Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

EEF1D (eukaryotic translation elongation factor 1 delta)

Written2019-05Luigi Cristiano
Aesthetic and medical biotechnologies research unit, Prestige, Terranuova Bracciolini, Italy;;

Abstract Eukaryotic translation elongation factor 1 delta, alias EEF1D, is a protein-coding gene that plays a role in the elongation step of translation and considering its importance it is found frequently overexpressed in human cancer cells. This review collects the data on DNA/RNA, on the protein encoded and on the diseases where EEF1D is involved.

Keywords EEF1D; Eukaryotic translation elongation factor 1 delta; Translation; Translation elongation factor; protein synthesis; cancer; oncogene; cancer marker

(Note : for Links provided by Atlas : click)


Alias (NCBI)Eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)
antigen NY-CO-4
HGNC Alias symbEF-1D
HGNC Previous nameeukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)
LocusID (NCBI) 1936
Atlas_Id 43240
Location 8q24.3  [Link to chromosome band 8q24]
Location_base_pair Starts at 143579694 and ends at 143597415 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping EEF1D.png]
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)


  Figure. 1. EEF1D gene and splicing variants/isoforms. The figure shows the locus on chromosome 8 of the EEF1D gene (reworked from;;
Description EEF1D (Eukaryotic Translation Elongation Factor 1 delta) is a protein-coding gene that starts at 143,579,722 nt and ends at 143,597,675 nt from pter. It has a length of 17,954 bp and the current reference sequence is NC_000008.11. It is proximal to the NAPRT (nicotinate phospho-ribosyl-transferase domain containing 1) gene and TIGD5 (tigger transposable element derived 5) gene. Around the genomic locus of EEF1D there are different promoter or enhancer transcriptional elements. Two strong of these elements are closer to the sequence of EEF1D gene and are located at +1.6 kb and at -1.2 kb respectively.
Transcription Several alternative splicing transcript variants for EEF1D were observed and they encode multiple eEF1D isoforms. Their main characteristics are reported in Table.1 . The main reference sequence is NM_032378.5 that corresponds to the variant 1 of EEF1D mRNA, alias EEF1D-205 or EEF1D-001, and it is 2,473 bp long. The 5'UTR counts 459 nt, the CDS is extended from 460 to 2,403 nt, while the 3'UTR covers the last 70 nt.
NameVariantRefSeq (1)Transcript IDExonsTypeLenght (bp)IsoformAliasRefSeq (2)Lenght (aa)MW (kDa)pI
EEF1D-204Var.3NM_001130053ENST00000423316.69protein coding2356Isoform 1-NP_00112352564771.426.02
EEF1D-205 (EEF1D-001)Var.1NM_032378ENST00000442189.610protein coding2473Isoform 1-NP_11575464771.426.02
EEF1D-201Var.6NM_001130057ENST00000317198.108protein coding1458Isoform 2-NP_00112352928131.124.90
EEF1D-203Var.5NM_001130055ENST00000419152.6 9protein coding1427Isoform 2-NP_00112352728131.124.90
EEF1D-225  (EEF1D-006)--ENST00000529272.58protein coding1311---281--
EEF1D-202  (EEF1D-002)Var.9NM_001289950ENST00000395119.78protein coding1428Isoform 2-NP_00127687928131.124.90
Var.2NM_0019601251Isoform 2-NP_00195128131.124.90
EEF1D-207 (EEF1D-053)--ENST00000524624.58protein coding1084---257--
EEF1D-218  (EEF1D-005)Var.8NM_001195203ENST00000526838.58protein coding1194Isoform 5-NP_00118213226229.074.91
EEF1D-223  (EEF1D-004)Var.7NM_001130056 ENST00000528610.57protein coding1179Isoform 4-NP_00112352825728.564.81
Var.10NM_0013177431176Isoform 4-NP_00130467225728.564.81
Var.11NM_0013306461386Isoform 4-NP_00131757525728.564.81
EEF1D-246 (EEF1D-007)--ENST00000532741.58protein coding2387---697--
EEF1D-256--ENST00000618139.210protein coding2238---631--
EEF1D-232 (EEF1D-017)--ENST00000530445.55protein coding1217---166--
EEF1D-253 (EEF1D-048)--ENST00000534380.58protein coding1001---261--
EEF1D-216 (EEF1D-040)--ENST00000526710.11protein coding996---300--
EEF1D-239 (EEF1D-034)--ENST00000531670.53protein coding926---179--
EEF1D-230 (EEF1D-032)--ENST00000530191.55protein coding853---204--
EEF1D-247 (EEF1D-047)--ENST00000533204.57protein coding842---204--
EEF1D-238 (EEF1D-020)--ENST00000531621.57protein coding840---238--
EEF1D-208 (EEF1D-037)--ENST00000524883.12protein coding828---180--
EEF1D-237 (EEF1D-035)--ENST00000531281.12protein coding813---257--
EEF1D-244 (EEF1D-033)--ENST00000532543.12protein coding791---39--
EEF1D-236 (EEF1D-046)--ENST00000531218.57protein coding787---198--
EEF1D-215 (EEF1D-039)--ENST00000526340.56protein coding770---63--
EEF1D-245 (EEF1D-042)--ENST00000532596.53protein coding761---190--
EEF1D-248 (EEF1D-045)--ENST00000533494.57protein coding758---168--
EEF1D-234 (EEF1D-011)--ENST00000530616.56protein coding749---210--
EEF1D-249 (EEF1D-052)--ENST00000533749.55protein coding633---137--
EEF1D-252 (EEF1D-049)--ENST00000534377.55protein coding617---187--
EEF1D-233 (EEF1D-027)--ENST00000530545.53protein coding616---84--
EEF1D-241 (EEF1D-024)--ENST00000531931.12protein coding614---35--
EEF1D-210 (EEF1D-050)--ENST00000525223.12protein coding610---39--
EEF1D-228 (EEF1D-043)--ENST00000529832.53protein coding600---146--
EEF1D-231 (EEF1D-041)--ENST00000530306.53protein coding583---129--
EEF1D-211 (EEF1D-031)--ENST00000525261.53protein coding559---81--
EEF1D-220 (EEF1D-026)--ENST00000528303.54protein coding558---21--
EEF1D-255 (EEF1D-029)--ENST00000534804.54protein coding555---68--
EEF1D-222 (EEF1D-036)--ENST00000528519.12protein coding553---157--
EEF1D-254 (EEF1D-030)--ENST00000534475.54protein coding538---31--
EEF1D-214 (EEF1D-038)--ENST00000526135.53protein coding535---53--
EEF1D-229 (EEF1D-014)--ENST00000530109.53protein coding533---156--
EEF1D-242 (EEF1D-021)--ENST00000531953.53protein coding506---49--
EEF1D-226 (EEF1D-019)--ENST00000529516.56protein coding473---139--
EEF1D-227 (EEF1D-015)--ENST00000529576.53protein coding424---119--
EEF1D-243 (EEF1D-016)--ENST00000532400.14protein coding419---99--
EEF1D-213 (EEF1D-022)--ENST00000526133.12protein coding367---36--
EEF1D-209 (EEF1D-044)--ENST00000524900.13protein coding343---62--
EEF1D-221 (EEF1D-013)--ENST00000528382.13protein coding308---36--
EEF1D-206--ENST00000524397.58nonsense md957------
EEF1D-224--ENST00000529007.58nonsense md861------
EEF1D-250--ENST00000533833.57nonsense md831------
EEF1D-240--ENST00000531770.54processed transcript589------
EEF1D-219--ENST00000527741.54retained intron3718------
EEF1D-217 --ENST00000526786.56retained intron1246------
EEF1D-212 --ENST00000525695.53retained intron907------
EEF1D-251 --ENST00000534232.56retained intron817------
EEF1D-235--ENST00000530848.55retained intron688------

Table.1 Alterative splicing variants and isoforms of EEF1D.  (reworked from; ttps://;; ncRNA = non-coding RNA;  nonsense md =  nonsense mediated decay;  (?) = undetermined;  MW  = molecular weight;  pI = theoretical pI
Pseudogene According to Entrez Gene, the analysis of the human genome revealed the presence of several pseudogenes for EEF1D (Table.2) classified as processed pseudogenes and probably originated by retrotransposition. If these elements have any regulatory role in the expression of the respective gene as described for others (Hirotsune et al., 2003), is only speculation in the absence of experimental evidence.
Little more characterized are EEF1DP3 and EEF1DP4 pseudogenes respect the others. What is known is that these two pseudogenes are probably involved in human cancers or in other diseases. Especially EEF1DP3 was found in some genomic rearrangements with the formation of hybrid genes among which the most studied is EEF1DP3/FRY (Kim et al., 2015).
GeneGene  nameGene IDRefSeqLocusLocationStartEndLenght (nt)Main diseases/td>Reference
EEF1DP1EEF1D pseudogene 1126037NC_000019.10 Chromosome 1919p13.121407032514071304980Large B-cell lymphoma (?)-
Myeloid leukemia (?)-
EEF1DP2EEF1D pseudogene 2442429NC_000009.12 Chromosome 99q22.319283676692837741976Melanoma (?)-
EEF1DP3EEF1D pseudogene 3196549NC_000013.11 Chromosome 1313q13.13184678331959584112802Prostate carcinomaErho et al., 2012
 Breast carcinomaKim et al., 2015
Ankylosing spondylitisShahba et al., 2018
Melanoma (?)-
Non-small cell lung cancer (?)-
Multiple sclerosis (?)-
Large B-cell lymphoma cell lines (SUDHL4, Toledo, OCI-Ly3)(?)-
Lung adenocarcinoma (?)-
Epidermolysis Bullosa Simplex (?) 
EEF1DP4EEF1D pseudogene 4442325NC_000007.14 Chromosome 77q11.2164862951648644501500Glioma (?)-
Breast carcinoma (?)-
Primary myelofibrosis (?)-
Osteosarcoma (?)-
EEF1DP5EEF1D pseudogene 5442258NC_000006.12 Chromosome 66q22.33128580065128580952888 Breast carcinomaStefansson et al., 2011
EEF1DP6EEF1D pseudogene 6644357NC_000001.11 Chromosome 11p36.3241754634175899437--
EEF1DP7EEF1D pseudogene 7100422656NC_000017.11 Chromosome 1717q23.36363660163637110510--
EEF1DP8EEF1D pseudogene 8283236NC_000011.10 Chromosome 1111q12.36216921962169827609--

