Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

ECT2 (epithelial cell transforming sequence 2 oncogene)

Written2012-06Verline Justilien, Alan P Fields
Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida, 32224 USA

(Note : for Links provided by Atlas : click)

Identity

Alias_namesepithelial cell transforming sequence 2 oncogene
Alias_symbol (synonym)ARHGEF31
Other alias
HGNC (Hugo) ECT2
LocusID (NCBI) 1894
Atlas_Id 40400
Location 3q26.31  [Link to chromosome band 3q26]
Location_base_pair Starts at 172750685 and ends at 172821474 bp from pter ( according to hg19-Feb_2009)  [Mapping ECT2.png]
Local_order The ECT2 gene is located between the RNU4-4P pseudogene in centromeric position and ATP5G1P4 in telomeric position (according to GeneLoc).
 
  Location sequence of ECT2 on Chromosome 3. ECT2 gene is indicated by red arrow.
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
C4orf3 (4q26) / ECT2 (3q26.31)CASP14 (19p13.12) / ECT2 (3q26.31)ECT2 (3q26.31) / CSTF3 (11p13)
ECT2 (3q26.31) / ECT2 (3q26.31)ECT2 (3q26.31) / KALRN (3q21.1)ECT2 (3q26.31) / KALRN (3q21.2)
NCBP1 (9q22.33) / ECT2 (3q26.31)

DNA/RNA

 
  Exon-intron structure of the ECT2 gene. Blue vertical bars correspond to exons, orange represents 3'UTR.
Description The ECT2 gene is composed of 23 exons and spans 70793 bases on plus strand.
Transcription The ECT2 transcript (NCBI Reference Sequence: NM_018098.4) contains 3916 bases and the open reading frame spans from 29 to 2680. 17 transcript variants have been reported for ECT2.
Pseudogene A pseudogene for ECT2 has not been reported.

