)CHST11 (select a term)
intoGenCHST11
NCG5 (London)CHST11
Cancer3DCHST11(select the gene name)
Impact of mutations[PolyPhen2] [SIFT Human Coding SNP] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM610128   
Orphanet
MedgenCHST11
Genetic Testing Registry CHST11
NextProtQ9NPF2 [Medical]
TSGene50515
GENETestsCHST11
Target ValidationCHST11
Huge Navigator CHST11 [HugePedia]
snp3D : Map Gene to Disease50515
BioCentury BCIQCHST11
ClinGenCHST11
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD50515
Chemical/Pharm GKB GenePA134875681
Clinical trialCHST11
Miscellaneous
canSAR (ICR)CHST11 (select the gene name)
Probes
Litterature
PubMed32 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
CoreMineCHST11
EVEXCHST11
GoPubMedCHST11
iHOPCHST11
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Tue Aug 1 17:23:18 CEST 2017

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.