Table.2 EEF1D pseudogenes (reworked from;; [ (?) ] uncertain;  [ - ] no reference


  Figure.2 eEF1D protein isoforms. Graphical representation of eEF1D protein isoforms with the highlight of the main verified post-translational modifications (reworked from Kaitsuka et al., 2015; Kaitsuka et al., 2011;;;;
Description The eukaryotic translation elongation factor 1 delta (alias eEF1D, eEF1delta;, eEF1Bdelta;) is a subunit of the macromolecular eukaryotic translation elongation factor-1 complex (alias eEF1, also called eEF1H), a high-molecular-weight form made up of an aggregation of different protein subunits: EEF1A (alias eEF1α), EEF1B2 (alias eEF1Β, eEF1Bα, eEF1B2), EEF1G (alias eEF1γ, heEF1γ, eEF1Bγ), EEF1D and valyl t-RNA synthetase ( VARS). eEF1H protein complex plays a central role in peptide elongation during eukaryotic protein biosynthesis, in particular for the delivery of aminoacyl-tRNAs to the ribosome mediated by the hydrolysis of GTP. In fact, during the translation elongation step, the inactive GDP-bound form of eEF1A (eEF1A-GDP) is converted to its active GTP-bound form (eEF1A-GTP) by eEF1BGD-complex mediated the GTP hydrolysis. Thus eEF1BGD-complex acts as a guanine nucleotide exchange factor (GEF) regenerating eEF1A-GTP for the successive elongation cycle. The physiological role of eEF1D in the translation context is still not well defined, however eEF1D seems to strictly collaborate with eEF1B in the conversion of eEF1A from its inactive GDP-bound form to its active GTP-bound form and so it covers a role as a guanine nucleotide exchange factor (GEF) for eEF1A (Le Sourd et al., 2006; Browne and Proud, 2002).
There are known four isoforms produced by alternative splicing: the isoform 1 (RefSeq NP_001123525 or NP_115754), also called eEF1DL or eEF1Bdelta;L, is the longest isoform that also has been chosen as the canonical sequence and it is formed by 647 residues. It is found in the eEF1H protein complex and it shows many domains: in the carboxyl half terminal there are an acidic region and an EF-1 guanine nucleotide exchange domain (EF1-GNE domain / GEF) while in the amino half terminal there are a highly-conserved leucine-rich zipper-like region (aa 184-225), a basic region (aa 272-294) and a nuclear localization signal (NLS)(Kaitsuka et al., 2015; Kaitsuka et al., 2011; Sanders et al., 1993). The basic region seems to be involved in DNA binding while the leucine zipper region may be a protein interaction domain. However, the exact functional role of these regions is unclear (Kaitsuka et al., 2015). The N-terminal domain of eEF1D interacts with the NT-eEF1G domain of eEF1G (Cao et al., 2014; Mansilla et al., 2002; Janssen et al., 1994) but there are no interactions between eEF1D and eEF1B (Sheu and Traugh, 1997), although different interactional models were proposed (Le Sourd et al., 2006; Jiang et al.,2005; Sheu and Traugh, 1999; Minella et al., 1998).
The long isoform of eEF1D (eEF1DL) interacts with HSF1 and NFE2L2 (NRF2) proteins into the nucleus (Kaitsuka et al., 2011; and regulates induction of heat-shock-responsive genes, such as HSPA6, CRYAB, DNAJB1 and HO-1, through the association with the heat shock transcription factors and with a direct DNA-binding at heat shock promoter elements (HSE) (Kaitsuka et al., 2015; Kaitsuka et al., 2011;
The isoform 2, with 281 amino acids, is smaller and, as the isoform 1, it is a multi-domain protein which consists of three main domains: from the amino to carboxyl half terminal there are an N-terminal leucine zipper domain, a C-terminal acidic region and a C-terminal domain that shows GDP/GTP exchange activity (GEF)( Kaitsuka et al., 2015; Kaitsuka et al., 2011). The roles of the isoform 4 and isoform 5 are still undefined.
All isoforms have many interaction surface points with the eukaryotic translation elongation factor 1 alpha (eEF1A) protein ( NP_001123525) and interact with the valyl -tRNA synthetase (Val-RS)(Le Sourd et al., 2006; Bec et al., 1994).
EEF1D interacts with SIAH1, an E3 ubiquitin protein ligase involved in the regulation of cell cycle, tumorigenesis and also in the initiation of neurodegenerative diseases. Is reported that the overexpression of EEF1D is linked with an increase in SIAH-1 levels due to the inhibition of its autoubiquitination and thus of its degradation (Wu et al., 2011). In addition, EEF1D is an interaction partner of kinectin that function as the membrane anchor for EEF1D on the endoplasmic reticulum (Ong et al., 2003)
Post-translational modifications. Some post-translational modifications are observed, such as phosphorylation, acetylation and succinylation ( eEF1D can be hyperphosphorylated and the phosphorylations are made by some protein kinases, including casein kinase 2 (Gyenis et al., 2011; Browne and Proud, 2002) and cyclin-dependent kinase 1 ( CDK1) (Kawaguchi et al., 2003). In particular, CDK1 phosphorylates EEF1D at Ser-133 (Kawaguchi et al., 2003).
In addition, eEF1D can be found hyperphosphorylated by viral protein kinases after alpha-, beta-, and gammaherpesviruses infections (Kawaguchi et al., 2003).
  Figure 3. The translation elongation mechanism. The active form of eukaryotic translation elongation factor 1 alpha (eEF1A) in complex with GTP delivers an aminoacylated tRNA to the A site of the ribosome. Following the proper codon-anticodon recognition the GTP is hydrolyzed and the inactive eEF1A-GDP is released from the ribosome and then it is bound by eEF1B2GD complex forming the macromolecular protein aggregate eEF1H. eEF1H is formed previously by the binding of three subunits: eEF1B2, eEF1G and eEF1D. This complex promotes the exchange between GDP and GTP to regenerate active form of eEF1A (reworked from Dongsheng et al., 2013; Ejiri, 2002; Riis et al, 1990;
Expression eEF1D is expressed widely in human tissues and high levels of protein are reported in bone marrow stromal cells ( The long form of eEF1D (eEF1DL) is found to be highly expressed in brain and testis (Kaitsuka et al., 2011).
Localisation eEF1D is located mostly in the cytoplasm but it is also found in the nucleus, especially its long form (Kaitsuka et al., 2011), and also in relation with the endoplasmic reticulum (Sanders et al., 1996).
  Figure 4. Subcellular localization of eEF1D. Cytoplasmic and nuclear localizations for eEF1D were determined by transfection experiments with GFP-eEF1D fusion proteins for both isoforms (GFP-eEF1D and GFP-eEF1DL) in HeLa cells. The tests were made by confocal microscopy with a scale bar of 20 m. eEF1D was found also in relation to the endoplasmic reticulum (ER) in primary fibroblasts VH25 cells. The long form of EEF1D (EF1DL) is the only isoform that is found also in nucleus, while in the cytoplasm and on ER co-localize both long and short isoforms (reworked from Kaitsuka et al., 2011; Sanders et al., 1996. Note: some picture elements were obtained from using BioRender illustration tool).
Function eEF1D has shown to cover an important role in normal brain functioning and development and some experiments on KO mice lacking the expression of its long isoform (eEF1DL) have done emerging its implication for normal physiology of the brain. In fact, in these KO mice were observed severe seizures in response to loud sounds and also significant brain structure alterations such as a decrease in brain weight, atrophy of the hippocampus and midbrain and a reduction of cortical layer thickness (Kaitsuka et al., 2018).
eEF1D shows canonical functions and multiple non-canonical roles (moonlighting roles) inside the cell.
Canonical function: eEF1D binds to eEF1B and eEF1G in the eEF1BDG macromolecular complex and contributes to catalyze the exchange of GDP/GTP for eEF1A during the translation elongation cycle.
Non-canonical roles: eEF1D seems to have other functions inside the cell besides its involvement in translation. At least two other non-canonical roles have been detected, i.e. its role as a transcriptional factor and its involvement in the stress response. These roles are closely connected to each other. In fact, it was demonstrated that heat shock induces the splicing-dependent expression change from the short eEF1D isoform (isoform 2) to the eEF1DL long isoform (isoform 1)(Kaitsuka et al., 2015). The silencing of eEF1DL inhibits the stress responses suggesting its role in the modulation of stress response in the cell (Hensen et al., 2013). In fact, EEF1D is a heat shock transcription factor that can bind to the heat shock element (HSE) in the promoter of the HSPA6 and HO-1 genes and activate their transcription (Kaitsuka et al., 2011).
Homology eEF1D is highly conserved and its homology between the species is reported in Table.3
OrganismSpeciesSymbol DNA Identity (%)PROT Identity (%)
WolfC.lupus LOC47511585.285.5
Mouse M.musculusEef1d85.284.3
Xenopus tropicalisX.tropicaliseef1d67.869.7
Zebrafish D.rerioeef1db65.866.3
Fruit flyD.melanogastereEF1delta55.657.0
Mosquito (Anopheles)A.gambiaeAgaP_AGAP00423548.557.0
 Caenorhabditis C.eleganseef-1B.253.857.6