Protein

 
  Schematic diagram of the domain structure of the Ect2 protein. N, Amino-terminal region; XRCC1, X-ray repair complementing defective repair in Chinese hamster cells 1 domain; Cyclin B6, cyclin B6-like domain; BRCT, BRAC1 C-terminal domain; S, small central region; NLS, nuclear localization sequence; DH, Dbl homology domain; PH, pleckstrin homology domain; C, Carboxyl-terminal region. Phosphorylation on T341 and T412 activate Ect2 during G2/M phase. T328 is phosphorylated by PKCι and required for Ect2 mediated transformation in NSCLC cells.
Description Human ECT2 consist of 883 amino acids, with a predicted molecular weight of approximately 104kDa. The N-terminus of Ect2 serves regulatory functions and contains sequences that exhibit high homology to cell cycle control and repair proteins. The XRCC1 domain shows sequence homology to human XRCC1, a protein that repairs defective DNA strand breaks and functions in sister chromatid exchange. The Clb6 domain shows homology to yeast B-cyclin that promotes transition from the G1 to S phase of cell cycle. The Clb6 domain is followed by sequences that exhibit homology to yeast Rad4/Cut5, a protein required for entry into S phase and inhibition of M phase entry prior to completion of DNA synthesis Rad4/Cut5 also plays a critical role in replication checkpoint control in yeast. The Cut5 homology domain contains tandem repeats of the BRCT (Breast Cancer gene 1 Carboxyl-terminal) motif that is conserved in proteins involved in DNA repair and cell cycle checkpoint responses. A small central (S) domain contains two nuclear localization sequences that appear to be involved in the control of the intracellular localization of Ect2. The catalytic core of Ect2 is found within the C-terminus, and consists of a Dbl-homology (DH) and a pleckstrin homology (PH) domain which confer guanine nucleotide exchange activity toward Rho-GTPases. The extreme C-terminal (C) region of Ect2 does not exhibit significant homology to any known protein domains or motifs.
Expression Northern blot analysis reveals that Ect2 is expressed in a broad range of adult tissues including kidney, liver, spleen, testis, lung, bladder, ovary and brain (Miki et al., 1993; Saito et al., 2003). In situ hybridization of fetal tissues shows Ect2 expression in the liver, thymus, proliferating epithelial cells of the nasal cavity and gut, tooth primordial, costal cartilage, heart, lung and pancreas (Saito et al., 2003).
Localisation Ect2 expression is cell cycle dependent. During interphase, Ect2 is sequestered within the nucleus. Upon breakdown of the nuclear envelope during mitosis, Ect2 is dispersed throughout the cytoplasm. Ect2 becomes localized to the mitotic spindles during metaphase, the cleavage furrow at telophase, and then the mid-body at the end of cytokinesis (Tatsumoto et al., 1999). In MDCK cells, small amounts of Ect2 can be detected at cell-cell contacts where it is reported to directly interact with the Par6/Par3/PKCζ polarity complex (Liu et al., 2004).
Function Ect2 is a guanine nucleotide exchange factor and is reported to catalyze GTP exchange on several members of the Rho GTPase family including, RhoA, RhoB, RhoC, RhoG, Rac1 and Cdc42 (Miki et al., 1993; Saito et al., 2004; Solski et al., 2004; Tatsumoto et al., 1999; Wennerberg et al., 2002). ECT2 regulates cytokinesis in mammalian cells through RhoA-mediated pathways (Burkard et al., 2007; Kamijo et al., 2006; Kimura et al., 2000; Nishimura and Yonemura, 2006; Yuce et al., 2005). ECT2 associates with GTPase activating protein, MgcRacGAP to regulate the activity of RhoA which controls contraction of the actomyosin ring and ingression of the cleavage furrow required for cytokinesis. Ect2 has also been implicated in the control of mitotic spindle assembly through activation of Cdc42 (Tatsumoto et al., 2003), and an Ect2→Cdc42→mDia3 signaling pathway has been implicated in facilitating attachment and stabilization of spindle fibers to kinetochores (Oceguera-Yanez et al., 2005). Ect2 may also play a role in cell polarity. In MDCK cells, small amounts of Ect2 can be detected at cell-cell contacts where ECT2 is reported to directly interact with the polarity complex Par6/Par3/PKCζ and to modulate PKCζ activity (Liu et al., 2004). In addition, Ect2 was found in the tight junction-containing detergent-insoluble fraction of Caco2 cells (Chen et al., 2012). Recently, it has been proposed that ECT2 may contribute to neuronal morphological differentiation through regulation of growth cone dynamics perhaps by directly participating in reorganization of the actin cytoskeleton at the tips of neurites (Tsuji et al., 2012).
Homology ECT2 is highly evolutionarily conserved. Homologs of ECT2 are present in other mammals as well as aves, flies, worms and yeast.

Mutations

Note Mutations have not been reported for ECT2.

