Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

BCL2L1 (BCL2-like 1)

Written2009-12Mariana Varna, Philippe Ratajczak, Philippe Bertheau, Anne Janin
U728-INSERM/Paris 7 Paris Diderot, 1 avenue Claude Vellefaux, 75010 Paris, France (MV, PR); U728-INSERM/Paris 7 Paris Diderot, Hopital Saint Louis-Service de Pathologie, 1 avenue Claude Vellefaux, 75010 Paris, France (PB, AJ)

(Note : for Links provided by Atlas : click)

Identity

Alias_namesregulatory subunit 52
Alias_symbol (synonym)BCLX
BCL2L
Bcl-X
bcl-xL
bcl-xS
PPP1R52
Other aliasBCL-XL/S
Bcl2-L-1
DKFZp781P2092
HGNC (Hugo) BCL2L1
LocusID (NCBI) 598
Atlas_Id 129
Location 20q11.21  [Link to chromosome band 20q11]
Location_base_pair Starts at 31664452 and ends at 31723098 bp from pter ( according to hg19-Feb_2009)  [Mapping BCL2L1.png]
Local_order According to GeneLoc and NCBI Map Viewer, genes flanking BCL2L11 in plus strand direction are: COX4I2 (20q11.21; cytochrome c oxidase subunit IV isoform 2 (lung)); MYLK2 (20q11.21; myosin light chain kinase 2).
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
ATMIN (16q23.2) / BCL2L1 (20q11.21)BACH2 (6q15) / BCL2L1 (20q11.21)BCL2L1 (20q11.21) / BCL2L1 (20q11.21)
BCL2L1 (20q11.21) / BMP8B (1p34.2)BCL2L1 (20q11.21) / EXO5 (1p34.2)BCL2L1 (20q11.21) / HM13 (20q11.21)
BCL2L1 (20q11.21) / RIMS3 (1p34.2)BCL2L1 (20q11.21) / RLF (1p34.2)BCL2L1 (20q11.21) / SLC1A1 (9p24.2)
BCL2L1 (20q11.21) / SORT1 (1p13.3)BCL2L1 (20q11.21) / TOR3A (1q25.2)BCL2L1 (20q11.21) / ZFP69B (1p34.2)
BCL2L1 (20q11.21) / ZNF684 (1p34.2)HM13 (20q11.21) / BCL2L1 (20q11.21)PPT1 (1p34.2) / BCL2L1 (20q11.21)
RLF (1p34.2) / BCL2L1 (20q11.21)TPX2 (20q11.21) / BCL2L1 (20q11.21)
Note The Bcl2L1 proteins are encoded by BCL2L1 gene. Bcl2L1 proteins belong to the BCL-2 protein family; the members of this family form hetero- or homodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. Bcl2L1 proteins are located outer mitochondrial membrane, and have been shown to regulate mitochondrial membrane channel (VDAC) opening. VDAC regulates mitochondrial membrane potential, and thus controls the production of reactive oxygen species and release of cytochrome C by mitochondria, both of which are the potent inducers of cell apoptosis.

DNA/RNA

 
Description Bcl2L1 DNA contains 58394 bps (genomic size) and RNA 2575 bps. Bcl2L1, member of the Bcl-2 protein family, plays a role in the regulation of apoptosis. Two major isoforms exist due to alternative splicing of the BCL2L1 mRNA: Bcl-xS and Bcl-xL.
The bcl-x promoter contains consensus motifs for a number of transcription factors, as Sp1, AP-1, Oct-1, Ets, Rel/NF-kB, STATs, and GATA-1, in which three transcription factor families, STATs, Rel/NF-kB, and Ets family, have been demonstrated to play an important role in the regulation of bcl-x gene expression (Grillot et al., 1997). Bcl-xS has 3 exons (contains exon2b shortly than 2a), and forms a heterodimer with bcl2 to promoting apoptosis.
Bcl-xL has 4 exons (contains exon 2a) and form heterodimer with Bax, Bak and has cell death repressing activity (Tamura et al., 2009).
Bcl-xL protein can be regulated post-transcriptionally and it is mainly controlled at the gene expression level (Grad et al., 2000). Bcl-xL protects cells from apoptosis by regulating mitochondria membrane potential by interacting with pro-apoptotic members Bax or Bim and subsequently prevents the release of cytochrome C. Bcl-xL protein displays remarkable amino acid and structural homology to Bcl-2 (González-García et al., 1994).
At the post-translational level, BCL-xL is phosphorylated by SAPK/JNK after exposure to microtubule-damaging drugs (Poruchynsky et al., 1998; Basu et al., 2003). Bcl-xL resides in the nuclear envelope, extra-nuclear membranes, including the mitochondrion but also cytosol (González-García et al., 1994).
Polymorphism
In a study of 105 patients with multiple slerosis relapsing disease it was identified sequence alterations in the promoter region BCL-X gene (Kuhlmann et al., 2002).

Protein

 
  BCL2L1 proteins
Longer isoform: Bcl-xL 233 aa
Shorter isoform: Bcl-xS 170 aa
Alternative isoform: Bcl-x(beta) 227 aa
Description Three alternatively transcript variants, which encode distinct isoforms, have been reported. The longer isoform Bcl-xL acts as an apoptotic inhibitor and the shorter form Bcl-xS acts as an apoptotic activator (Boise et al., 1993). The last one Bcl-x(beta) differs from the longer and the shorter forms by a modification of the last 45 amino acids (Ban et al., 1998).
The BH1 and BH2 motifs are required for both heterodimerization with other Bcl-2 family members, and for repression of cell death. The BH4 motif is required for anti-apoptotic activity.
Thus, Bcl-xL forms homodimers and heterodimers with Bak (6p21.31; BCL2-antagonist/killer 1) isoform Sigma, Bax (19q13.33; BCL2-associated X protein) and Bcl2 (18q21.3; B-cell leukemia/lymphoma 2). Heterodimerization with Bax does not seem to be required for anti-apoptotic activity. Also interacts with Bad (11q13.1; BCL2-antagonist of cell death), Bbc3 (19q13.3-q13.4; BCL2 binding component 3), Siva isoform 1 (14q32.33), BCL2L11 (2q13; BCL2-like 11 (apoptosis facilitator)), BECN1 (17q21.31; Beclin-1), and PGAM5 (12q24.33; phosphoglycerate mutase family member 5).
Like Bcl-xL, Bcl-x(beta) binds to the pro-apoptotic protein Bax, suggesting a functional activity in vivo (Ban et al., 1998).
 
  Bcl-xL secondary structure: Full lengh Bcl-xL protein comports 9 helix and 1 turn domains.
Expression The expression of Bcl-xL and Bcl-xS appeared differentially regulated in human tissues. Bcl-xS is expressed at high levels in cells that undergo a high rate of turnover, such as developing lymphocytes. In contrast, Bcl-xL is found in tissues containing long-lived postmitotic cells, such as adult brain (Boise et al., 1993).
Localisation Bcl-xL resides in the nuclear envelope, extra-nuclear membranes, including the mitochondrion but also cytosol (González-García et al., 1994).
Function The Bcl-xL isoform is a potent inhibitor of cell death. Its association with SIVA-1 inhibits its anti-apoptotic activity (Chu et al., 2004). The binding of this isoform to the voltage-dependent anion chanel (VDAC) regulates cell death by blocking it and preventing the release of the cytochrome into the cytoplasm (Vander Heiden et al., 2001; Malia et al., 2007). In contrast to Bcl-xL isoform, the Bcl-xS isoform promotes apoptosis.
Bcl-xS induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. BAK and BAX can be involved in Bcl-xS induced apoptosis (Kim et al., 2004; Lindenboim et al., 2005).
Bcl-xL mutants correlate with their ability to form homodimers (Jeong et al., 2004).