Table.3 EEF1D homology (reworked from ps://


Note A great number of mutations in the genomic sequence and in the amino acid sequence for EEF1D were discovered in cancer cells that are obviously genetically more unstable respect normal ones. The genomic alterations observed include the formation of novel fusion genes. However, there are no sufficient experimental data yet to understand the repercussions on cellular behaviour and so the implications in cancer of these fusion genes.
  Figure 5. Circos plot for fusion events involving eEF1D. The picture summarizes all fusion events concerning eEF1D and its fusion partners (from

Implicated in

Note EEF1D is a cellular proto-oncogene (Joseph et al., 2002) and it is involved in many and heterogeneous genomic translocations in different kind of tumors with also the creation of numerous fusion gene (Table.4). An increase of its expression level has an oncogenic potential with resulting in cell transformation (Lei et al., 2002) and this was observed in many cancer types (Hassan et al., 2018). In addition, the use of antisense mRNA to block EEF1D translation can revert its oncogenic potential (Lei et al., 2002). These data could suggest its role as a potential diagnostic indicator and prognostic marker in tumors (Joseph et al., 2002).
Name5' end3' endLoc1Loc2DescriptionTypeDiseaseOrganCodeRef.
ACSF2/EEF1DACSF2EEF1D 17q21.338q24.3t(8;17)(q24;q21)Translocation(?)---
AGO2/EEF1DAGO2EEF1D 8q24.38q24.3t(8;8)(q24;q24)Fusion gene(?)---
ASAP1/EEF1DASAP1EEF1D 8q24.218q24.3t(8;8)(q24;q24)Fusion gene(?)---
ASB8/EEF1DASB8EEF1D 12q13.118q24.3t(8;12)(q24;q13)Translocation(?)---
ATXN1/EEF1DATXN1EEF1D 6p22.38q24.3t(6;8)(p22;q24)Translocation(?)---
 B2M/EEF1D B2MEEF1D15q21.18q24.3t(8;15)(q24;q21)Translocation(?)---
BOD1L1/EEF1DBOD1L1EEF1D 4p15.33 8q24.3t(4;8)(p15;q24)Translocation(?)---
C19ORF10/EEF1DC19ORF10EEF1D 19p13.3 8q24.3t(8;19)(q24;p13)Translocation(?)---
CAPN15/EEF1DCAPN15EEF1D 16p13.38q24.3t(8;16)(q24;p13)Translocation(?)---
CBX7/EEF1DCBX7EEF1D 22q13.18q24.3t(8;22)(q24;q13)Translocation(?)---
CHN2/EEF1DCHN2EEF1D 7p14.38q24.3t(7;8)(p14;q24)Translocation(?)---
CLPS/EEF1DCLPSEEF1D 6p21.318q24.3t(6;8)(p21;q24)Translocation(?)---
CLTB/EEF1DCLTBEEF1D 5q35.28q24.3t(5;8)(q35;q24)Translocation(?)---
CMSS1/EEF1DCMSS1EEF1D 3q12.18q24.3t(3;8)(q12;q24)Translocation(?)---
COLGALT1/EEF1DCOLGALT1EEF1D 19p13.118q24.3t(8;19)(q24;p13)Translocation(?)---
CRY1/EEF1DCRY1EEF1D 12q23.38q24.3t(8;12)(q24;q23)Translocation(?)---
CTDP1/EEF1DCTDP1EEF1D 18q238q24.3t(8;18)(q24;q23)Translocation(?)---
CTTN/EEF1DCTTNEEF1D 11q13.38q24.3t(8;11)(q24;q13)Translocation(?)---
DDX23/EEF1DDDX23EEF1D 12q13.12 8q24.3t(8;12)(q24;q13)Translocation(?)---
DDX5/EEF1DDDX5EEF1D 17q23.38q24.3t(8;17)(q24;q23)Translocation(?)---
EEF1D/CALREEF1DCALR8q24.3 19p13.13 t(8;19)(q24;p13)Translocation-Cell lineMCF10Babiceanu et al.,2016
EEF1D/CKBEEF1DCKB8q24.3 14q32.33t(8;14)(q24;q32)Translocation(?)---
EEF1D/DUSP28EEF1DDUSP288q24.3 2q37.3 t(2;8)(q37;q24)Translocation(?)---
EEF1D/GSDMBEEF1DGSDMB8q24.3 17q12t(8;17)(q24;q12)Translocation(?)---
EEF1D/KRT4EEF1DKRT48q24.3 12q13.13t(8;12)(q24;q13)Translocation-Esophagus-Babiceanu et al.,2016
EEF1D/KRT5EEF1DKRT58q24.3 12q13.13t(8;12)(q24;q13)TranslocationSquamous Cell CarcinomaHead and Neck HNSCKlijn et al., 2015
EEF1D/KRT6AEEF1DKRT6A8q24.3 12q13.13t(8;12)(q24;q13)TranslocationSquamous Cell CarcinomaHead and Neck HNSCKlijn et al., 2015
EEF1D/KRT10EEF1DKRT108q24.3 17q21.2t(8;17)(q24;q21)Translocation-Skin-Babiceanu et al.,2016
EEF1D/KRT14EEF1DKRT148q24.3 17q21.2t(8;17)(q24;q21)TranslocationSquamous Cell CarcinomaUterine cervixCESCAlaei-Mahabadi et al., 2016
EEF1D/LSP1EEF1DLSP18q24.3 11p15.5t(8;11)(q24;p15)Translocation(?)---
EEF1D/MAN2C1EEF1DMAN2C18q24.3 15q24.2t(8;15)(q24;q24)Translocation(?)---
EEF1D/NAPRTEEF1DNAPRT8q24.38q24.3Readthrough transcriptionFusion gene-Cell lineESCBabiceanu et al.,2016
Burkitt lymphomaBloodBL-
Hepatocellular carcinomaLiver LIHC-
Laryngeal cancerHead and Neck HNSCTao et al., 2018
EEF1D/PARK2EEF1DPARK28q24.3 6q26 t(6;8)(q26;q24)Translocation(?)---
EEF1D/PNLIPEEF1DPNLIP8q24.3 10q25.3 t(8;10)(q24;q25)Translocation(?)---
EEF1D/PUF60EEF1DPUF608q24.3 8q24.3t(8;8)(q24;q24)Fusion geneSerous CystadenocarcinomaOvaryOVSC-
EEF1D/RNF2EEF1DRNF28q24.3 1q25.3t(1;8)(q25;q24)Translocation(?)---
EEF1D/RYR1EEF1DRYR18q24.3 19q13.2t(8;19)(q24;q13)Translocation(?)---
EEF1D/SDC4EEF1DSDC48q24.3 20q13.12t(8;20)(q24;q13)TranslocationAdenocarcinomaProstatePRADWu et al., 2012
EEF1D/SFTPCEEF1DSFTPC8q24.3 8p21.3t(8;8)(q24;p21)Fusion gene(?)---
EEF1D/SPIBEEF1DSPIB8q24.3 19q13.33t(8;19)(q24;q13)TranslocationBurkitt lymphomaBloodBL-
EEF1D/TGEEF1DTG8q24.38q24.22t(8;8)(q24;q24)Fusion geneThyroid carcinomaThyroid THCA-
EEF1D/TSNARE1EEF1DTSNARE18q24.3 8q24.3t(8;8)(q24;q24)Fusion geneSerous CystadenocarcinomaOvaryOVSC-