Implicated in

Note
  
Entity Human cancer
Note The ECT2 gene was initially identified as a proto-oncogene capable of transforming NIH/3T3 fibroblasts (Miki et al., 1993). Subsequent analysis revealed that the originally characterized oncogenic Ect2 clone actually consisted of a carboxyl-terminal truncation of the full-length ECT2 gene. This truncated clone encoded a protein consisting of the DH-PH-C domains of Ect2. This mutant localized to the cytoplasm, possessed constitutive GEF activity and could transform fibroblasts in vitro (Saito et al., 2004). Expression analysis revealed that established human cancer cell lines express only full-length Ect2, indicating that the transforming C-terminal Ect2 fragment originally cloned is not directly relevant to cancer biology (Saito et al., 2003). Interestingly, full length Ect2 is overexpressed in several human tumor types, suggesting a role for elevated Ect2 expression in these tumors (Hirata et al., 2009; Salhia et al., 2008; Sano et al., 2006; Zhang et al., 2008).
Prognosis Ect2 overexpression is associated with poor prognosis in patients with non-small cell lung cancer (NSCLC), esophageal squamous cell carcinomas (ESCC) (Hirata et al., 2009), glioblastoma multiforme (GBM) (Salhia et al., 2008; Sano et al., 2006) and oral squamous cell carcinomas (OSCC) (Iyoda et al., 2010).
Cytogenetics ECT2 is amplified as part of the 3q26 amplicon a region frequently targeted for chromosomal alterations in human tumors (Eder et al., 2005; Han et al., 2002; Lin et al., 2006; Zhang et al., 2006). ECT2 amplification frequently occurs in lung squamous cell carcinomas (LSCC) (Justilien and Fields, 2009), ESCC (Yang et al., 2008; Yen et al., 2005) and cervical cancer (Vazquez-Mena et al., 2012).
Oncogenesis Ect2 is overexpressed and mislocalized in human tumors
Ect2 is highly expressed in a variety of human tumors including brain (Salhia et al., 2008; Sano et al., 2006), lung (Hirata et al., 2009; Justilien and Fields, 2009), bladder (Saito et al., 2004), esophageal (Hirata et al., 2009), pancreatic (Zhang et al., 2008), cervical (Vazquez-Mena et al., 2012), colorectal (Jung et al., 2011), oral (Iyoda et al., 2010) and ovarian tumors (Saito et al., 2004). Tumor specific ECT2 gene amplification drives Ect2 overexpression in lung (Hirata et al., 2009; Justilien and Fields, 2009), esophageal (Hirata et al., 2009) and cervical cancers (Vazquez-Mena et al., 2012). Ect2 transforming activity requires both Ect2 GEF activity and mis-localization of Ect2 to the cytoplasm (Saito et al., 2004; Solski et al., 2004). Immunohistochemical analysis demonstrate that Ect2 is predominantly expressed in the nucleus of normal lung epithelial cells (Justilien and Fields, 2009), but that primary NSCLC tumors display increased Ect2 staining in both the nucleus and cytoplasm with little or no staining in the tumor-associated stroma (Hirata et al., 2009; Justilien and Fields, 2009). Similarly, Ect2 stains primarily nuclear in the low-grade astrocytomas (LGA) whereas glioblastoma multiforme (GBMs) display prominent staining of Ect2 in both the cytoplasm and nucleus (Salhia et al., 2008). OSCCs exhibit strong nuclear and cytoplasmic staining of ECT2 staining whereas normal oral tissues showed little to no ECT2 staining (Iyoda et al., 2010).
Ect2 is important for transformation in human cancer cells
Ect2 plays a promotive role in transformation in all tumor model systems examined to date. Inhibition of Ect2 expression by RNAi decreases the proliferation of NSCLC (Hirata et al., 2009), ESCC (Hirata et al., 2009) and OSCC (Iyoda et al., 2010) cells in vitro. In addition, stable knockdown (KD) of Ect2 by short hairpin RNAs (shRNAs) inhibits anchorage-independent growth and cellular invasion of multiple NSCLC cell lines (Justilien and Fields, 2009) Ect2 KD impairs tumor growth of NSCLC cells injected into the flanks of athymic nude mice, demonstrating that Ect2 also plays a role in NSCLC tumorigenicity in vivo (Justilien and Fields, 2009). RNAi-mediated suppression of Ect2 expression in glioblastoma cells caused a significant decrease in cell proliferation and migration in vitro and invasion in an ex vivo rat brain slice assay (Salhia et al., 2008; Sano et al., 2006).
Cellular mechanisms in Ect2 mediated transformation
Ect2 function in NSCLC transformation is distinct from its well established role in cytokinesis. NSCLC cells stably transduced with Ect2 shRNAs do not show significant changes in population doubling time (PDT) or accumulation of multinucleated cells in vitro or in vivo (Justilien and Fields, 2009). NSCLC cells may employ an Ect2-independent cytokinesis mechanism such as previously described in HT1080 fibrosarcoma (Kanada et al., 2008). Whereas Ect2 mediates RhoA activity in cytokinesis, Rac1 appears to be the critical Ect2 effector in NSCLC. Ect2 KD in NSCLC cells leads to a significant decrease in Rac1 activity but no apparent changes in Cdc42 or RhoA activity (Justilien and Fields, 2009; Justilien et al., 2011). Furthermore, expression of a constitutively active Rac1 allele (RacV12) restores anchorage independent growth and invasion in Ect2 KD cells.
Co-immunoprecipitation experiments and mass spectrometry analysis show that Ect2 associates with the PKCι-Par6α complex (Justilien and Fields, 2009; Justilien et al., 2011). Ect2 is largely mis-localized to the cytoplasm of cultured NSCLC cells and the PKCι-Par6α complex regulates Ect2 cytoplasmic mislocalization (Justilien and Fields, 2009). Ect2 isolated from NSCLC cells is highly phosphorylated at a novel, previously uncharacterized site T328. PKCι directly phosphorylates T328 in vitro and the PKCι/Par6 complex regulates T328 phosphorylation in intact NSCLC cells. T328 phosphorylation is required for ECT2 binding to the PKCι-Par6 complex, Rac1 activation and transformation in NSCLC cells (Justilien et al., 2011).
  