Mutations

Note Few mutations are described. Thus, in 50 non-Hodgkin's lymphoma cases it was found one missense mutation in a patient with diffuse large B-cell lymphoma. Sequence analysis of this case showed that AGC (Ser) was mutated to GGC (Gly) in codon 154 (Yamaguchi et al., 2002). In one case of follicular lymphoma mutation analysis revealed one synonymus mutation (Codon 109 ACA-->ACC) (Liu et al., 2006). The experimentally mutagenesis is described on: Uniprot.

Implicated in

Note
  
Entity Antiapoptotic role
Note BCL-xL has been shown to inhibit cell death induced by a number of apoptotic stimuli including gamma irradiation, glucocorticoids, and anti-CD3 treatment (Boise et al., 1993; Chao et al., 1995; Chao et al., 1997). Down regulating the basal level of BCL-xL by RNA interference induces apoptosis in aged human fibroblasts without further stress, indicates that Bcl-xL is an important factor in cell-death control in old fibroblasts (Rochette et al., 2008). This was described in other cell type: in hepatocellular carcinoma cells Hepg2 (Lei et al., 2006), in nasopharyngeal carcinoma cells (Liu et al., 2005) or in esophageal cancer cells (Xie et al., 2006). In colorectal carcinoma (CRC) cell lines and in tissue it was shown that Bcl-xL contribute to apoptosis resistance. Same authors demonstrated that CRC cells with reduced Bcl-xL expression were more sensitive towards oxaliplatin- irinotecan, and 5-FU while, Bcl-xL plasmid transfection decreased chemotherapeutic drug-induced apoptosis (Schulze-Bergkamen et al., 2008). In another study using pancreatic, prostate and leukemic cells treated with benzylisothiocyanate Bcl-xL was phosphorylated and in parallel an enhancement of apoptosis (Basu et al., 2008). In HepG2 cells treated with topotecan it was shown that the expression of Bcl-xL was simultaneously down-regulated with the up-regulation of Bcl-xS in cytoplasm, which could explain the induction of apoptosis (Zhang et al., 2008). Bcl-2 and Bcl-xL inhibit apoptosis induced by a variety of agents in MCF-7 cells. MCF-7 cell lines expressing Bcl-xL and Bcl-2 were protected against apoptosis induced by TNFa and doxorubicin (Fiebig et al., 2006).
PUMA (19q13.3-q13.4; p53-upregulated modulator of apoptosis) interacts with anti-apoptotic Bcl-2 and Bcl-xL and is dependent on Bax to induce apoptosis. PUMA initiates apoptosis in part by dissociating Bax and Bcl-xL, thereby promoting Bax multimerization and mitochondrial translocation (Ming et al., 2006).
  
  
Entity Autophagy
Note It was shown that in normal conditions, Beclin 1 (17q21.31; autophagy related) is bound to and inhibited by Bcl-2 or the Bcl-xL. This interaction involves a BH3 domain in Beclin 1 and the BH3 binding groove of Bcl-2/Bcl-xL. But other proteins containing BH3 domains, called BH3-only proteins, can competitively disrupt the interaction between Beclin 1 and Bcl-2/Bcl-xL to induce autophagy (Levine et al., 2008). The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells (Kim, 2005).
  
  
Entity Quiescence regulation
Note It was shown that Bcl-xL facilitate G0 quiescence by decreasing RNA content and stabilization an up-regulation of p27 protein (14q32.13; interferon, alpha-inducible protein 27) due to phosphorylation of p27 at Ser(10) by the kinase Mirk (19q13.2) (Janumyan et al., 2008). P27 protein upregulation could delay cell cycle re-entring throught inhibition of Myc (8q24) activity (Greider et al., 2002).
  
  
Entity Senescence
Note In human diploid fibroblasts it was demonstrated the role of BCL-xL for pre-senescence state induction with decline of the ability of genotoxic stress to induce apoptosis. It was found that aged cells became progressively more resistant to UV-induced apoptosis with apoptosis reduction of 10-20 folds. In young cells, the level of anti-apoptotic protein BCL-xL decrease after UV irradiation while pro-apoptotic protein Bax increases. The increase in Bax tracked the level of p53 BCL-xL is itself responsible for the pre-senescence decline in the ability of a genotoxic stress to induce apoptosis. Acquired apoptosis resistance at late passage is associated with altered UVB-regulation of Bcl family members. Bcl-xL is a major contributor to UV-induced apoptosis resistance in older cells (Rochette et al., 2008).
  
  
Entity Human neural stem cells
Disease Bcl-xL enhances dopaminergic neuron generation from human neural stem cells and mouse embryonic stem cells (Shim et al., 2004).
Oncogenesis Using human cell line hNS1 cell line with v-myc (8q24; v-myc myelocytomatosis viral oncogene homolog) immortalized and non-immortalized it was found that Bcl-xL controls the balance between the generation of neurons and glia from differentiating immortalized and non-immortalized hNSCs differentiation (Liste et al., 2007).
  
  
Entity Cutaneous cell carcinoma
Disease Squamous cell carcinoma, a non melanoma skin cancer, is a common malignancy in the worldwide Caucasian population. Keratocarcinoma is a common neoplasm of the skin and is typically characterised by rapid growth. These two forms are difficult to distinguish by histology.
Oncogenesis In a series of twenty five squamous carcinoma (SCC) and sixty four keratocarcinoma (KA), stained for bcl-xL, the authors detected that the two lesions differed significantly in expression of Bcl-xL which was present in 84% of the SCC compared with only 15% in the KA (Vasiljevic et al., 2009).
  
  
Entity Colorectal cancers
Oncogenesis Bcl-xL shows a strong correlation with TGF-beta1 (19q13.2, transforming growth factor, beta 1) and Bax (19q13.33; BCL2-associated X protein) in colorectal cancers especially in deeply invading cancers (pT3+pT4) instead of superficially growing tumors (pT1+pT2) (Sulkowski et al., 2009). In a study with fifty-six pair tissue samples from patients with colon cancer Bcl-xL expression was higher in cancerous tissue than in normal tissue and it was associated with the pathological grade and lymph node metastasis. Furthermore, in vitro transfection with Bcl-xL siRNA inhibited the colony formation and invasion ability of human colon cancer cell line HT29 (Zhang et al., 2008). Caco-2 colon cancer cells treated with Bcl-xL antisense oligonucleotides in combination with IR or cisplatin showed reduction of the Bcl-xL protein level by almost 50% and increase of apoptosis and reduction of cell proliferation suggesting that Bcl-xL is an important factor contributing to the treatment resistance (Wacheck et al., 2003). siRNA Bcl-xL specific could knockdown Bcl-xL protein expression and inhibit proliferation more effectively in 5-FU-resistant cells than in 5-FU-sensitive cells (Zhu et al., 2005). Bcl-xL was found correlated with Hif1 alpha (14q23.2; hypoxia inducible factor 1, alpha subunit) in moderately and poorly differentiated rectal and colonic tumors (Wincewicz et al., 2007).
  