EEF1D/TSTA3 EEF1DTSTA3 8q24.38q24.3t(8;8)(q24;q24)Fusion geneAdenocarcinomaLungLUAD Yoshihara et al 2015
EEF1D/UBE2L3 EEF1DUBE2L3 8q24.322q11.21t(8;22)(q24;q11)Translocation(?)---
EEF1D/ZBTB7AEEF1DZBTB7A8q24.3 19p13.3 t(8;19)(q24;p13)Translocation(?)---
EEF1D/ZC3H3EEF1DZC3H38q24.3 8q24.3t(8;8)(q24;q24)Fusion gene(?)---
FAM104A/EEF1D FAM104A EEF1D17q25.18q24.3t(8;17)(q24;q25)Translocation-Cell lineCOLO794Klijn et al., 2015
FAM222B/EEF1DFAM222BEEF1D 17q11.28q24.3t(8;17)(q24;q11)Translocation(?)---
FLCN/EEF1DFLCNEEF1D 17p11.28q24.3t(8;17)(q24;p11)Translocation(?)---
HDAC5/EEF1DHDAC5EEF1D 17q21.318q24.3t(8;17)(q24;q21)TranslocationBurkitt lymphomaBloodBL-
HIF1A/EEF1DHIF1AEEF1D14q23.28q24.3t(8;14)(q24;q23)Translocation-Cell lineOVTOKOKlijn et al., 2015
HIF3A/EEF1DHIF3AEEF1D 19q13.328q24.3t(8;19)(q24;q13)Translocation(?)---
HRH1/EEF1DHRH1EEF1D 3p25.38q24.3t(3;8)(p25;q24)Translocation(?)---
IGLL5/EEF1DIGLL5EEF1D22q11.228q24.3t(8;22)(q24;q11)Translocation-Cell lineMOLP-8Klijn et al., 2015
IL4R/EEF1DIL4REEF1D 16p12.18q24.3t(8;16)(q24;p12)Translocation(?)---
IRF3/EEF1DIRF3EEF1D 19q13.338q24.3t(8;19)(q24;q13)Translocation(?)---
KRT13/EEF1DKRT13EEF1D 17q21.28q24.3t(8;17)(q24;q21)Translocation-Esophagus-Babiceanu et al.,2016
LGR6/EEF1DLGR6EEF1D 1q32.18q24.3t(1;8)(q32;q24)Translocation(?)---
METRNL/EEF1DMETRNLEEF1D 17q25.38q24.3t(8;17)(q24;q25)Translocation(?)---
MGRN1/EEF1DMGRN1EEF1D 16p13.38q24.3t(8;16)(q24;p13)Translocation(?)---
NCAM1/EEF1DNCAM1EEF1D 11q23.28q24.3t(8;11)(q24;q23)Translocation(?)---
NID1/EEF1DNID1EEF1D 1q42.38q24.3t(1;8)(q42;q24)Translocation(?)---
OAZ1/EEF1DOAZ1EEF1D 19p13.38q24.3t(8;19)(q24;p13)Translocation(?)---
OGG1/EEF1DOGG1EEF1D3p25.38q24.3t(3;8)(p25;q24)Translocation-Cell lineES2-TOKlijn et al., 2015
OPLAH/EEF1DOPLAHEEF1D8q24.38q24.3t(8;8)(q24;q24)Fusion geneAdenocarcinomaStomachSTAD-
PLA2G6/EEF1DPLA2G6EEF1D 22q13.18q24.3t(8;22)(q24;q13)TranslocationAdenocarcinoma BreastBRCA-
PLIN5/EEF1DPLIN5EEF1D 19p13.38q24.3t(8;19)(q24;p13)Translocation(?)---
PMF1/EEF1DPMF1EEF1D1q228q24.3t(1;8)(q22;q24)Translocation-Cell lineRT4Klijn et al., 2015
POLI/EEF1DPOLIEEF1D 18q21.28q24.3t(8;18)(q24;q21)Translocation(?)---
POU2F1/EEF1DPOU2F1EEF1D 1q24.28q24.3t(1;8)(q24;q24)Translocation(?)---
PTP4A3/EEF1DPTP4A3EEF1D 8q24.38q24.3t(8;8)(q24;q24)Fusion gene(?)---
RAB3GAP1/EEF1DRAB3GAP1EEF1D 2q21.38q24.3t(2;8)(q21;q24)Translocation(?)---
RAB40C/EEF1DRAB40CEEF1D 16p13.38q24.3t(8;16)(q24;p13)Translocation(?)---
RCC1/EEF1DRCC1EEF1D 1p35.38q24.3t(1;8)(p35;q24)Translocation(?)---
RILPL2/EEF1DRILPL2EEF1D 12q24.318q24.3t(8;12)(q24;q24)Translocation(?)---
RNF14/EEF1DRNF14EEF1D 5q31.3 8q24.3t(5;8)(q31;q24)Translocation(?)---
RNF44/EEF1DRNF44EEF1D 5q35.28q24.3t(5;8)(q35;q24)Translocation(?)---
RPL30 /EEF1DRPL30 EEF1D8q22.28q24.3t(8;8)(q22;q24)Fusion geneAdenocarcinoma BreastBRCA-
RPL36AL/EEF1DRPL36ALEEF1D 14q21.38q24.3t(8;14)(q24;q21)Fusion gene(?)---
RPS9/EEF1DRPS9EEF1D 19q13.428q24.3t(8;19)(q24;q13)TranslocationBurkitt lymphomaBloodBL-
RSAD1/EEF1DRSAD1EEF1D 17q21.338q24.3t(8;17)(q24;q21)Translocation(?)---
SCRIB/EEF1DSCRIBEEF1D8q24.38q24.3t(8;8)(q24;q24)Fusion geneSerous CystadenocarcinomaOvaryOVSC-
SCYL1/EEF1DSCYL1EEF1D 11q13.18q24.3t(8;11)(q24;q13)Translocation(?)---
SH2B2/EEF1DSH2B2EEF1D 7q22.18q24.3t(7;8)(q22;q24)TranslocationBurkitt lymphomaBloodBL-
SMYD3/EEF1DSMYD3EEF1D 1q448q24.3t(1;8)(q44;q24)Translocation(?)---
SORBS1/EEF1DSORBS1EEF1D 10q24.18q24.3t(8;10)(q24;q24)Translocation(?)---
SORT1 /EEF1DSORT1 EEF1D1p13.38q24.3t(1;8)(p13;q24)Translocation(?)---
SPIB/EEF1DSPIBEEF1D 19q13.338q24.3t(8;19)(q24;q13)TranslocationBurkitt lymphomaBloodBL-
ST3GAL1/EEF1DST3GAL1EEF1D 8q24.228q24.3t(8;8)(q24;q24)Fusion gene(?)---
TATDN1/EEF1DTATDN1EEF1D8q24.138q24.3t(8;8)(q24;q24)Fusion geneAdenocarcinoma BreastBRCA-
TMEM99/EEF1DTMEM99EEF1D 17q21.28q24.3t(8;17)(q24;q21)Translocation(?)---
TMLHE/EEF1DTMLHEEEF1D Xq288q24.3t(X;8)(q28;q24)Translocation(?)---
TOP2B/EEF1DTOP2BEEF1D 3p24.28q24.3t(3;8)(p24;q24)Translocation(?)---
TP53I3/EEF1DTP53I3EEF1D 2p23.3 8q24.3t(2;8)(p23;q24)Translocation(?)---
TP53TG5/EEF1DTP53TG5EEF1D 20q13.128q24.3t(8;20)(q24;q13)Translocation(?)---
TTC21B/EEF1DTTC21BEEF1D2q24.3 8q24.3t(2;8)(q24;q24)Translocation(?)---
UBAP2/EEF1DUBAP2EEF1D 9p13.38q24.3t(8;9)(q24;p13)Translocation(?)---
UBE2G1/EEF1DUBE2G1EEF1D 17p13.28q24.3t(8;17)(q24;p13)Translocation(?)---
UFM1/EEF1DUFM1EEF1D 13q13.38q24.3t(8;13)(q24;q13)TranslocationAdenocarcinomaColon COAD-
ZC3H3/EEF1DZC3H3EEF1D8q24.38q24.3t(8;8)(q24;q24)Fusion gene-Bone marrow-Babiceanu et al.,2016
Cell lineCa SkiKlijn et al., 2015
ZG16B/EEF1DZG16BEEF1D 16p13.3 8q24.3t(8;16)(q24;p13)Translocation(?)---
ZNF146/EEF1DZNF146EEF1D 19q13.12 8q24.3t(8;19)(q24;q13)Translocation(?)---
ZNF232/EEF1DZNF232EEF1D 17p13.28q24.3t(8;17)(q24;p13)Translocation(?)---
ZNF429/EEF1DZNF429EEF1D 19p128q24.3t(8;19)(q24;p12)Translocation(?)---
ZNF608/EEF1DZNF608EEF1D 5q23.28q24.3t(5;8)(q23;q24)Translocation(?)---