Bibliography

Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells.
Burkard ME, Randall CL, Larochelle S, Zhang C, Shokat KM, Fisher RP, Jallepalli PV.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4383-8. Epub 2007 Mar 6.
PMID 17360533
 
AMP-18 facilitates assembly and stabilization of tight junctions to protect the colonic mucosal barrier.
Chen P, Kartha S, Bissonnette M, Hart J, Toback FG.
Inflamm Bowel Dis. 2012 Sep;18(9):1749-59. doi: 10.1002/ibd.22886. Epub 2012 Jan 23.
PMID 22271547
 
Atypical PKCiota contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer.
Eder AM, Sui X, Rosen DG, Nolden LK, Cheng KW, Lahad JP, Kango-Singh M, Lu KH, Warneke CL, Atkinson EN, Bedrosian I, Keyomarsi K, Kuo WL, Gray JW, Yin JC, Liu J, Halder G, Mills GB.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12519-24. Epub 2005 Aug 22.
PMID 16116079
 
Establishment and comparative genomic hybridization analysis of human esophageal carcinomas cell line EC9706.
Han Y, Wei F, Xu X, Cai Y, Chen B, Wang J, Xia S, Hu H, Huang X, Han Y, Wu M, Wang M.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2002 Dec;19(6):455-7.
PMID 12476413
 
Involvement of epithelial cell transforming sequence-2 oncoantigen in lung and esophageal cancer progression.
Hirata D, Yamabuki T, Miki D, Ito T, Tsuchiya E, Fujita M, Hosokawa M, Chayama K, Nakamura Y, Daigo Y.
Clin Cancer Res. 2009 Jan 1;15(1):256-66.
PMID 19118053
 
Epithelial cell transforming sequence 2 in human oral cancer.
Iyoda M, Kasamatsu A, Ishigami T, Nakashima D, Endo-Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K.
PLoS One. 2010 Nov 29;5(11):e14082.
PMID 21124766
 
Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data.
Jung Y, Lee S, Choi HS, Kim SN, Lee E, Shin Y, Seo J, Kim B, Jung Y, Kim WK, Chun HK, Lee WY, Kim J.
Clin Cancer Res. 2011 Feb 15;17(4):700-9. Epub 2011 Feb 8.
PMID 21304002
 
Oncogenic activity of Ect2 is regulated through protein kinase C iota-mediated phosphorylation.
Justilien V, Jameison L, Der CJ, Rossman KL, Fields AP.
J Biol Chem. 2011 Mar 11;286(10):8149-57. Epub 2010 Dec 28.
PMID 21189248
 
Dissecting the role of Rho-mediated signaling in contractile ring formation.
Kamijo K, Ohara N, Abe M, Uchimura T, Hosoya H, Lee JS, Miki T.
Mol Biol Cell. 2006 Jan;17(1):43-55. Epub 2005 Oct 19.
PMID 16236794
 
Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation.
Kimura K, Tsuji T, Takada Y, Miki T, Narumiya S.
J Biol Chem. 2000 Jun 9;275(23):17233-6.
PMID 10837491
 
DNA copy number gains in head and neck squamous cell carcinoma.
Lin M, Smith LT, Smiraglia DJ, Kazhiyur-Mannar R, Lang JC, Schuller DE, Kornacker K, Wenger R, Plass C.
Oncogene. 2006 Mar 2;25(9):1424-33.
PMID 16247453
 
Nucleotide exchange factor ECT2 interacts with the polarity protein complex Par6/Par3/protein kinase Czeta (PKCzeta) and regulates PKCzeta activity.
Liu XF, Ishida H, Raziuddin R, Miki T.
Mol Cell Biol. 2004 Aug;24(15):6665-75.
PMID 15254234
 
Oncogene ect2 is related to regulators of small GTP-binding proteins.
Miki T, Smith CL, Long JE, Eva A, Fleming TP.
Nature. 1993 Apr 1;362(6419):462-5.
PMID 8464478
 
Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis.
Nishimura Y, Yonemura S.
J Cell Sci. 2006 Jan 1;119(Pt 1):104-14. Epub 2005 Dec 13.
PMID 16352658
 
Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.
Oceguera-Yanez F, Kimura K, Yasuda S, Higashida C, Kitamura T, Hiraoka Y, Haraguchi T, Narumiya S.
J Cell Biol. 2005 Jan 17;168(2):221-32. Epub 2005 Jan 10.
PMID 15642749
 
Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation.
Saito S, Liu XF, Kamijo K, Raziuddin R, Tatsumoto T, Okamoto I, Chen X, Lee CC, Lorenzi MV, Ohara N, Miki T.
J Biol Chem. 2004 Feb 20;279(8):7169-79. Epub 2003 Nov 25.
PMID 14645260
 
Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains.
Saito S, Tatsumoto T, Lorenzi MV, Chedid M, Kapoor V, Sakata H, Rubin J, Miki T.
J Cell Biochem. 2003 Nov 1;90(4):819-36.
PMID 14587037
 
The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma.
Salhia B, Tran NL, Chan A, Wolf A, Nakada M, Rutka F, Ennis M, McDonough WS, Berens ME, Symons M, Rutka JT.
Am J Pathol. 2008 Dec;173(6):1828-38. Epub 2008 Nov 13.
PMID 19008376
 
Expression level of ECT2 proto-oncogene correlates with prognosis in glioma patients.
Sano M, Genkai N, Yajima N, Tsuchiya N, Homma J, Tanaka R, Miki T, Yamanaka R.
Oncol Rep. 2006 Nov;16(5):1093-8.
PMID 17016598
 
Requirement for C-terminal sequences in regulation of Ect2 guanine nucleotide exchange specificity and transformation.
Solski PA, Wilder RS, Rossman KL, Sondek J, Cox AD, Campbell SL, Der CJ.
J Biol Chem. 2004 Jun 11;279(24):25226-33. Epub 2004 Apr 8.
PMID 15073184
 
Potential roles of the nucleotide exchange factor ECT2 and Cdc42 GTPase in spindle assembly in Xenopus egg cell-free extracts.
Tatsumoto T, Sakata H, Dasso M, Miki T.
J Cell Biochem. 2003 Dec 1;90(5):892-900.
PMID 14624449
 
Ect2, an ortholog of Drosophila Pebble, regulates formation of growth cones in primary cortical neurons.
Tsuji T, Higashida C, Aoki Y, Islam MS, Dohmoto M, Higashida H.
Neurochem Int. 2012 Feb 15. [Epub ahead of print]
PMID 22366651
 
Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines.
Vazquez-Mena O, Medina-Martinez I, Juarez-Torres E, Barron V, Espinosa A, Villegas-Sepulveda N, Gomez-Laguna L, Nieto-Martinez K, Orozco L, Roman-Basaure E, Munoz Cortez S, Borges Ibanez M, Venegas-Vega C, Guardado-Estrada M, Rangel-Lopez A, Kofman S, Berumen J.
PLoS One. 2012;7(3):e32667. Epub 2012 Mar 7.
PMID 22412903
 
RhoG signals in parallel with Rac1 and Cdc42.
Wennerberg K, Ellerbroek SM, Liu RY, Karnoub AE, Burridge K, Der CJ.
J Biol Chem. 2002 Dec 6;277(49):47810-7. Epub 2002 Oct 9.
PMID 12376551
 
Amplification of PRKCI, located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma.
Yang YL, Chu JY, Luo ML, Wu YP, Zhang Y, Feng YB, Shi ZZ, Xu X, Han YL, Cai Y, Dong JT, Zhan QM, Wu M, Wang MR.
Genes Chromosomes Cancer. 2008 Feb;47(2):127-36.
PMID 17990328
 
Copy number changes of target genes in chromosome 3q25.3-qter of esophageal squamous cell carcinoma: TP63 is amplified in early carcinogenesis but down-regulated as disease progressed.
Yen CC, Chen YJ, Pan CC, Lu KH, Chen PC, Hsia JY, Chen JT, Wu YC, Hsu WH, Wang LS, Huang MH, Huang BS, Hu CP, Chen PM, Lin CH.
World J Gastroenterol. 2005 Mar 7;11(9):1267-72.
PMID 15761962
 
An ECT2-centralspindlin complex regulates the localization and function of RhoA.
Yuce O, Piekny A, Glotzer M.
J Cell Biol. 2005 Aug 15;170(4):571-82.
PMID 16103226
 
Integrative genomic analysis of protein kinase C (PKC) family identifies PKCiota as a biomarker and potential oncogene in ovarian carcinoma.
Zhang L, Huang J, Yang N, Liang S, Barchetti A, Giannakakis A, Cadungog MG, O'Brien-Jenkins A, Massobrio M, Roby KF, Katsaros D, Gimotty P, Butzow R, Weber BL, Coukos G.
Cancer Res. 2006 May 1;66(9):4627-35.
PMID 16651413
 
Correlation between ECT2 gene expression and methylation change of ECT2 promoter region in pancreatic cancer.
Zhang ML, Lu S, Zhou L, Zheng SS.
Hepatobiliary Pancreat Dis Int. 2008 Oct;7(5):533-8.
PMID 18842503
 

Citation

This paper should be referenced as such :
Justilien, V ; Fields, AP
ECT2 (epithelial cell transforming sequence 2 oncogene)
Atlas Genet Cytogenet Oncol Haematol. 2013;17(1):3-7.
Free journal version : [ pdf ]   [ DOI ]
On line version : http://AtlasGeneticsOncology.org/Genes/ECT2ID40400ch3q26.html