  
Entity Glioblastoma
Oncogenesis Bcl-xL mediated induction of CXCR8 in glioblastoma cells, through a nuclear factor-kappa B-dependent mechanism (Gabellini et al., 2008).
  
  
Entity Renal cell carcinoma
Disease The expression of Bcl2 and/or Bcl-xL in normal tissue is low in normal kidney.
Oncogenesis Renal cell carcinoma (RCC) expressing high levels of Bcl-xL and/or Bcl2 do not show any apoptotic cells, and conversely when the expression of these proteins was not detected, apoptosis was highly present (Gobé et al., 2002).
  
  
Entity Pancreatic carcinoma
Oncogenesis A study using 25 patients showed an inverse association for the Bcl-xL score and apoptotic index. Bcl2 and Bax protein levels did not show any association with the apoptotic index and were overexpressed in most of the pancreatic cancer samples (Sharma et al., 2005).
  
  
Entity Prostate carcinoma
Disease Bcl-xL protein was detected in the epithelial cells of normal prostate gland and prostate cancers.
Oncogenesis Increased levels of Bcl-xL were found to be correlated with higher grade indicating a possible role of Bcl-xL in prostate cancer progression (Krajewski et al., 1994). Interactions of Bcl-xL with Bax (19q13.33; BCL2-associated X protein) and Bak (6p21.31; BCL2-antagonist/killer 1) were evidenced in lysates from high-grade prostate cancer tissues and Bcl-xL would exert an inhibitory effect over Bak via heterodimerization (Castilla et al., 2006) whereas blocking Bcl-xL expression in prostate cancer cells decreased cell proliferation (Vilenchik et al., 2002). These interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.
  
  
Entity Lung carcinoma
Oncogenesis Biopsies from 30 cases of squamous cell carcinoma of the lung in stage III were assessed for the expression of Bcl-2, Bcl-xL, TP53 (17p13; Tumor protein p53) and Bax (19q13.33; BCL2-associated X protein) at the mRNA protein levels and immunohistochemistry. The apoptotic index correlated with Bax expression but not with Bcl-2, Bcl-xL or p53 levels (Shabnam et al., 2004).
  
  
Entity Cervix carcinoma
Disease Invasive squamous cell carcinoma of the cervix is mainly treated by radiation.
Oncogenesis In 30 cases of invasive carcinoma cervix before and after 10 Gy RT it was shown an increased apoptotic cell death with the up-regulation of Bax (19q13.33; BCL2-associated X protein), and down-regulation of Bcl-xL, without any significant change in the levels of Bcl-2 (Adhya et al., 2006).
  
  
Entity Bladder cancer
Oncogenesis In a study with 42 samples of bladder transitional cell carcinoma Bcl-x overexpression was observed in 45.2% but this overexpression was not correlated with recurrence or survival (Kirsh et al., 1998). In another study on 72 patients with muscle-invasive bilharzial squamous cell carcinoma of the urinary bladder, Bcl-xL overexpression was associated with tumor progression (Hameed et al., 2008).
  
  
Entity Hepatocellular carcinoma
Oncogenesis In a study using 33 hepatocellular carcinomas (HCC) Bcl-xL overexpression was found in 63.6% cancer specimens (Watanabe et al., 2004). In another study, performed on 42 patients with HCC, it was shown that Bcl-xL expression was present in cancerous and non-cancerous tissue whereas elevated levels Bcl-xL were found in tumor tissue in the cytoplasm and the nuclei from two thirds of the patients (Watanabe et al., 2002). Bcl-2 and bcl-xL may play an important role in regulating the apoptosis of normal liver and HCC (Guo et al., 2002).
  
  
Entity Breast cancer
Oncogenesis Most breast cancer cells overexpress Bcl-xL and Bcl-2 (Simonian et al., 1997). Increased levels of Bcl-xL expression were found in primary human breast carcinomas, mainly in undifferentiated tumors (Olopade et al., 1997; Sierra et al., 1998). Using orthotopic xenograft tumors in nude mice obtained from human breast cancer cells lines MDA-MB 435, MDA-MB 468 and MCF-7 it was observed that the overexpression of Bcl-2 or Bcl-xL influenced tumorigenicity. Overexpression of Bcl-xL was associated with the loss of apoptosis in breast cancer cells in vivo (Fernández et al., 2002).
  
  
Entity Soft tissue sarcomas
Oncogenesis In a study of eighty-two soft tissue sarcomas (STS), a combined high Bad/Bcl-xL mRNA expression levels revealed a 20-fold increase and a worse prognosis (Köhler et al., 2002).
  
  
Entity Giant cell tumor of bone
Disease Giant cell tumor of bone (GCTb) is a benign but locally aggressive tumor that infrequently shows metastatic spread to the lungs (Bertoni et al., 2003).
Oncogenesis Using array comparative genomic hybridization performed on 20 frozen tumor samples of GCTb, the authors showed that the most frequent region of change identified was amplification of a 1 Mbp region at 20q11.1, which contains BCL2L1 gene. These results were confirmed by Southern blot (Smith et al., 2006).
  
  
Entity Non-Hodgkin's lymphoma
Oncogenesis In non-Hodgkin's lymphoma, Bcl-xL is overexpressed when compared with normal B cells (Xerri et al., 1999). Rituximab (Rituxan, IDEC-C2B8) has been shown to sensitize non-Hodgkin's lymphoma (NHL) cell lines to chemotherapeutic drug-induced apoptosis and selectively down-regulated Bcl-xL (Jazirehi et al., 2003). The down-regulation of Bcl-xL by Rituximab is dependant on up-regulation of Raf kinase inhibitor protein RKIP on the ERK1/ERK2 pathway (Jazirehi et al., 2004). In a study of 15 patients with reactive hyperplasia, BCL-xL was overexpressed in follicular lymphoma. No significant rise of BCL-xL expression was observed in 24 patients with T-cell lymphoma and 24 patients with a diffuse large B-cell lymphoma (Liu et al., 2006). In another study of 50 non-Hodgkin's lymphoma cases Bcl-xl one missense mutations of the transcript in a patient with diffuse large B-cell lymphoma was found. Sequence analysis of this case showed that AGC (Ser) was mutated to GGC (Gly) in codon 154 with a possibly role in the tumorigenesis of non-Hodgkin's lymphoma (Yamaguchi et al., 2002).
  