Table.4 EEF1D rearrangements: translocations and fusion genes (reworked from ps://;;;;;; [ (?) ] unknown;  [ - ] no reference
Entity Amyotrophic lateral sclerosis (ALS)
Note EEF1D is a potential candidate gene associated with ALS (Wain et al., 2009) but more studies are needed to clarify its effective contribution.
Entity Bladder cancer
Note There are no data about EEF1D expression alterations in bladder cancer. However, it was reported the translocation t(1;8)(q22;q24) PMF1/EEF1D (Klijn et al., 2015).
Hybrid/Mutated Gene The t(1;8)(q22;q24) PMF1/EEF1D was detected in bladder transitional-cell carcinoma RT4 cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "polyamine modulated factor 1" ( PMF1) gene at 5'-end with EEF1D gene at 3' end. There are no data about its chimeric transcript or protein and the role of this genomic alteration is poorly understood.
Entity Brain and central nervous system (CNS) cancers
Note EEF1D is found to be overexpressed in astrocytoma and in glioblastoma samples and also in low-risk patients. This may associate its expression to favourable survival outcome (Hassan et al., 2018).
Entity Breast cancer
Note EEF1D is involved in breast cancer (Jurca et al., 2016). In fact, was detected an EEF1D gene copy number gain in BT483, EFM19, HCC1143, HCC1395, HCC1569, HCC1806, HCC1937, HCC2157, HCC2218, HDQP1, MDAMB436 and UACC893 breast cancer cell lines and in about 10% of breast invasive carcinoma donor samples ( EEF1D was found overexpressed in T-47, MCF-7, MDA-MB-361 and MDA-MB-453 breast cancer cell lines (Joseph et al., 2004). It is also overexpressed in breast cancer samples and this predicted worse relapse-free survival (RFS) in luminal A subtype patients and poor overall survival (OS) and RFS in basal subtype (Hassan et al., 2018).
Some authors have found an EEF1D downregulation in ER+/ER- cancer cell lines and in human breast cancer samples when high levels of bone morphogenetic protein-6 ( BMP6) are expressed (Yang et al., 2007). This seems to be linked with the prevention of eEF1D-induced breast cancer metastasis. In fact, EEF1D is a candidate protein marker of human brain metastasis in primary breast tumors (Sanz-Pamplona et al., 2011; van't Veer et al., 2002). In addition, some fusion genes and genomic translocations were reported (
Hybrid/Mutated Gene The translocation t(8;22)(q24;q13) PLA2G6/EEF1D was found in breast carcinoma (BRCA) and consists by the fusion of 'phospholipase A2 group VI' (< CC: TXT: PLA2G6 ID: 45836>) gene at 5'-end with EEF1D gene at 3' end. In addition, other uncharacterized and rare rearrangements due to the translocation t(8;8)(q24;q24) are reported, i.e. the RPL30 /EEF1D and TATDN1/EEF1D fusion genes ( In particular, the t(8;8)(q24;q24) RPL30 /EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of RPL30 joined with exons 2 to 7 of EEF1D (, while the t(8;8)(q24;q24) TATDN1/EEF1D brings to the formation of a transcript composed by the exon 1 of TATDN1 joined with exons 2 to 7 of EEF1D ( Despite what has just been said, these genomic alterations are still poorly understood.
Entity Chondrosarcoma
Note The human chondrosarcoma cells are able to respond to mechanical stimuli, like cellular stretching, with different phosphorylation events. Increase of phosphorylations impacts also on the EEF1D protein. It is unclearly the significance or the effect on the cell of these phosphorylations as also if these changes may affect the level or speed of protein synthesis (Pitti et al., 2008).
Entity Colorectal cancer
Note It was detected an EEF1D gene copy number gain in LS123 and RKO colorectal cancer cell lines and in about 5% of colon adenocarcinoma donor samples ( In addition, EEF1D transcript is found to be significantly overexpressed (Hassan et al., 2018), especially in the right-sided colon cancer (RSCC) respect left-sided colon cancer (LSCC) samples (Shen et al., 2013). It was reported the translocation t(8;13)(q24;q13) UFM1/EEF1D (
Hybrid/Mutated Gene The t(8;13)(q24;q13) UFM1/EEF1D was found in colon adenocarcinoma. This rearrangement is originated by the fusion of 'ubiquitin fold modifier 1' ( UFM1) gene at 5'-end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown.
Entity Gastric cancer
Note It was detected an EEF1D gene copy number gain in 2313287, LMSU, MKN1, SNU5, SNU216, SNU601 and SNU668 gastric cancer cell lines ( but it was found down-expressed in gastric cancer samples (Hassan et al., 2018). Some fusion genes and genomic translocation are reported (Klijn et al., 2015;
Hybrid/Mutated Gene The t(8;22)(q24;q11) IGLL5/EEF1D was found in gastric adenocarcinoma samples (Klijn et al., 2015) and consists by the fusion of 'immunoglobulin lambda-like polypeptide 5' ( IGLL5) gene at 5'-end with EEF1D gene at 3' end. In addition, other uncharacterized and rare rearrangements are reported, i.e. OPLAH/EEF1D fusion gene and t(8;9)(q24;q22) EEF1D/ANKRD19P ( In particular, the t(8;9)(q24;q22) EEF1D/ANKRD19P brings to the formation of a new chimeric gene with a transcript formed by the exons 1 to 5 of EEF1D joined with exon 10 of 'ankyrin repeat domain 19 pseudogene' ( ANKRD19P). The protein resulting from this rearrangement lacks the GEF domain in the C-terminal ( Despite what has just been said, these genomic alterations are still poorly understood.
Entity Head and neck squamous cell carcinoma (HNSC)
Note EEF1D gene was found up-regulated in head and neck squamous cell carcinoma (HNSC) (Hassan et al., 2018; Han et al., 2009). In particular, Flores and colleagues (Flores et al., 2016) detected its overexpression in oral squamous cell carcinoma (OSCC) respect to oral healthy mucosa. It could have a critical role both in cell proliferation and in epithelial-mesenchymal transition (EMT). In fact, EEF1D knockdown shown a decrease in cell cycle rate and proliferation. Some fusion genes and genomic translocation are reported (Klijn et al., 2015).
In addition, EEF1D was found up-regulated in human laryngeal cancer (Peyvandi et al., 2018) and was found an intrachromosomal translocation with the formation of a chimeric fusion gene between EEF1D and NAPRT1 genes in laryngeal cancer (Tao et al., 2018).
Hybrid/Mutated Gene The t(8;12)(q24;q13) EEF1D/KRT5 and the t(8;12)(q24;q13) EEF1D/KRT6A were found in head and neck squamous cell carcinoma (HNSC) samples with the production of chimeric genes originated by the fusion of EEF1D at 5'-end with 'keratin 5' ( KRT5) or 'keratin 6A' ( KRT6A) genes at 3' end (Klijn et al., 2015). In addition, it was detected in laryngeal cancer the fusion gene 5' EEF1D - 3' NAPRT (Tao et al., 2018) that is probably originated by readthrough transcription, a known mechanism into the cell (He et al., 2018). In fact, EEF1D and NAPRT1 are two neighboring genes on the same chromosome.
The roles of all these genomic alterations are unknown.
Entity Kidney cancer
Note High EEF1D mRNA levels were found in renal Wilms tumor and in clear cell carcinoma (Hassan et al., 2018). Some authors have detected missense mutations of EEF1D in papillary renal cell carcinoma (PRCC)(Liu et al., 2015). These mutations could contribute to the pathogenic mechanism for PRCC but more studies are necessary.
Entity Liver cancer
Note EEF1D was found overexpressed in moderately to poorly differentiated (M/P-) primary human hepatocellular carcinoma (HCC) tissues (Hassan et al., 2018; Shuda et al., 2000). In addition, it was found the EEF1D/NAPRT fusion gene (;
Hybrid/Mutated Gene The EEF1D/NAPRT fusion gene was found in hepatocellular carcinoma (LIHC). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with 'nicotinate phosphoribosyltransferase domain containing 1' (NAPRT) gene at 3' end and it is probably due to readthrough transcription. In fact, EEF1D and NAPRT1 are two neighboring genes on the same chromosome. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown.
Entity Lung cancer