External links

Nomenclature
HGNC (Hugo)ECT2   3155
Cards
AtlasECT2ID40400ch3q26
Entrez_Gene (NCBI)ECT2  1894  epithelial cell transforming 2
AliasesARHGEF31
GeneCards (Weizmann)ECT2
Ensembl hg19 (Hinxton)ENSG00000114346 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000114346 [Gene_View]  chr3:172750685-172821474 [Contig_View]  ECT2 [Vega]
ICGC DataPortalENSG00000114346
TCGA cBioPortalECT2
AceView (NCBI)ECT2
Genatlas (Paris)ECT2
WikiGenes1894
SOURCE (Princeton)ECT2
Genetics Home Reference (NIH)ECT2
Genomic and cartography
GoldenPath hg38 (UCSC)ECT2  -     chr3:172750685-172821474 +  3q26.31   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)ECT2  -     3q26.31   [Description]    (hg19-Feb_2009)
EnsemblECT2 - 3q26.31 [CytoView hg19]  ECT2 - 3q26.31 [CytoView hg38]
Mapping of homologs : NCBIECT2 [Mapview hg19]  ECT2 [Mapview hg38]
OMIM600586   
Gene and transcription
Genbank (Entrez)AK001323 AK001515 AK023267 AK027713 AK308391
RefSeq transcript (Entrez)NM_001258315 NM_001258316 NM_001349094 NM_001349095 NM_001349096 NM_001349097 NM_001349098 NM_001349099 NM_001349100 NM_001349101 NM_001349102 NM_001349103 NM_001349104 NM_018098
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)ECT2
Cluster EST : UnigeneHs.518299 [ NCBI ]
CGAP (NCI)Hs.518299
Alternative Splicing GalleryENSG00000114346
Gene ExpressionECT2 [ NCBI-GEO ]   ECT2 [ EBI - ARRAY_EXPRESS ]   ECT2 [ SEEK ]   ECT2 [ MEM ]
Gene Expression Viewer (FireBrowse)ECT2 [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevisibleExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)1894
GTEX Portal (Tissue expression)ECT2
Human Protein AtlasENSG00000114346-ECT2 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ9H8V3   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ9H8V3  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ9H8V3
Splice isoforms : SwissVarQ9H8V3
PhosPhoSitePlusQ9H8V3
Domaine pattern : Prosite (Expaxy)BRCT (PS50172)    DH_1 (PS00741)    DH_2 (PS50010)   
Domains : Interpro (EBI)BRCT_dom    DH-domain    Ect2    GDS_CDC24_CS    PH_dom-like   
Domain families : Pfam (Sanger)BRCT (PF00533)    PTCB-BRCT (PF12738)    RhoGEF (PF00621)   
Domain families : Pfam (NCBI)pfam00533    pfam12738    pfam00621   
Domain families : Smart (EMBL)BRCT (SM00292)  RhoGEF (SM00325)  
Conserved Domain (NCBI)ECT2
DMDM Disease mutations1894
Blocks (Seattle)ECT2
PDB (SRS)3L46    4N40   
PDB (PDBSum)3L46    4N40   
PDB (IMB)3L46    4N40   
PDB (RSDB)3L46    4N40   
Structural Biology KnowledgeBase3L46    4N40   
SCOP (Structural Classification of Proteins)3L46    4N40   
CATH (Classification of proteins structures)3L46    4N40   
SuperfamilyQ9H8V3
Human Protein Atlas [tissue]ENSG00000114346-ECT2 [tissue]
Peptide AtlasQ9H8V3
HPRD11860
IPIIPI00748143   IPI00794284   IPI00924778   IPI00924582   IPI00927667   IPI00927448   IPI00927247   IPI00927046   IPI00926600   IPI00926413   IPI00925941   
Protein Interaction databases
DIP (DOE-UCLA)Q9H8V3
IntAct (EBI)Q9H8V3
FunCoupENSG00000114346
BioGRIDECT2
STRING (EMBL)ECT2
ZODIACECT2
Ontologies - Pathways
QuickGOQ9H8V3
Ontology : AmiGOcell morphogenesis  cytokinesis  signal transducer activity  guanyl-nucleotide exchange factor activity  Rho guanyl-nucleotide exchange factor activity  Rho guanyl-nucleotide exchange factor activity  GTPase activator activity  protein binding  nucleus  cytoplasm  cytosol  cytosol  cell-cell junction  bicellular tight junction  protein transport  Rho GTPase binding  midbody  activation of protein kinase activity  cleavage furrow  positive regulation of cytokinesis  positive regulation of cytokinesis  regulation of Rho protein signal transduction  intracellular signal transduction  positive regulation of protein import into nucleus  protein homodimerization activity  positive regulation of apoptotic process  positive regulation of apoptotic process  positive regulation of I-kappaB kinase/NF-kappaB signaling  positive regulation of GTPase activity  positive regulation of GTPase activity  positive regulation of neuron differentiation  regulation of protein kinase activity  regulation of small GTPase mediated signal transduction  protein homooligomerization  regulation of attachment of spindle microtubules to kinetochore  cellular response to hydrogen peroxide  bicellular tight junction assembly  cellular response to calcium ion  cellular response to ionizing radiation  mitotic spindle  activation of GTPase activity  activation of GTPase activity  centralspindlin complex  