  
Entity Follicular lymphomas
Oncogenesis In follicular lymphoma and primary cutaneous follicle center lymphomas, bcl-xL gene overexpression was linked to short overall survival times. In a study of 20 patients with primary cutaneous follicle center lymphomas Bcl-xL expression is significantly higher in biopsies of patients, who developed relapse or disease progression later compared with patients who did not. Higher levels of bcl-xL gene expression were significantly correlated with shorter progression-free survival. This suggesting that bcl-xL overexpression is inversely correlated with progression-free survival suggests that bcl-xL, through its anti-apoptotic effect, might contribute to tumor cell survival (Soltani-Arabshahi et al., 2009). In another study were analysed 27 samples of follicular lymphoma, bcl-xL gene overexpression was linked to short overall survival times (Zhao et al., 2004). Moreover, in follicular lymphoma, high Bcl-xL level was associated with multiple extranodal involvement, elevated lactate dehydrogenase level, high-risk international prognostic index and a short overall survival time. In one case of follicular lymphoma mutation analysis revealed one synonymus mutation (Codon 109 ACA-->ACC) (Liu et al., 2006). In a recent study of follicular lymphoma, it has been demonstrated that TRAIL was cytotoxic only against follicular lymphoma B cells. The engagement of CD40 by its ligand CD40 induces a rapid RNA and protein up-regulation of c-FLIP and Bcl-xL. The antiapoptotic signaling of CD40, which interferes with TRAIL-induced apoptosis in follicular lymphoma B cells, involves NF-kappaB-mediated induction of c-FLIP and Bcl-xL which can respectively interfere with caspase 8 activation or mitochondrial-mediated apoptosis (Travert et al., 2008).
  
  
Entity Chronic lymphocytic leukemia
Oncogenesis B cell chronic lymphocytic leukemia (B-CLL) cannot be cured with conventional chemotherapy because B-CLL cells are resistant to programmed cell death and arrested in G0/G1 phase of the cell cycle. In B-CLL cells, levels of the anti-apoptotic Bcl-xL showed a positive correlation with levels of the 80 kDa regulatory component (Ku80) of the DNA-dependent protein kinase that is involved in DNA double-stranded break repair (Klein et al., 2000). It has also been demonstrated in B-CLL that CD40 stimulation enhanced the constitutive anti-apoptotic profile of B-CLL cells by upregulation of Bcl-xL. Functionally, CD40-stimulated B-CLL cells became resistant to drug-induced apoptosis (Kater et al., 2004). More recently, in 60 chronic lymphocytic leukemias (CLL) treated with ABT-737 and its orally active analog, ABT-263, revealed that the resistance occurred upstream of mitochondrial perturbation and involved de novo synthesis of the anti-apoptotic protein BCL-xL, which could be responsible for resistance to ABT-737. After therapy with ABT-737-related inhibitors, resistant CLL cells might develop in lymph nodes in vivo and that treatment strategies targeting multiple Bcl2 antiapoptotic members simultaneously may have synergistic activity (Vogler et al., 2009).
  
  
Entity Acute lymphoblastic leukemia (ALL)
Oncogenesis Dexamethasone (Dex) is a glucocorticoid inducing apoptosis. Dex induced significant down-regulation of the anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-xL. In 12 primary childhood ALL samples, Dex-induced apoptosis was associated with activation of Bax and down-regulation of Bcl-2 and/or Bcl-xL (Laane et al., 2007). The first study which has demonstrated a role of Bcl-xL in childhood acute lymphoblastic leukemia was published in 1997. The expression and the regulation of Bcl-2, Bcl-xl, and Bax has been correlated with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia (Findley et al., 1997). The resistance to glucocorticoid treatment is often associated with treatment failure in children with acute lymphoblastic leukaemia (ALL). In 30 consecutive children with ALL treated with prednisone, Bcl-2 and Bcl-xl protein in 28 samples. Prednisone treatment induced a decrease in Bcl-2 and Bcl-xl levels in 17 and 16 of the 28 patients, respectively. A statistically significant decrease was only observed for Bcl-xl protein expression in T phenotype ALL, in the poor responder group and in patients with >20000/mm(3) white cell count (WBC) at diagnosis. This study suggested a role of Bcl-xl in the mechanisms of protection of leukemic cells from apoptosis induced by glucocorticoids (Casale et al., 2003). In a series of 62 consecutive children, only the good response to prednisone and the low intensity of Bcl-xL expression were independent significant prognostic factors (Casale et al., 2003).
  

Bibliography

"Sxarma J, Srinivasan R, Majumdar S, Mir S, Radotra BD, Wig JD.
Radiation therapy induced changes in apoptosis and its major regulatory proteins, Bcl-2, Bcl-XL, and Bax, in locally advanced invasive squamous cell carcinoma of the cervix.
Adhya AK, Srinivasan R, Patel FD.
Int J Gynecol Pathol. 2006 Jul;25(3):281-7.
PMID 16810067
 
Identification of a human cDNA encoding a novel Bcl-x isoform.
Ban J, Eckhart L, Weninger W, Mildner M, Tschachler E.
Biochem Biophys Res Commun. 1998 Jul 9;248(1):147-52.
PMID 9675101
 
Dietary isothiocyanate mediated apoptosis of human cancer cells is associated with Bcl-xL phosphorylation.
Basu A, Haldar S.
Int J Oncol. 2008 Oct;33(4):657-63.
PMID 18813778
 
Malignancy in giant cell tumor.
Bertoni F, Bacchini P, Staals EL.
Skeletal Radiol. 2003 Mar;32(3):143-6. Epub 2002 Aug 15.
PMID 12605278
 
bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death.
Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB.
Cell. 1993 Aug 27;74(4):597-608.
PMID 8358789
 
Determination of the in vivo effects of prednisone on Bcl-2 family protein expression in childhood acute lymphoblastic leukemia.
Casale F, Addeo R, D'Angelo V, Indolfi P, Poggi V, Morgera C, Crisci S, Di Tullio MT.
Int J Oncol. 2003 Jan;22(1):123-8.
PMID 12469194
 
Bcl-xL is overexpressed in hormone-resistant prostate cancer and promotes survival of LNCaP cells via interaction with proapoptotic Bak.
Castilla C, Congregado B, Chinchon D, Torrubia FJ, Japon MA, Saez C.
Endocrinology. 2006 Oct;147(10):4960-7. Epub 2006 Jun 22.
PMID 16794010
 
BCL-XL-regulated apoptosis in T cell development.
Chao DT, Korsmeyer SJ.
Int Immunol. 1997 Sep;9(9):1375-84.
PMID 9310841
 
Bcl-XL and Bcl-2 repress a common pathway of cell death.
Chao DT, Linette GP, Boise LH, White LS, Thompson CB, Korsmeyer SJ.
J Exp Med. 1995 Sep 1;182(3):821-8.
PMID 7650488
 
The Siva-1 putative amphipathic helical region (SAH) is sufficient to bind to BCL-XL and sensitize cells to UV radiation induced apoptosis.
Chu F, Borthakur A, Sun X, Barkinge J, Gudi R, Hawkins S, Prasad KV.
Apoptosis. 2004 Jan;9(1):83-95.
PMID 14739602
 
Inhibition of apoptosis in human breast cancer cells: role in tumor progression to the metastatic state.
Fernandez Y, Gu B, Martinez A, Torregrosa A, Sierra A.
Int J Cancer. 2002 Oct 1;101(4):317-26.
PMID 12209955
 
Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line.
Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW.
BMC Cancer. 2006 Aug 23;6:213.
PMID 16928273
 
Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia.
Findley HW, Gu L, Yeager AM, Zhou M.
Blood. 1997 Apr 15;89(8):2986-93.
PMID 9108419
 
Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma.
Gabellini C, Castellini L, Trisciuoglio D, Kracht M, Zupi G, Del Bufalo D.
J Neurochem. 2008 Nov;107(3):871-82. Epub 2008 Sep 11.
PMID 18786178
 
Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas.
Gobe G, Rubin M, Williams G, Sawczuk I, Buttyan R.
Cancer Invest. 2002;20(3):324-32.
PMID 12025227
 
bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria.
Gonzalez-Garcia M, Perez-Ballestero R, Ding L, Duan L, Boise LH, Thompson CB, Nunez G.
Development. 1994 Oct;120(10):3033-42.
QMID 7607090
 
Regulation of Bcl-xL: a little bit of this and a little bit of STAT.
Grad JM, Zeng XR, Boise LH.
Curr Opin Oncol. 2000 Nov;12(6):543-9.
PMID 11085453
 
BCL-x(L) and BCL2 delay Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-dependent kinases.
Greider C, Chattopadhyay A, Parkhurst C, Yang E.
Oncogene. 2002 Nov 7;21(51):7765-75.
PMID 12420213
 
Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene.
Grillot DA, Gonzalez-Garcia M, Ekhterae D, Duan L, Inohara N, Ohta S, Seldin MF, Nunez G.
J Immunol. 1997 May 15;158(10):4750-7.
PMID 9144489
 
Effect of bax, bcl-2 and bcl-xL on regulating apoptosis in tissues of normal liver and hepatocellular carcinoma.|/TD>/TS>
Guo XZ, Shao XD, Liu MP, Xu JH, Ren LN, Zhao JJ, Li HY, Wang D.
World J Gastroenterol. 2002 Dec;8(6):1059-62.
PMID 12439925
 
Bcl-XL and Bcl-2 expression in bilharzial squamous cell carcinoma of the urinary bladder: which protein is prognostic?
Hameed DA, Abdel Raheem AM, Mosad E, Hammouda HM, Kamel NA, Abdel Aziz MA.
Urology. 2008 Aug;72(2):374-8. Epub 2008 Mar 17.
PMID 18342927
 
G0 function of BCL2 and BCL-xL requires BAX, BAK, and p27 phosphorylation by Mirk, revealing a novel role of BAX and BAK in quiescence regulation.
Janumyan Y, Cui Q, Yan L, Sansam CG, Valentin M, Yang E.
J Biol Chem. 2008 Dec 5;283(49):34108-20. Epub 2008 Sep 25.
PMID 18818203
 
Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin's lymphoma B cells by Rituximab.
Jazirehi AR, Vega MI, Chatterjee D, Goodglick L, Bonavida B.
Cancer Res. 2004 Oct 1;64(19):7117-26.
PMID 15466208
 
Bcl-x(L) sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers.
Jeong SY, Gaume B, Lee YJ, Hsu YT, Ryu SW, Yoon SH, Youle RJ.
EMBO J. 2004 May 19;23(10):2146-55. Epub 2004 May 6.
PMID 15131699
 
CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack.
Kater AP, Evers LM, Remmerswaal EB, Jaspers A, Oosterwijk MF, van Lier RA, van Oers MH, Eldering E.
Br J Haematol. 2004 Nov;127(4):404-15.
PMID 15521917
 
Methyl jasmonate induces apoptosis through induction of Bax/Bcl-XS and activation of caspase-3 via ROS production in A549 cells.
Kim JH, Lee SY, Oh SY, Han SI, Park HG, Yoo MA, Kang HS.
Oncol Rep. 2004 Dec;12(6):1233-8.
PMID 15547743
 
Unknotting the roles of Bcl-2 and Bcl-xL in cell death.
Kim R.
Biochem Biophys Res Commun. 2005 Jul 29;333(2):336-43.
PMID 15922292
 
Expression of bcl-2 and bcl-X in bladder cancer.
Kirsh EJ, Baunoch DA, Stadler WM.
J Urol. 1998 Apr;159(4):1348-53.
PMID 9507882
 
Chemosensitivity of B cell chronic lymphocytic leukemia and correlated expression of proteins regulating apoptosis, cell cycle and DNA repair.
Klein A, Miera O, Bauer O, Golfier S, Schriever F.
Leukemia. 2000 Jan;14(1):40-6.
PMID 10637475
 
High bad and bcl-xL gene expression and combined bad, bcl-xL, bax and bcl-2 mRNA levels: molecular predictors for survival of stage 2 soft tissue sarcoma patients.
Kohler T, Wurl P, Meye A, Lautenschlager C, Bartel F, Borchert S, Bache M, Schmidt H, Holzhausen HJ, Taubert H.
Anticancer Res. 2002 May-Jun;22(3):1553-9.
PMID 12168836
 
Immunohistochemical analysis of in vivo patterns of Bcl-X expression.
Krajewski S, Krajewska M, Shabaik A, Wang HG, Irie S, Fong L, Reed JC.
Cancer Res. 1994 Nov 1;54(21):5501-7.
PMID 7923184
 
Investigation of bax, bcl-2, bcl-x and p53 gene polymorphisms in multiple sclerosis.
Kuhlmann T, Glas M, zum Bruch C, Mueller W, Weber A, Zipp F, Bruck W.
J Neuroimmunol. 2002 Aug;129(1-2):154-60.
PMID 12161031
 
Dexamethasone-induced apoptosis in acute lymphoblastic leukemia involves differential regulation of Bcl-2 family members.
Laane E, Panaretakis T, Pokrovskaja K, Buentke E, Corcoran M, Soderhall S, Heyman M, Mazur J, Zhivotovsky B, Porwit A, Grander D.
Haematologica. 2007 Nov;92(11):1460-9.
PMID 18024393
 
Bcl-XL small interfering RNA enhances sensitivity of Hepg2 hepatocellular carcinoma cells to 5-fluorouracil and hydroxycamptothecin.
Lei XY, Zhong M, Feng LF, Zhu BY, Tang SS, Liao DF.
Acta Biochim Biophys Sin (Shanghai). 2006 Oct;38(10):704-10.
PMID 17033717
 
Bcl-2 family members: dual regulators of apoptosis and autophagy.
Levine B, Sinha S, Kroemer G.
Autophagy. 2008 Jul 1;4(5):600-6. Epub 2008 May 12.
PMID 18497563
 
Bak but not Bax is essential for Bcl-xS-induced apoptosis.
Lindenboim L, Kringel S, Braun T, Borner C, Stein R.
Cell Death Differ. 2005 Jul;12(7):713-23.
PMID 15861188
 
Bcl-XL modulates the differentiation of immortalized human neural stem cells.
Liste I, Garcia-Garcia E, Bueno C, Martinez-Serrano A.
Cell Death Differ. 2007 Nov;14(11):1880-92. Epub 2007 Aug 3.
PMID 17673921
 
RNA interference by expression of short hairpin RNAs suppresses bcl-xL gene expression in nasopharyngeal carcinoma cells.
Liu F, He CW, Zhang YF, Zhou KY.
Acta Pharmacol Sin. 2005 Feb;26(2):228-34.
PMID 15663904
 
(BCL-XL expression and mutation in non-Hodgkin's lymphoma)
Liu YH, Leboeuf C, Jin XL, Xiao JC, Janin A, Chen SJ, Zhao WL.
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006 Oct;14(5):903-7.
PMID 17096886
 
NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL.
Malia TJ, Wagner G.
Biochemistry. 2007 Jan 16;46(2):514-25.
PMID 17209561
 
PUMA Dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells.
Ming L, Wang P, Bank A, Yu J, Zhang L.
J Biol Chem. 2006 Jun 9;281(23):16034-42. Epub 2006 Apr 11.
PMID 16608847
 
Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases.
Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB, Recant WM.
Cancer J Sci Am. 1997 Jul-Aug;3(4):230-7.
PMID 9263629
 
Bcl-xL is phosphorylated in malignant cells following microtubule disruption.
Poruchynsky MS, Wang EE, Rudin CM, Blagosklonny MV, Fojo T.
Cancer Res. 1998 Aug 1;58(15):3331-8.
PMID 9699663
 
Progressive apoptosis resistance prior to senescence and control by the anti-apoptotic protein BCL-xL.
Rochette PJ, Brash DE.
Mech Ageing Dev. 2008 Apr;129(4):207-14. Epub 2008 Jan 4.
PMID 18262222
 
Bcl-x(L) and Myeloid cell leukaemia-1 contribute to apoptosis resistance of colorectal cancer cells.
Schulze-Bergkamen H, Ehrenberg R, Hickmann L, Vick B, Urbanik T, Schimanski CC, Berger MR, Schad A, Weber A, Heeger S, Galle PR, Moehler M.
World J Gastroenterol. 2008 Jun 28;14(24):3829-40.
PMID 18609706
 
Expression of p53 protein and the apoptotic regulatory molecules Bcl-2, Bcl-XL, and Bax in"locamlq advanced squamous cell carcinoma of the lung.
Shabnam MS, Srinivasan R, Wali A, Majumdar S, Joshi K, Behera D.
Lung Cancer. 2004 Aug;45(2):181-8.
PMID 15246189
 
Bcl-XL protein levels determine apoptotic index in pancreatic carcinoma.
Pancreas. 2005 May;30(4):337-42.
PMID 15841044
 
Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL.
Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH.
J Neurosci. 2004 Jan 28;24(4):843-52.
PMID 14749429
 
Expression of death-related genes and their relationship to loss of apoptosis in T1 ductal breast carcinomas.
Sierra A, Castellsague X, Coll T, Manas S, Escobedo A, Moreno A, Fabra A.
Int J Cancer. 1998 Apr 17;79(2):103-10.
PMID 9583721
 
Bak can accelerate chemotherapy-induced cell death independently of its heterodimerization with Bcl-XL and Bcl-2.
Simonian PL, Grillot DA, Nunez G.
Oncogene. 1997 Oct 9;15(15):1871-5.
PMID 9362454
 
20q11.1 amplification in giant-cell tumor of bone: Array CGH, FISH, and association with outcome.
Smith LT, Mayerson J, Nowak NJ, Suster D, Mohammed N, Long S, Auer H, Jones S, McKeegan C, Young G, Bos G, Plass C, Morrison C.
Genes Chromosomes Cancer. 2006 Oct;45(10):957-66.
PMID 16847944*
 
Bcl-xL gene expression correlated with lower apoptotic cell numbers and shorter progression-free survival in PCFCL.
Soltani-Arabshahi R, Leboeuf C, Rivet J, Pisonero H, Zhao WL, Bachelez H, Ameisen JC, Janin A.
J Invest Dermatol. 2009 Jul;129(7):1703-9. Epub 2009 Feb 26.
PMID 19242522
 
Transforming growth factor-beta1 and regulators of apoptosis.
Sulkowski S, Wincewicz A, Sulkowska M, Koda M.
Ann N Y Acad Sci. 2009 Aug;1171:116-23.
PMID 19723045
 
Polo-like kinase 1 phosphorylates and regulates Bcl-x(L) during pironetin-induced apoptosis.
Tamura Y, Simizu S, Muroi M, Takagi S, Kawatani M, Watanabe N, Osada H.
Oncogene. 2009 Jan 8;28(1):107-16. Epub 2008 Sep 29.
PMID 18820703
 
Immunoexpression of Bcl-x in squamous cell carcinoma and keratoacanthoma: differences in pattern and correlation with pathobiology.
Tan KB, Lee YS.
Histopathology. 2009 Sep;55(3):338-45.
PMID 19723149
 
CD40 ligand protects from TRAIL-induced apoptosis in follicular lymphomas through NF-kappaB activation and up-regulation of c-FLIP and Bcl-xL.
Travert M, Ame-Thomas P, Pangault C, Morizot A, Micheau O, Semana G, Lamy T, Fest T, Tarte K, Guillaudeux T.
J Immunol. 2008 Jul 15;181(2):1001-11.
PMID 18606651
 
Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane.
Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M.
J Biol Chem. 2001 Jun 1;276(22):19414-9. Epub 2001 Mar 20.
PMID 11259441
 
The Bcl-xL inhibitor of apoptosis is preferentially expressed in cutaneous squamous cell carcinoma compared with that in keratoacanthoma.
Vasiljevic N, Andersson K, Bjelkenkrantz K, Kjellstrom C, Mansson H, Nilsson E, Landberg G, Dillner J, Forslund O.
Int J Cancer. 2009 May 15;124(10):2361-6.
PMID 19165861
 
Antisense RNA down-regulation of bcl-xL Expression in prostate cancer cells leads to diminished rates of cellular proliferation and resistance to cytotoxic chemotherapeutic agents.
Vilenchik M, Raffo AJ, Benimetskaya L, Shames D, Stein CA.
Cancer Res. 2002 Apr 1;62(7):2175-83.
PMID 11929841
 
Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia.
Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ, Cohen GM.
Blood. 2009 Apr 30;113(18):4403-13. Epub 2008 Nov 13.
PMID 19008458
 
Bcl-x(L) antisense oligonucleotides radiosensitise colon cancer cells.
Wacheck V, Selzer E, Günsberg P, Lucas T, Meyer H, Thallinger C, Monia BP, Jansen B.
Br J Cancer. 2003 Oct 6;89(7):1352-7.
PMID 14520471
 
Prognostic significance of Bcl-xL in human hepatocellular carcinoma.
Watanabe J, Kushihata F, Honda K, Sugita A, Tateishi N, Mominoki K, Matsuda S, Kobayashi N.
Surgery. 2004 Jun;135(6):604-12.
PMID 15179366
 
Cumulative expression of HIF-1-alpha, Bax, Bcl-xL and P53 in human colorectal cancer.
Wincewicz A, Sulkowska M, Koda M, Sulkowski S.
Pathology. 2007 Jun;39(3):334-8.
PMID 17558861
 
Quantitative analysis detects ubiquitous expression of apoptotic regulators in B cell non-Hodgkin's lymphomas.
Xerri L, Devilard E, Bouabdallah R, Hassoun J, Chaperot L, Birg F, Plumas J.
Leukemia. 1999 Oct;13(10):1548-53.
PMID 10516756
&nb{p;
Down-regulation of Bcl-XL by RNA interference suppresses cell growth and induces apoptosis in human esophageal cancer cells.
Xie YE, Tang EJ, Zhang DR, Ren BX.
World J Gastroenterol. 2006 Dec 14;12(46):7472-7.
PMID 17167836
 