Note EEF1D was found to be down-expressed in lung carcinoid tumor and not shows any correlation with survival parameters (Hassan et al., 2018). It was also found down-expressed in adriamycin-resistant variants of DLKP squamous lung cancer cell line (Keenan et al., 2009). On the contrary, other authors found overexpression of EEF1D mRNA in some adenocarcinoma of the lung and squamous lung cell carcinoma tissue samples (Varemieva et al., 2014). In addition, eEF1D was found both in the cytoplasm and in the nucleus of lung adenocarcinoma A549 cell line (Varemieva et al., 2014) and the EEF1D/TSTA3 fusion gene was reported for lung adenocarcinoma (LUAD)(Yoshihara et al 2015).
Hybrid/Mutated Gene The EEF1D/TSTA3 fusion gene was found in lung adenocarcinoma (LUAD) samples (Yoshihara et al 2015). This rearrangement is originated by t(8;8)(q24;q24) i.e. from the fusion of EEF1D gene at 5'-end with 'tissue specific transplantation antigen P35B' ( TSTA3) gene at 3' end. In particular, this rearrangement brings to the formation of a transcript composed by the exon 1 of EEF1D joined with exons 4 to 11 of TSTA3 ( Despite what has just been said, this genomic alteration is still poorly understood.
Entity Lymphoma and other blood cancers
Note EEF1D is significantly overexpressed in different lymphoma subtypes, i.e. ALK-negative/ ALK positive anaplastic large cell lymphomas, Hodgkin's lymphoma, acute adult T-cell leukaemia/lymphoma, Burkitt's lymphoma, follicular lymphoma and diffuse large B-cell lymphoma (Hassan et al., 2018). Some fusion genes and genomic translocation were reported (Klijn et al., 2015;;
Cytogenetics The t(8;19)(q24;q13) EEF1D/ SPIB, t(8;17)(q24;q21) HDAC5/EEF1D, t(8;19)(q24;q13) RPS9/EEF1D, t(7;8)(q22;q24) SH2B2/EEF1D, t(8;19)(q24;q13) SPIB/EEF1D translocations and EEF1D/NAPRT fusion gene were reported for Burkitt's lymphoma (BL). In addition, the t(8;22)(q24;q11) IGLL5/EEF1D was observed in multiple myeloma MOLP-8 cell line (Klijn et al., 2015). There are no data about the respective chimeric transcripts or proteins and the role of these genomic alterations is unknown.
Entity Medulloblastoma / Ependymoma
Note EEF1D is overexpressed in medulloblastoma samples and it is adversely associated with overall and progression-free survival regardless of cytogenetic profile (De Bortoli et al., 2006). In addition, EEF1D was found highly expressed in ependymoma and this is related to poor outcome (de Bont et al., 2008).
Entity Melanoma
Note EEF1D was found overexpressed in human chemoresistant melanoma cell lines (Sinha et al., 2000) and it was reported the translocation t(8;17)(q24;q25) FAM104A/EEF1D (Klijn et al., 2015).
Hybrid/Mutated Gene The t(8;17)(q24;q25) FAM104A/EEF1D was reported in COLO794 cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "family with sequence similarity 104 member A" ( FAM104A) gene at 5'-end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown.
Entity Neurological and neurodevelopmental disorders
Note Mutations of EEF1D are involved in neurodevelopmental abnormalities, severe intellectual disability (ID) and microcephaly (McLachlan et al., 2018; Reuter et al., 2017). In particular, some authors identified a pathogenic variant of EEF1DL that could be a candidate for the autosomal recessive ID (ARID) due to its loss of function (Ugur Iseri et al., 2019). In addition, also the interaction between eEF1D and SIAH1 could impact on the initiation of neurodegenerative diseases when eEF1D is over-expressed (Wu et al., 2011).
Entity Oesophageal carcinoma
Note It was detected an EEF1D gene copy number gain in TE8, TE10 and TE11 oesophageal cancer cell lines ( and an EEF1D overexpression in oesophageal carcinoma and cardioesophageal carcinoma samples respect noncancerous ones (Veremieva et al., 2011; Ogawa et al., 2004). In addition, it was found a significant correlation between EEF1D overexpression and advanced disease stages and also lymph node metastasis and this correlates with poor prognosis (Ogawa et al., 2004). Some fusion genes and genomic translocation are reported (Babiceanu et al.,2016;;
Hybrid/Mutated Gene The t(3;8)(p25;q24) TTLL3/EEF1D, t(8;17)(q24;q21) KRT13/EEF1D, t(8;12)(q24;q13) EEF1D/KRT4 translocations and ZC3H3/EEF1D fusion gene were reported in oesophageal carcinoma (ESCA).
In particular, the t(3;8)(p25;q24) TTLL3/EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of "tubulin tyrosine ligase like 3" ( TTLL3) joined with exons 2 to 7 of EEF1D (, while the t(8;8)(q24;q24) ZC3H3/EEF1D brings to the formation of a transcript composed by the exon 1 of "zinc finger CCCH-type containing 3" ( ZC3H3) joined with exons 4 to 7 of EEF1D ( Despite what has just been said, these genomic alterations are still poorly understood.
Entity Osteosarcoma
Note EEF1D may play an important role in osteosarcoma tumorigenesis because it is overexpressed in osteosarcoma tissues samples respect to adjacent non-tumor tissues and this enhances the Akt-mTOR and Akt-Bad signalling pathways. In fact, knockdown of EEF1D in MNNG/HOS and U2OS cells (both osteosarcoma cell lines) shows a slight decrease in the phosphorylation of Akt, MTOR and BAD. In addition, the high expression of EEF1D has a positive correlation with recurrences and its expression levels are higher in patients in advanced Enneking stage than in the early stage ones (Cheng et al., 2018). It was reported the translocation t(3;8)(p25;q24) OGG1/EEF1D (Klijn et al., 2015).
Hybrid/Mutated Gene The t(3;8)(p25;q24) OGG1/EEF1D was detected in sarcoma ES2-TO cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "8-oxoguanine DNA glycosylase" ( OGG1) gene at 5'-end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and so this genomic alteration is still poorly understood.
Entity Ovarian cancer
Note It was detected an EEF1D gene copy number gain in COV362, KURAMOCHI, OVCAR4, OVCAR8 and SNU119 ovarian cancer cell lines, in about 26% of ovarian serous cystadenocarcinoma donor samples ( and also in ovarian clear cell adenocarcinomas and other ovarian cancer samples (Zhang et al., 2015; Sung et al., 2013). Some fusion genes and genomic translocation are reported (Klijn et al., 2015;;
Hybrid/Mutated Gene The EEF1D/ PUF60, EEF1D/ TSNARE1 and SCRIB/EEF1D fusion genes originated by t(8;8)(q24;q24) were found in ovarian serous cystadenocarcinoma (OVSC) samples. In addition, the t(8;14)(q24;q23) HIF1A/EEF1D was reported for ovarian clear cell adenocarcinoma OVTOKO cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "hypoxia inducible factor 1 subunit alpha" ( HIF1A) gene at 5'-end with EEF1D gene at 3' end. The roles of these genomic alterations are still unknown.
Entity Pancreatic cancer
Note EEF1D mRNA is found to be down-regulated in pancreatic cancer tissue samples (Hassan et al., 2018).
Entity Parkinson's disease
Note Some rare mutated variants of eEF1D are considered potential candidates in Parkinson's disease. These mutated variants differ from the amino acid sequence of EEF1D for some amino acids substitutions, i.e. in position 290 (Gly/Arg), 325 (Ala/Thr), 549 (Ala/Val) and 601 (Pro/Ser) (Schulte et al., 2014).
Entity Prostate cancer
Note EEF1D mRNA is found to be up-regulated in prostate cancer tissue samples (Hassan et al., 2018). In addition, it was found the translocation t(8;20)(q24;q13) EEF1D/SDC4 (Wu et al., 2012).
Hybrid/Mutated Gene The t(8;20)(q24;q13) EEF1D/SDC4 was found in prostate adenocarcinoma (PRAD). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "syndecan 4" ( SDC4) gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration in prostate cancer is unknown.
Entity Thyroid cancer
Note There are no data about EEF1D expression alterations in thyroid cancers. However, it was reported the EEF1D/TG fusion gene (;
Hybrid/Mutated Gene The EEF1D/TG fusion gene was reported in thyroid Carcinoma (THCA). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "thyroglobulin" ( TG) gene at 3' end due to the translocation t(8;8)(q24;q24). There are no data about its chimeric transcript or protein and the role of this genomic alteration is unknown.
Entity Uterine cancer
Note It was detected an EEF1D gene copy number gain in about 14% of uterine carcinosarcoma donor samples ( It was found the translocation t(8;17)(q24;q21) EEF1D/KRT14 (Alaei-Mahabadi et al., 2016).
Hybrid/Mutated Gene The t(8;17)(q24;q21) EEF1D/KRT14 was found in cervical squamous cell carcinoma (CESC). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "keratin 14" ( KRT14) gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown.