Ontology : EGO-EBIcell morphogenesis  cytokinesis  signal transducer activity  guanyl-nucleotide exchange factor activity  Rho guanyl-nucleotide exchange factor activity  Rho guanyl-nucleotide exchange factor activity  GTPase activator activity  protein binding  nucleus  cytoplasm  cytosol  cytosol  cell-cell junction  bicellular tight junction  protein transport  Rho GTPase binding  midbody  activation of protein kinase activity  cleavage furrow  positive regulation of cytokinesis  positive regulation of cytokinesis  regulation of Rho protein signal transduction  intracellular signal transduction  positive regulation of protein import into nucleus  protein homodimerization activity  positive regulation of apoptotic process  positive regulation of apoptotic process  positive regulation of I-kappaB kinase/NF-kappaB signaling  positive regulation of GTPase activity  positive regulation of GTPase activity  positive regulation of neuron differentiation  regulation of protein kinase activity  regulation of small GTPase mediated signal transduction  protein homooligomerization  regulation of attachment of spindle microtubules to kinetochore  cellular response to hydrogen peroxide  bicellular tight junction assembly  cellular response to calcium ion  cellular response to ionizing radiation  mitotic spindle  activation of GTPase activity  activation of GTPase activity  centralspindlin complex  
REACTOMEQ9H8V3 [protein]
REACTOME PathwaysR-HSA-416482 [pathway]   
NDEx NetworkECT2
Atlas of Cancer Signalling NetworkECT2
Wikipedia pathwaysECT2
Orthology - Evolution
OrthoDB1894
GeneTree (enSembl)ENSG00000114346
Phylogenetic Trees/Animal Genes : TreeFamECT2
HOVERGENQ9H8V3
HOGENOMQ9H8V3
Homologs : HomoloGeneECT2
Homology/Alignments : Family Browser (UCSC)ECT2
Gene fusions - Rearrangements
Fusion : MitelmanECT2/KALRN [3q26.31/3q21.2]  
Fusion: TCGAECT2 3q26.31 KALRN 3q21.2 LUSC
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerECT2 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)ECT2
dbVarECT2
ClinVarECT2
1000_GenomesECT2 
Exome Variant ServerECT2
ExAC (Exome Aggregation Consortium)ENSG00000114346
GNOMAD BrowserENSG00000114346
Genetic variants : HAPMAP1894
Genomic Variants (DGV)ECT2 [DGVbeta]
DECIPHERECT2 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisECT2 
Mutations
ICGC Data PortalECT2 
TCGA Data PortalECT2 
Broad Tumor PortalECT2
OASIS PortalECT2 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICECT2  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDECT2
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch ECT2
DgiDB (Drug Gene Interaction Database)ECT2
DoCM (Curated mutations)ECT2 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)ECT2 (select a term)
intoGenECT2
NCG5 (London)ECT2
Cancer3DECT2(select the gene name)
Impact of mutations[PolyPhen2] [SIFT Human Coding SNP] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM600586   
Orphanet
MedgenECT2
Genetic Testing Registry ECT2
NextProtQ9H8V3 [Medical]
TSGene1894
GENETestsECT2
Target ValidationECT2
Huge Navigator ECT2 [HugePedia]
snp3D : Map Gene to Disease1894
BioCentury BCIQECT2
ClinGenECT2
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD1894
Chemical/Pharm GKB GenePA27600
Clinical trialECT2
Miscellaneous
canSAR (ICR)ECT2 (select the gene name)
Probes
Litterature
PubMed81 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
CoreMineECT2
EVEXECT2
GoPubMedECT2
iHOPECT2
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Thu Oct 12 16:20:54 CEST 2017

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.