Mutation of bcl-x gene in non-Hodgkin's lymphoma.
Yamaguchi H, Inokuchi K, Tarusawa M, Dan K.
Am J Hematol. 2002 Jan;69(1):74-6.
PMID 11835337
 
The expression of Bcl-XL, Bcl-XS and p27Kip1 in topotecan-induced apoptosis in hepatoblastoma HepG2 cell line.
Zhang J, Cheng C, He CL, Zhou YJ, Cao Y.
Cancer Invest. 2008 Jun;26(5):456-63.
PMID 18568767
 
Significance of Bcl-xL in human colon carcinoma.
Zhang YL, Pang LQ, Wu Y, Wang XY, Wang CQ, Fan Y.
World J Gastroenterol. 2008 May 21;14(19):3069-73.
PMID 18494061
 
Prognostic significance of bcl-xL gene expression and apoptotic cell counts in follicular lymphoma.
Zhao WL, Daneshpouy ME, Mounier N, Brire J, Leboeuf C, Plassa LF, Turpin E, Cayuela JM, Ameisen JC, Gisselbrecht C, Janin A.
Blood. 2004 Jan 15;103(2):695-7. Epub 2003 Sep 11.
PMID 12969962
 
Bcl-XL small interfering RNA suppresses the proliferation of 5-fluorouracil-resistant human colon cancer cells.
Zhu H, Guo W, Zhang L, Davis JJ, Teraishi F, Wu S, Cao X, Daniel J, Smythe WR, Fang B.
Mol Cancer Ther. 2005 Mar;4(3):451-6.
PMID 15767554
 

Citation

This paper should be referenced as such :
Varna, M ; Ratajczak, P ; Bertheau, P ; Janin, A
BCL2L1 (BCL2-like 1)
Atlas Genet Cytogenet Oncol Haematol. 2010;14(9):866-874.
Free journal version : [ pdf ]   [ DOI ]
On line version : http://AtlasGeneticsOncology.org/Genes/BCL2L1ID129ch20q11.html


Other Leukemias implicated (Data extracted from papers in the Atlas) [ 2 ]
  t(6;20)(q15;q11.2) BACH2/BCL2L1
t(14;18)(q32;q21) IGH/BCL2::t(2;18)(p11;q21) IGK/BCL2::t(18;22)(q21;q11) IGL/BCL2


Other Solid tumors implicated (Data extracted from papers in the Atlas) [ 1 ]
  Lung: Translocations in Small Cell Carcinoma