To be noted

Role of eEF1D in viral replication and pathogenesis. Have been discovered some interactions between some human immunodeficiency virus type 1 (HIV-1) proteins, such as HIV-1 Tat, and eEF1D and its recruitment for the viral mRNAs translation (Milev et al., 2012). In addition, eEF1D can be found hyperphosphorylated by viral protein kinases after alpha-, beta-, and gammaherpesviruses infections. In particular, the viral protein kinases involved in eEF1D phosphorylation include UL13 of herpes simplex virus type 1 (HSV-1), UL97 of human cytomegalovirus and BGLF4 of Epstein-Barr virus (EBV) (Kawaguchi et al., 2003). Apart from that, in general, this brings a reduction of cellular proteins biosynthesis efficiency instead privileging the viral proteins translation process (Milev et al., 2012).


Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers
Alaei-Mahabadi B, Bhadury J, Karlsson JW, Nilsson JA, Larsson E
Proc Natl Acad Sci U S A 2016 Nov 29;113(48):13768-13773
PMID 27856756
Recurrent chimeric fusion RNAs in non-cancer tissues and cells
Babiceanu M, Qin F, Xie Z, Jia Y, Lopez K, Janus N, Facemire L, Kumar S, Pang Y, Qi Y, Lazar IM, Li H
Nucleic Acids Res 2016 Apr 7;44(6):2859-72
PMID 26837576
Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex
Bec G, Kerjan P, Waller JP
Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation J Biol Chem
PMID 8294461
Regulation of peptide-chain elongation in mammalian cells
Browne GJ, Proud CG
Eur J Biochem 2002 Nov;269(22):5360-8
PMID 12423334
Characterisation of translation elongation factor eEF1B subunit expression in mammalian cells and tissues and co-localisation with eEF1A2
Cao Y, Portela M, Janikiewicz J, Doig J, Abbott CM
PLoS One 2014 Dec 1;9(12):e114117
PMID 25436608
EEF1D overexpression promotes osteosarcoma cell proliferation by facilitating Akt-mTOR and Akt-bad signaling
Cheng DD, Li SJ, Zhu B, Zhou SM, Yang QC
J Exp Clin Cancer Res 2018 Mar 6;37(1):50
PMID 29510727
Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8
De Bortoli M, Castellino RC, Lu XY, Deyo J, Sturla LM, Adesina AM, Perlaky L, Pomeroy SL, Lau CC, Man TK, Rao PH, Kim JY
BMC Cancer 2006 Sep 12;6:223
PMID 16968546
Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer
Erho N, Buerki C, Triche TJ, Davicioni E, Vergara IA
J Oncol 2012;2012:541353
PMID 22956952
EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma
Flores IL, Kawahara R, Miguel MC, Granato DC, Domingues RR, Macedo CC, Carnielli CM, Yokoo S, Rodrigues PC, Monteiro BV, Oliveira CE, Salmon CR, Nociti FH Jr, Lopes MA, Santos-Silva A, Winck FV, Coletta RD, Paes Leme AF
Clin Sci (Lond) 2016 May 1;130(10):785-99
PMID 26823560
Unbiased functional proteomics strategy for protein kinase inhibitor validation and identification of bona fide protein kinase substrates: application to identification of EEF1D as a substrate for CK2
Gyenis L, Duncan JS, Turowec JP, Bretner M, Litchfield DW
J Proteome Res 2011 Nov 4;10(11):4887-901
PMID 21936567
Identification of potential therapeutic targets in human head & neck squamous cell carcinoma
Han J, Kioi M, Chu WS, Kasperbauer JL, Strome SE, Puri RK
Head Neck Oncol 2009 Jul 14;1:27
PMID 19602232
The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers
Hassan MK, Kumar D, Naik M, Dixit M
PLoS One 2018 Jan 17;13(1):e0191377
PMID 29342219
Transcriptional-Readthrough RNAs Reflect the Phenomenon of "A Gene Contains Gene(s)" or "Gene(s) within a Gene" in the Human Genome, and Thus Are Not Chimeric RNAs
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ
Genes (Basel) 2018 Jan 16;9(1)
PMID 29337901
A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant
Hensen SM, Heldens L, van Genesen ST, Pruijn GJ, Lubsen NH
Cell Stress Chaperones 2013 Jul;18(4):455-73
PMID 23321918
An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene
Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A
Nature 2003 May 1;423(6935):91-6
PMID 12721631
The subunit structure of elongation factor 1 from Artemia
Janssen GM, van Damme HT, Kriek J, Amons R, Möller W
Why two alpha-chains in this complex? J Biol Chem 1994 Dec 16;269(50):31410-7
PMID 7989307
Three-dimensional reconstruction of the valyl-tRNA synthetase/elongation factor-1H complex and localization of the delta subunit
Jiang S, Wolfe CL, Warrington JA, Norcum MT
FEBS Lett 2005 Nov 7;579(27):6049-54
PMID 16229838
Oncogenic potential of mouse translation elongation factor-1 delta, a novel cadmium-responsive proto-oncogene
Joseph P, Lei YX, Whong WZ, Ong TM
J Biol Chem 2002 Feb 22;277(8):6131-6
PMID 11711542
Expression profile of eukaryotic translation factors in human cancer tissues and cell lines
Joseph P, O'Kernick CM, Othumpangat S, Lei YX, Yuan BZ, Ong TM
Mol Carcinog 2004 Jul;40(3):171-9
PMID 15224349
Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends
Jurca G, Addam O, Aksac A, Gao S, Özyer T, Demetrick D, Alhajj R
BMC Res Notes 2016 Apr 26;9:236
PMID 27112211
Transformation of eEF1Bδ into heat-shock response transcription factor by alternative splicing
Kaitsuka T, Tomizawa K, Matsushita M
EMBO Rep 2011 Jul 1;12(7):673-81
PMID 21597468
Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta
Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamanashi Y
J Virol 2003 Feb;77(4):2359-68
PMID 12551973
Proteomic analysis of multidrug-resistance mechanisms in adriamycin-resistant variants of DLKP, a squamous lung cancer cell line
Keenan J, Murphy L, Henry M, Meleady P, Clynes M
Proteomics 2009 Mar;9(6):1556-66
PMID 19242932
Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples
Kim J, Kim S, Ko S, In YH, Moon HG, Ahn SK, Kim MK, Lee M, Hwang JH, Ju YS, Kim JI, Noh DY, Kim S, Park JH, Rhee H, Kim S, Han W
Genes Chromosomes Cancer 2015 Nov;54(11):681-91
PMID 26227178
A comprehensive transcriptional portrait of human cancer cell lines
Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder J, Cao Y, Mukhyala K, Selvaraj SK, Yu M, Zynda GJ, Brauer MJ, Wu TD, Gentleman RC, Manning G, Yauch RL, Bourgon R, Stokoe D, Modrusan Z, Neve RM, de Sauvage FJ, Settleman J, Seshagiri S, Zhang Z
Nat Biotechnol 2015 Mar;33(3):306-12
PMID 25485619
eEF1B: At the dawn of the 21st century
Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O
Biochim Biophys Acta 2006 Jan-Feb;1759(1-2):13-31
PMID 16624425
Blocking the translation elongation factor-1 delta with its antisense mRNA results in a significant reversal of its oncogenic potential
Lei YX, Chen JK, Wu ZL
Teratog Carcinog Mutagen 2002;22(5):377-83
PMID 12210501
Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study
Liu K, Ren Y, Pang L, Qi Y, Jia W, Tao L, Hu Z, Zhao J, Zhang H, Li L, Yue H, Han J, Liang W, Hu J, Zou H, Yuan X, Li F
Int J Clin Exp Pathol 2015 Jul 1;8(7):8311-35
PMID 26339402
Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system
Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen CR
Biochem J 2002 Aug 1;365(Pt 3):669-76
PMID 11985494
The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders
McLachlan F, Sires AM, Abbott CM
Hum Mutat 2019 Feb;40(2):131-141
PMID 30370994
Characterization of staufen1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1
Milev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ
Front Microbiol 2012 Oct 25;3:367
PMID 23125841
Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF-1betagammadelta/ValRS) control the various functions of EF-1alpha
Minella O, Mulner-Lorillon O, Bec G, Cormier P, Bellé R
Biosci Rep 1998 Jun;18(3):119-27
PMID 9798784
Clinical significance of elongation factor-1 delta mRNA expression in oesophageal carcinoma
Ogawa K, Utsunomiya T, Mimori K, Tanaka Y, Tanaka F, Inoue H, Murayama S, Mori M
Br J Cancer 2004 Jul 19;91(2):282-6
PMID 15199388
Kinectin anchors the translation elongation factor-1 delta to the endoplasmic reticulum
Ong LL, Er CP, Ho A, Aung MT, Yu H
J Biol Chem 2003 Aug 22;278(34):32115-23
PMID 12773547
Introducing Potential Key Proteins and Pathways in Human Laryngeal Cancer: A System Biology Approach
Peyvandi H, Peyvandi AA, Safaei A, Zamanian Azodi M, Rezaei-Tavirani M
Iran J Pharm Res 2018 Winter;17(1):415-425
PMID 29755572
Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells
Piltti J, Häyrinen J, Karjalainen HM, Lammi MJ
Biorheology 2008;45(3-4):323-35
PMID 18836233
Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders
Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C, Uebe S, Ekici AB, Krumbiegel M, Zweier C, Hoyer J, Eberlein K, Bauer J, Scheller U, Strom TM, Hoffjan S, Abdelraouf ER, Meguid NA, Abboud A, Al Khateeb MA, Fakher M, Hamdan S, Ismael A, Muhammad S, Abdallah E, Sticht H, Wieczorek D, Reis A, Abou Jamra R
JAMA Psychiatry 2017 Mar 1;74(3):293-299
PMID 28097321
Immunofluorescence studies of human fibroblasts demonstrate the presence of the complex of elongation factor-1 beta gamma delta in the endoplasmic reticulum
Sanders J, Brandsma M, Janssen GM, Dijk J, Möller W
J Cell Sci 1996 May;109 ( Pt 5):1113-7
PMID 8743958
The human leucine zipper-containing guanine-nucleotide exchange protein elongation factor-1 delta
Sanders J, Raggiaschi R, Morales J, Möller W
Biochim Biophys Acta 1993 Jul 18;1174(1):87-90
PMID 8334168
Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors
Sanz-Pamplona R, Arags R, Driouch K, Martín B, Oliva B, Gil M, Boluda S, Fernández PL, Martínez A, Moreno V, Acebes JJ, Lidereau R, Reyal F, Van de Vijver MJ, Sierra A
Am J Pathol 2011 Aug;179(2):564-79
PMID 21708117
Rare variants in LRRK1 and Parkinson's disease
Schulte EC, Ellwanger DC, Dihanich S, Manzoni C, Stangl K, Schormair B, Graf E, Eck S, Mollenhauer B, Haubenberger D, Pirker W, Zimprich A, Brücke T, Lichtner P, Peters A, Gieger C, Trenkwalder C, Mewes HW, Meitinger T, Lewis PA, Klünemann HH, Winkelmann J
Neurogenetics 2014 Mar;15(1):49-57
PMID 24241507
Association study of copy number variation in BMP8A gene with the risk of ankylosing spondylitis in Iranian population
Shahba S, Jafari Shakib R, Jamshidi A, Vojdanian M, Akhtari M, Aslani S, Poursani S, Nikokar I, Mahmoudi M
J Cell Biochem 2018 Nov 28
Comparative proteomic study for profiling differentially expressed proteins between Chinese left- and right-sided colon cancers
Shen H, Huang J, Pei H, Zeng S, Tao Y, Shen L, Zeng L, Zhu H
Cancer Sci 2013 Jan;104(1):135-41
PMID 23004678
Recombinant subunits of mammalian elongation factor 1 expressed in Escherichia coli
Sheu GT, Traugh JA
Subunit interactions, elongation activity, and phosphorylation by protein kinase CKII J Biol Chem
PMID 9407120
Enhanced expression of translation factor mRNAs in hepatocellular carcinoma
Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Shichita M, Yamamoto N, Yamamoto M
Anticancer Res 2000 Jul-Aug;20(4):2489-94
PMID 10953316
Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis
Sinha P, Kohl S, Fischer J, Hütter G, Kern M, Köttgen E, Dietel M, Lage H, Schnölzer M, Schadendorf D
Electrophoresis 2000 Aug;21(14):3048-57
PMID 11001322
Genomic and phenotypic analysis of BRCA2 mutated breast cancers reveals co-occurring changes linked to progression
Stefansson OA, Jonasson JG, Olafsdottir K, Bjarnason H, Th Johannsson O, Bodvarsdottir SK, Valgeirsdottir S, Eyfjord JE
Breast Cancer Res 2011 Sep 29;13(5):R95
PMID 21958427
Integrative analysis of copy number alteration and gene expression profiling in ovarian clear cell adenocarcinoma
Sung CO, Choi CH, Ko YH, Ju H, Choi YL, Kim N, Kang SY, Ha SY, Choi K, Bae DS, Lee JW, Kim TJ, Song SY, Kim BG
Cancer Genet 2013 May;206(5):145-53
PMID 23726144
Identification of novel enriched recurrent chimeric COL7A1-UCN2 in human laryngeal cancer samples using deep sequencing
Tao Y, Gross N, Fan X, Yang J, Teng M, Li X, Li G, Zhang Y, Huang Z
BMC Cancer 2018 Mar 2;18(1):248
PMID 29499655
Biallelic loss of EEF1D function links heat shock response pathway to autosomal recessive intellectual disability
Ugur Iseri SA, Yucesan E, Tuncer FN, Calik M, Kesim Y, Altiokka Uzun G, Ozbek U
J Hum Genet 2019 May;64(5):421-426
PMID 30787422
Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma
Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A
Eur J Clin Invest 2011 Mar;41(3):269-76
PMID 20964681
The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci
Wain LV, Pedroso I, Landers JE, Breen G, Shaw CE, Leigh PN, Brown RH, Tobin MD, Al-Chalabi A
PLoS One 2009 Dec 4;4(12):e8175
PMID 19997636
Poly-gene fusion transcripts and chromothripsis in prostate cancer
Wu C, Wyatt AW, McPherson A, Lin D, McConeghy BJ, Mo F, Shukin R, Lapuk AV, Jones SJ, Zhao Y, Marra MA, Gleave ME, Volik SV, Wang Y, Sahinalp SC, Collins CC
Genes Chromosomes Cancer 2012 Dec;51(12):1144-53
PMID 22927308
Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1
Wu H, Shi Y, Lin Y, Qian W, Yu Y, Huo K
Mol Cell Biochem 2011 Nov;357(1-2):209-15
PMID 21633900
BMP-6 promotes E-cadherin expression through repressing deltaEF1 in breast cancer cells
Yang S, Du J, Wang Z, Yuan W, Qiao Y, Zhang M, Zhang J, Gao S, Yin J, Sun B, Zhu T
BMC Cancer 2007 Nov 13;7:211
PMID 17997862
The landscape and therapeutic relevance of cancer-associated transcript fusions
Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG
Oncogene 2015 Sep 10;34(37):4845-54
PMID 25500544
Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach
Zhang D, Chen P, Zheng CH, Xia J
Oncotarget 2016 Jan 26;7(4):4298-309
PMID 26735889
Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective
de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R
Neuro Oncol 2008 Dec;10(6):1040-60
PMID 18676356
Gene expression profiling predicts clinical outcome of breast cancer
van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH
Nature 2002 Jan 31;415(6871):530-6
PMID 11823860