External links

DMDM Disease mutations
Nomenclature
HGNC (Hugo)BCL2L1   992
Cards
AtlasBCL2L1ID129ch20q11
Entrez_Gene (NCBI)BCL2L1  598  BCL2 like 1
AliasesBCL-XL/S; BCL2L; BCLX; Bcl-X; 
PPP1R52
GeneCards (Weizmann)BCL2L1
Ensembl hg19 (Hinxton)ENSG00000171552 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000171552 [Gene_View]  chr20:31664452-31723098 [Contig_View]  BCL2L1 [Vega]
ICGC DataPortalENSG00000171552
TCGA cBioPortalBCL2L1
AceView (NCBI)BCL2L1
Genatlas (Paris)BCL2L1
WikiGenes598
SOURCE (Princeton)BCL2L1
Genetics Home Reference (NIH)BCL2L1
Genomic and cartography
GoldenPath hg38 (UCSC)BCL2L1  -     chr20:31664452-31723098 -  20q11.21   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)BCL2L1  -     20q11.21   [Description]    (hg19-Feb_2009)
EnsemblBCL2L1 - 20q11.21 [CytoView hg19]  BCL2L1 - 20q11.21 [CytoView hg38]
Mapping of homologs : NCBIBCL2L1 [Mapview hg19]  BCL2L1 [Mapview hg38]
OMIM600039   
Gene and transcription
Genbank (Entrez)AA488236 AI872556 AI872557 AK290968 AY263335
RefSeq transcript (Entrez)NM_001191 NM_001317919 NM_001317920 NM_001317921 NM_001322239 NM_001322240 NM_001322242 NM_138578
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)BCL2L1
Cluster EST : UnigeneHs.732176 [ NCBI ]
CGAP (NCI)Hs.732176
Alternative Splicing GalleryENSG00000171552
Gene ExpressionBCL2L1 [ NCBI-GEO ]   BCL2L1 [ EBI - ARRAY_EXPRESS ]   BCL2L1 [ SEEK ]   BCL2L1 [ MEM ]
Gene Expression Viewer (FireBrowse)BCL2L1 [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevestigatorExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)598
GTEX Portal (Tissue expression)BCL2L1
Human Protein AtlasENSG00000171552-BCL2L1 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ07817   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ07817  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ07817
Splice isoforms : SwissVarQ07817
PhosPhoSitePlusQ07817
Domaine pattern : Prosite (Expaxy)BCL2_FAMILY (PS50062)    BH1 (PS01080)    BH2 (PS01258)    BH3 (PS01259)    BH4_1 (PS01260)    BH4_2 (PS50063)   
Domains : Interpro (EBI)Apop_reg_BclX    Bcl2-like    Bcl2/BclX    Bcl2_BH1_motif_CS    Bcl2_BH2_motif_CS    Bcl2_BH3_motif_CS    Bcl2_BH4    Bcl2_BH4_motif_CS    Blc2_fam   
Domain families : Pfam (Sanger)Bcl-2 (PF00452)    BH4 (PF02180)   
Domain families : Pfam (NCBI)pfam00452    pfam02180   
Domain families : Smart (EMBL)BH4 (SM00265)  
Conserved Domain (NCBI)BCL2L1
598
Blocks (Seattle)BCL2L1
PDB (SRS)###############################################################################################################################################################################################################################################################   
PDB (PDBSum)###############################################################################################################################################################################################################################################################   
PDB (IMB)###############################################################################################################################################################################################################################################################   
PDB (RSDB)###############################################################################################################################################################################################################################################################   
Structural Biology KnowledgeBase###############################################################################################################################################################################################################################################################   
SCOP (Structural Classification of Proteins)###############################################################################################################################################################################################################################################################   
CATH (Classification of proteins structures)###############################################################################################################################################################################################################################################################   
SuperfamilyQ07817
Human Protein Atlas [tissue]ENSG00000171552-BCL2L1 [tissue]
Peptide AtlasQ07817
HPRD02497
IPIIPI00019983   IPI00219133   IPI00219134   IPI00646996   IPI00644343   IPI00646118   IPI00647529   
Protein Interaction databases
DIP (DOE-UCLA)Q07817
IntAct (EBI)Q07817
FunCoupENSG00000171552
BioGRIDBCL2L1
STRING (EMBL)BCL2L1
ZODIACBCL2L1
Ontologies - Pathways
QuickGOQ07817
Ontology : AmiGOcytokinesis  ovarian follicle development  in utero embryonic development  release of cytochrome c from mitochondria  protein binding  cytoplasm  mitochondrion  mitochondrial outer membrane  mitochondrial outer membrane  mitochondrial inner membrane  mitochondrial matrix  endoplasmic reticulum  centrosome  cytosol  endocytosis  mitotic cell cycle checkpoint  germ cell development  spermatogenesis  cell proliferation  positive regulation of cell proliferation  male gonad development  intrinsic apoptotic signaling pathway in response to DNA damage  apoptotic mitochondrial changes  fertilization  integral component of membrane  suppression by virus of host apoptotic process  protein kinase binding  cell junction  synaptic vesicle membrane  nuclear membrane  response to cytokine  growth  identical protein binding  negative regulation of apoptotic process  negative regulation of neuron apoptotic process  response to cycloheximide  regulation of mitochondrial membrane permeability  protein heterodimerization activity  neuron apoptotic process  BH3 domain binding  regulation of mitochondrial membrane potential  cellular process regulating host cell cycle in response to virus  mitochondrion morphogenesis  cellular response to amino acid stimulus  cellular response to alkaloid  cellular response to gamma radiation  apoptotic process in bone marrow  negative regulation of establishment of protein localization to plasma membrane  negative regulation of release of cytochrome c from mitochondria  Bcl-2 family protein complex  extrinsic apoptotic signaling pathway in absence of ligand  hepatocyte apoptotic process  negative regulation of execution phase of apoptosis  negative regulation of extrinsic apoptotic signaling pathway via death domain receptors  negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage  negative regulation of extrinsic apoptotic signaling pathway in absence of ligand  negative regulation of intrinsic apoptotic signaling pathway  positive regulation of intrinsic apoptotic signaling pathway  
Ontology : EGO-EBIcytokinesis  ovarian follicle development  in utero embryonic development  release of cytochrome c from mitochondria  protein binding  cytoplasm  mitochondrion  mitochondrial outer membrane  mitochondrial outer membrane  mitochondrial inner membrane  mitochondrial matrix  endoplasmic reticulum  centrosome  cytosol  endocytosis  mitotic cell cycle checkpoint  germ cell development  spermatogenesis  cell proliferation  positive regulation of cell proliferation  male gonad development  intrinsic apoptotic signaling pathway in response to DNA damage  apoptotic mitochondrial changes  fertilization  integral component of membrane  suppression by virus of host apoptotic process  protein kinase binding  cell junction  synaptic vesicle membrane  nuclear membrane  response to cytokine  growth  identical protein binding  negative regulation of apoptotic process  negative regulation of neuron apoptotic process  response to cycloheximide  regulation of mitochondrial membrane permeability  protein heterodimerization activity  neuron apoptotic process  BH3 domain binding  regulation of mitochondrial membrane potential  cellular process regulating host cell cycle in response to virus  mitochondrion morphogenesis  cellular response to amino acid stimulus  cellular response to alkaloid  cellular response to gamma radiation  apoptotic process in bone marrow  negative regulation of establishment of protein localization to plasma membrane  negative regulation of release of cytochrome c from mitochondria  Bcl-2 family protein complex  extrinsic apoptotic signaling pathway in absence of ligand  hepatocyte apoptotic process  negative regulation of execution phase of apoptosis  negative regulation of extrinsic apoptotic signaling pathway via death domain receptors  negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage  negative regulation of extrinsic apoptotic signaling pathway in absence of ligand  negative regulation of intrinsic apoptotic signaling pathway  positive regulation of intrinsic apoptotic signaling pathway  
Pathways : KEGG   
REACTOMEQ07817 [protein]
REACTOME PathwaysR-HSA-844455 [pathway]   
NDEx NetworkBCL2L1
Atlas of Cancer Signalling NetworkBCL2L1
Wikipedia pathwaysBCL2L1
¼FONT COLOR=#00004F>Orthology - Evolution
OrthoDB598
GeneTree (enSembl)ENSG00000171552
Phylogenetic Trees/Animal Genes : TreeFamBCL2L1
HOVERGENQ07817
HOGENOMQ07817
Homologs : HomoloGeneBCL2L1
Homology/Alignments : Family Browser (UCSC)BCL2L1
Gene fusions - Rearrangements
Fusion : MitelmanBACH2/BCL2L1 [6q15/20q11.21]  [t(6;20)(q15;q11)]  
Fusion : MitelmanBCL2L1/BMP8B [20q11.21/1p34.2]  [t(1;20)(p34;q11)]  
Fusion : MitelmanBCL2L1/EXO5 [20q11.21/1p34.2]  [t(1;20)(p34;q11)]  
Fusion : MitelmanBCL2L1/HM13 [20q11.21/20q11.21]  [t(20;20)(q11;q11)]  
Fusion : MitelmanBCL2L1/RIMS3 [20q11.21/1p34.2]  [t(1;20)(p34;q11)]  
Fusion : MitelmanBCL2L1/RLF [20q11.21/1p34.2]  [t(1;20)(p34;q11)]  
Fusion : MitelmanBCL2L1/ZFP69B [20q11.21/1p34.2]  [t(1;20)(p34;q11)]  
Fusion : Mitelman<a>BCL2L1/ZNF684 [20q11.21/1p34.2]  [t(1;20)(p34;q11)]  
Fusion : MitelmanPPT1/BCL2L1 [1p34.2/20q11.21]  [t(1;20)(p34;q11)]  
Fusion : MitelmanRLF/BCL2L1 [1p34.2/20q11.21]  [t(1;20)(p34;q11)]  
Tumor Fusion PortalBCL2L1
Fusion : TICdbBACH2 [6q15]  -  BCL2L1 [20q11.21]
Fusion Cancer (Beijing)TPX2 [20q11.21]  -  BCL2L1 [20q11.21]  [FUSC000210]
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerBCL2L1 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)BCL2L1
dbVarBCL2L1
ClinVarBCL2L1
1000_GenomesBCL2L1 
Exome Variant ServerBCL2L1
ExAC (Exome Aggregation Consortium)ENSG00000171552
GNOMAD BrowserENSG00000171552
Genetic variants : HAPMAP598
Genomic Variants (DGV)BCL2L1 [DGVbeta]
DECIPHERBCL2L1 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisBCL2L1 
Mutations
ICGC Data PortalBCL2L1 
TCGA Data PortalBCL2L1 
Broad Tumor PortalBCL2L1
OASIS PortalBCL2L1 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICBCL2L1  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDBCL2L1
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch BCL2L1
DgiDB (Drug Gene Interaction Database)BCL2L1
DoCM (Curated mutations)BCL2L1 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)BCL2L1 (select a term)
intoGenBCL2L1
NCG5 (London)BCL2L1
Cancer3DBCL2L1(select the gene name)
Impact of mutations[PolyPhen2] [SIFT Human Coding SNP] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM600039   
Orphanet
DisGeNETBCL2L1
MedgenBCL2L1
Genetic Testing Registry BCL2L1
NextProtQ07817 [Medical]
TSGene598
GENETestsBCL2L1
Target ValidationBCL2L1
Huge Navigator BCL2L1 [HugePedia]
snp3D : Map Gene to Disease598
BioCentury BCIQBCL2L1
ClinGenBCL2L1
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD598
Chemical/Pharm GKB GenePA76
Clinical trialBCL2L1
Miscellaneous
canSAR (ICR)BCL2L1 (select the gene name)
Probes
Litterature
PubMed499 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
CoreMineBCL2L1
EVEXBCL2L1
GoPubMedBCL2L1
iHOPBCL2L1
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Tue Nov 21 14:45:06 CET 2017

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.