This paper should be referenced as such :
Luigi Cristiano
EEF1D (eukaryotic translation elongation factor 1 delta)
Atlas Genet Cytogenet Oncol Haematol. 2020;24(3):117-135.
Free journal version : [ pdf ]   [ DOI ]

External links


HGNC (Hugo)EEF1D   3211
Entrez_Gene (NCBI)EEF1D    eukaryotic translation elongation factor 1 delta
AliasesEF-1D; EF1D; FP1047
GeneCards (Weizmann)EEF1D
Ensembl hg19 (Hinxton)ENSG00000104529 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000104529 [Gene_View]  ENSG00000104529 [Sequence]  chr8:143579694-143597415 [Contig_View]  EEF1D [Vega]
ICGC DataPortalENSG00000104529
TCGA cBioPortalEEF1D
Genatlas (Paris)EEF1D
SOURCE (Princeton)EEF1D
Genetics Home Reference (NIH)EEF1D
Genomic and cartography
GoldenPath hg38 (UCSC)EEF1D  -     chr8:143579694-143597415 -  8q24.3   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)EEF1D  -     8q24.3   [Description]    (hg19-Feb_2009)
GoldenPathEEF1D - 8q24.3 [CytoView hg19]  EEF1D - 8q24.3 [CytoView hg38]
Genome Data Viewer NCBIEEF1D [Mapview hg19]  
Gene and transcription
Genbank (Entrez)AF370363 AI366989 AK024550 AK093756 AK225040
RefSeq transcript (Entrez)NM_001130053 NM_001130054 NM_001130055 NM_001130056 NM_001130057 NM_001195203 NM_001289950 NM_001317743 NM_001330646 NM_001960 NM_032378
Consensus coding sequences : CCDS (NCBI)EEF1D
Gene ExpressionEEF1D [ NCBI-GEO ]   EEF1D [ EBI - ARRAY_EXPRESS ]   EEF1D [ SEEK ]   EEF1D [ MEM ]
Gene Expression Viewer (FireBrowse)EEF1D [ Firebrowse - Broad ]
GenevisibleExpression of EEF1D in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)1936
GTEX Portal (Tissue expression)EEF1D
Human Protein AtlasENSG00000104529-EEF1D [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP29692   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtP29692  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProP29692
Domaine pattern : Prosite (Expaxy)EF1BD_1 (PS00824)    EF1BD_2 (PS00825)   
Domains : Interpro (EBI)eEF-1beta-like_sf    EF-1_beta_acid_region_euk    EF1B_bsu/dsu_GNE    Transl_elong_EF1B/ribosomal_S6    Transl_elong_EF1B_B/D_CS   
Domain families : Pfam (Sanger)EF-1_beta_acid (PF10587)    EF1_GNE (PF00736)   
Domain families : Pfam (NCBI)pfam10587    pfam00736   
Domain families : Smart (EMBL)EF-1_beta_acid (SM01182)  EF1_GNE (SM00888)  
Conserved Domain (NCBI)EEF1D
PDB (RSDB)2MVM    2MVN    2N51    5JPO   
PDB Europe2MVM    2MVN    2N51    5JPO   
PDB (PDBSum)2MVM    2MVN    2N51    5JPO   
PDB (IMB)2MVM    2MVN    2N51    5JPO   
Structural Biology KnowledgeBase2MVM    2MVN    2N51    5JPO   
SCOP (Structural Classification of Proteins)2MVM    2MVN    2N51    5JPO   
CATH (Classification of proteins structures)2MVM    2MVN    2N51    5JPO   
AlphaFold pdb e-kbP29692   
Human Protein Atlas [tissue]ENSG00000104529-EEF1D [tissue]
Protein Interaction databases
IntAct (EBI)P29692
Ontologies - Pathways
Ontology : AmiGOfibrillar center  DNA binding  translation elongation factor activity  guanyl-nucleotide exchange factor activity  protein binding  nucleus  nucleoplasm  cytoplasm  endoplasmic reticulum  cytosol  cytosol  cytosol  eukaryotic translation elongation factor 1 complex  translational elongation  translational elongation  translation factor activity, RNA binding  positive regulation of I-kappaB kinase/NF-kappaB signaling  cadherin binding  regulation of catalytic activity  cellular response to ionizing radiation  
Ontology : EGO-EBIfibrillar center  DNA binding  translation elongation factor activity  guanyl-nucleotide exchange factor activity  protein binding  nucleus  nucleoplasm  cytoplasm  endoplasmic reticulum  cytosol  cytosol  cytosol  eukaryotic translation elongation factor 1 complex  translational elongation  translational elongation  translation factor activity, RNA binding  positive regulation of I-kappaB kinase/NF-kappaB signaling  cadherin binding  regulation of catalytic activity  cellular response to ionizing radiation  
Pathways : KEGGHerpes simplex infection   
REACTOMEP29692 [protein]
REACTOME PathwaysR-HSA-156842 [pathway]   
NDEx NetworkEEF1D
Atlas of Cancer Signalling NetworkEEF1D
Wikipedia pathwaysEEF1D
Orthology - Evolution
GeneTree (enSembl)ENSG00000104529
Phylogenetic Trees/Animal Genes : TreeFamEEF1D
Homologs : HomoloGeneEEF1D
Homology/Alignments : Family Browser (UCSC)EEF1D
Gene fusions - Rearrangements
Fusion : MitelmanEEF1D::TSTA3 [8q24.3/8q24.3]  
Fusion : QuiverEEF1D
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerEEF1D [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)EEF1D
Exome Variant ServerEEF1D
GNOMAD BrowserENSG00000104529
Varsome BrowserEEF1D
ACMGEEF1D variants
Genomic Variants (DGV)EEF1D [DGVbeta]
DECIPHEREEF1D [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisEEF1D 
ICGC Data PortalEEF1D 
TCGA Data PortalEEF1D 
Broad Tumor PortalEEF1D
OASIS PortalEEF1D [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICEEF1D  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DEEF1D
Mutations and Diseases : HGMDEEF1D
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
DgiDB (Drug Gene Interaction Database)EEF1D
DoCM (Curated mutations)EEF1D
CIViC (Clinical Interpretations of Variants in Cancer)EEF1D
NCG (London)EEF1D
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry EEF1D
NextProtP29692 [Medical]
Target ValidationEEF1D
Huge Navigator EEF1D [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTDEEF1D
Pharm GKB GenePA27647
Clinical trialEEF1D
DataMed IndexEEF1D
PubMed159 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Oct 8 21:16:44 CEST 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us