Note | EEF1D is a cellular proto-oncogene (Joseph et al., 2002) and it is involved in many and heterogeneous genomic translocations in different kind of tumors with also the creation of numerous fusion gene (Table.4). An increase of its expression level has an oncogenic potential with resulting in cell transformation (Lei et al., 2002) and this was observed in many cancer types (Hassan et al., 2018). In addition, the use of antisense mRNA to block EEF1D translation can revert its oncogenic potential (Lei et al., 2002). These data could suggest its role as a potential diagnostic indicator and prognostic marker in tumors (Joseph et al., 2002). Name | 5' end | 3' end | Loc1 | Loc2 | Description | Type | Disease | Organ | Code | Ref. | ACSF2/EEF1D | ACSF2 | EEF1D | 17q21.33 | 8q24.3 | t(8;17)(q24;q21) | Translocation | (?) | - | - | - | AGO2/EEF1D | AGO2 | EEF1D | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | (?) | - | - | - | ASAP1/EEF1D | ASAP1 | EEF1D | 8q24.21 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | (?) | - | - | - | ASB8/EEF1D | ASB8 | EEF1D | 12q13.11 | 8q24.3 | t(8;12)(q24;q13) | Translocation | (?) | - | - | - | ATXN1/EEF1D | ATXN1 | EEF1D | 6p22.3 | 8q24.3 | t(6;8)(p22;q24) | Translocation | (?) | - | - | - | B2M/EEF1D | B2M | EEF1D | 15q21.1 | 8q24.3 | t(8;15)(q24;q21) | Translocation | (?) | - | - | - | BOD1L1/EEF1D | BOD1L1 | EEF1D | 4p15.33 | 8q24.3 | t(4;8)(p15;q24) | Translocation | (?) | - | - | - | C19ORF10/EEF1D | C19ORF10 | EEF1D | 19p13.3 | 8q24.3 | t(8;19)(q24;p13) | Translocation | (?) | - | - | - | CAPN15/EEF1D | CAPN15 | EEF1D | 16p13.3 | 8q24.3 | t(8;16)(q24;p13) | Translocation | (?) | - | - | - | CBX7/EEF1D | CBX7 | EEF1D | 22q13.1 | 8q24.3 | t(8;22)(q24;q13) | Translocation | (?) | - | - | - | CHN2/EEF1D | CHN2 | EEF1D | 7p14.3 | 8q24.3 | t(7;8)(p14;q24) | Translocation | (?) | - | - | - | CLPS/EEF1D | CLPS | EEF1D | 6p21.31 | 8q24.3 | t(6;8)(p21;q24) | Translocation | (?) | - | - | - | CLTB/EEF1D | CLTB | EEF1D | 5q35.2 | 8q24.3 | t(5;8)(q35;q24) | Translocation | (?) | - | - | - | CMSS1/EEF1D | CMSS1 | EEF1D | 3q12.1 | 8q24.3 | t(3;8)(q12;q24) | Translocation | (?) | - | - | - | COLGALT1/EEF1D | COLGALT1 | EEF1D | 19p13.11 | 8q24.3 | t(8;19)(q24;p13) | Translocation | (?) | - | - | - | CRY1/EEF1D | CRY1 | EEF1D | 12q23.3 | 8q24.3 | t(8;12)(q24;q23) | Translocation | (?) | - | - | - | CTDP1/EEF1D | CTDP1 | EEF1D | 18q23 | 8q24.3 | t(8;18)(q24;q23) | Translocation | (?) | - | - | - | CTTN/EEF1D | CTTN | EEF1D | 11q13.3 | 8q24.3 | t(8;11)(q24;q13) | Translocation | (?) | - | - | - | DDX23/EEF1D | DDX23 | EEF1D | 12q13.12 | 8q24.3 | t(8;12)(q24;q13) | Translocation | (?) | - | - | - | DDX5/EEF1D | DDX5 | EEF1D | 17q23.3 | 8q24.3 | t(8;17)(q24;q23) | Translocation | (?) | - | - | - | EEF1D/ANKRD19P | EEF1D | ANKRD19P | 8q24.3 | 9q22.31 | t(8;9)(q24;q22) | Translocation | Adenocarcinoma | Stomach | STAD | - | EEF1D/CALR | EEF1D | CALR | 8q24.3 | 19p13.13 | t(8;19)(q24;p13) | Translocation | - | Cell line | MCF10 | Babiceanu et al.,2016 | EEF1D/CKB | EEF1D | CKB | 8q24.3 | 14q32.33 | t(8;14)(q24;q32) | Translocation | (?) | - | - | - | EEF1D/DUSP28 | EEF1D | DUSP28 | 8q24.3 | 2q37.3 | t(2;8)(q37;q24) | Translocation | (?) | - | - | - | EEF1D/EEF1DP1 | EEF1D | EEF1DP1 | 8q24.3 | 19p13.12 | t(8;19)(q24;p13) | Translocation | (?) | - | - | - | EEF1D/EEF1DP5 | EEF1D | EEF1DP5 | 8q24.3 | 6q22.33 | t(6;8)(q22;q24) | Translocation | (?) | - | - | - | EEF1D/GSDMB | EEF1D | GSDMB | 8q24.3 | 17q12 | t(8;17)(q24;q12) | Translocation | (?) | - | - | - | EEF1D/KRT4 | EEF1D | KRT4 | 8q24.3 | 12q13.13 | t(8;12)(q24;q13) | Translocation | - | Esophagus | - | Babiceanu et al.,2016 | EEF1D/KRT5 | EEF1D | KRT5 | 8q24.3 | 12q13.13 | t(8;12)(q24;q13) | Translocation | Squamous Cell Carcinoma | Head and Neck | HNSC | Klijn et al., 2015 | EEF1D/KRT6A | EEF1D | KRT6A | 8q24.3 | 12q13.13 | t(8;12)(q24;q13) | Translocation | Squamous Cell Carcinoma | Head and Neck | HNSC | Klijn et al., 2015 | EEF1D/KRT10 | EEF1D | KRT10 | 8q24.3 | 17q21.2 | t(8;17)(q24;q21) | Translocation | - | Skin | - | Babiceanu et al.,2016 | EEF1D/KRT14 | EEF1D | KRT14 | 8q24.3 | 17q21.2 | t(8;17)(q24;q21) | Translocation | Squamous Cell Carcinoma | Uterine cervix | CESC | Alaei-Mahabadi et al., 2016 | EEF1D/LSP1 | EEF1D | LSP1 | 8q24.3 | 11p15.5 | t(8;11)(q24;p15) | Translocation | (?) | - | - | - | EEF1D/MAN2C1 | EEF1D | MAN2C1 | 8q24.3 | 15q24.2 | t(8;15)(q24;q24) | Translocation | (?) | - | - | - | EEF1D/NAPRT | EEF1D | NAPRT | 8q24.3 | 8q24.3 | Readthrough transcription | Fusion gene | - | Cell line | ESC | Babiceanu et al.,2016 | MCF10 | Burkitt lymphoma | Blood | BL | - | Hepatocellular carcinoma | Liver | LIHC | - | Laryngeal cancer | Head and Neck | HNSC | Tao et al., 2018 | EEF1D/NFKBIB | EEF1D | NFKBIB | 8q24.3 | 19q13.2 | t(8;19)(q24;q13) | Translocation | (?) | - | - | - | EEF1D/PARK2 | EEF1D | PARK2 | 8q24.3 | 6q26 | t(6;8)(q26;q24) | Translocation | (?) | - | - | - | EEF1D/PNLIP | EEF1D | PNLIP | 8q24.3 | 10q25.3 | t(8;10)(q24;q25) | Translocation | (?) | - | - | - | EEF1D/PUF60 | EEF1D | PUF60 | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | Serous Cystadenocarcinoma | Ovary | OVSC | - | EEF1D/RNF2 | EEF1D | RNF2 | 8q24.3 | 1q25.3 | t(1;8)(q25;q24) | Translocation | (?) | - | - | - | EEF1D/RYR1 | EEF1D | RYR1 | 8q24.3 | 19q13.2 | t(8;19)(q24;q13) | Translocation | (?) | - | - | - | EEF1D/SDC4 | EEF1D | SDC4 | 8q24.3 | 20q13.12 | t(8;20)(q24;q13) | Translocation | Adenocarcinoma | Prostate | PRAD | Wu et al., 2012 | EEF1D/SFTPC | EEF1D | SFTPC | 8q24.3 | 8p21.3 | t(8;8)(q24;p21) | Fusion gene | (?) | - | - | - | EEF1D/SPIB | EEF1D | SPIB | 8q24.3 | 19q13.33 | t(8;19)(q24;q13) | Translocation | Burkitt lymphoma | Blood | BL | - | EEF1D/TG | EEF1D | TG | 8q24.3 | 8q24.22 | t(8;8)(q24;q24) | Fusion gene | Thyroid carcinoma | Thyroid | THCA | - | EEF1D/TSNARE1 | EEF1D | TSNARE1 | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | Serous Cystadenocarcinoma | Ovary | OVSC | - | EEF1D/TSTA3 | EEF1D | TSTA3 | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | Adenocarcinoma | Lung | LUAD | Yoshihara et al 2015 | EEF1D/UBE2L3 | EEF1D | UBE2L3 | 8q24.3 | 22q11.21 | t(8;22)(q24;q11) | Translocation | (?) | - | - | - | EEF1D/ZBTB7A | EEF1D | ZBTB7A | 8q24.3 | 19p13.3 | t(8;19)(q24;p13) | Translocation | (?) | - | - | - | EEF1D/ZC3H3 | EEF1D | ZC3H3 | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | (?) | - | - | - | FAM104A/EEF1D | FAM104A | EEF1D | 17q25.1 | 8q24.3 | t(8;17)(q24;q25) | Translocation | - | Cell line | COLO794 | Klijn et al., 2015 | FAM222B/EEF1D | FAM222B | EEF1D | 17q11.2 | 8q24.3 | t(8;17)(q24;q11) | Translocation | (?) | - | - | - | FLCN/EEF1D | FLCN | EEF1D | 17p11.2 | 8q24.3 | t(8;17)(q24;p11) | Translocation | (?) | - | - | - | HDAC5/EEF1D | HDAC5 | EEF1D | 17q21.31 | 8q24.3 | t(8;17)(q24;q21) | Translocation | Burkitt lymphoma | Blood | BL | - | HIF1A/EEF1D | HIF1A | EEF1D | 14q23.2 | 8q24.3 | t(8;14)(q24;q23) | Translocation | - | Cell line | OVTOKO | Klijn et al., 2015 | HIF3A/EEF1D | HIF3A | EEF1D | 19q13.32 | 8q24.3 | t(8;19)(q24;q13) | Translocation | (?) | - | - | - | HRH1/EEF1D | HRH1 | EEF1D | 3p25.3 | 8q24.3 | t(3;8)(p25;q24) | Translocation | (?) | - | - | - | IGLL5/EEF1D | IGLL5 | EEF1D | 22q11.22 | 8q24.3 | t(8;22)(q24;q11) | Translocation | - | Cell line | MOLP-8 | Klijn et al., 2015 | Adenocarcinoma | Stomach | STAD | IL4R/EEF1D | IL4R | EEF1D | 16p12.1 | 8q24.3 | t(8;16)(q24;p12) | Translocation | (?) | - | - | - | IRF3/EEF1D | IRF3 | EEF1D | 19q13.33 | 8q24.3 | t(8;19)(q24;q13) | Translocation | (?) | - | - | - | KRT13/EEF1D | KRT13 | EEF1D | 17q21.2 | 8q24.3 | t(8;17)(q24;q21) | Translocation | - | Esophagus | - | Babiceanu et al.,2016 | LGR6/EEF1D | LGR6 | EEF1D | 1q32.1 | 8q24.3 | t(1;8)(q32;q24) | Translocation | (?) | - | - | - | METRNL/EEF1D | METRNL | EEF1D | 17q25.3 | 8q24.3 | t(8;17)(q24;q25) | Translocation | (?) | - | - | - | MGRN1/EEF1D | MGRN1 | EEF1D | 16p13.3 | 8q24.3 | t(8;16)(q24;p13) | Translocation | (?) | - | - | - | NCAM1/EEF1D | NCAM1 | EEF1D | 11q23.2 | 8q24.3 | t(8;11)(q24;q23) | Translocation | (?) | - | - | - | NID1/EEF1D | NID1 | EEF1D | 1q42.3 | 8q24.3 | t(1;8)(q42;q24) | Translocation | (?) | - | - | - | OAZ1/EEF1D | OAZ1 | EEF1D | 19p13.3 | 8q24.3 | t(8;19)(q24;p13) | Translocation | (?) | - | - | - | OGG1/EEF1D | OGG1 | EEF1D | 3p25.3 | 8q24.3 | t(3;8)(p25;q24) | Translocation | - | Cell line | ES2-TO | Klijn et al., 2015 | OPLAH/EEF1D | OPLAH | EEF1D | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | Adenocarcinoma | Stomach | STAD | - | PLA2G6/EEF1D | PLA2G6 | EEF1D | 22q13.1 | 8q24.3 | t(8;22)(q24;q13) | Translocation | Adenocarcinoma | Breast | BRCA | - | PLIN5/EEF1D | PLIN5 | EEF1D | 19p13.3 | 8q24.3 | t(8;19)(q24;p13) | Translocation | (?) | - | - | - | PMF1/EEF1D | PMF1 | EEF1D | 1q22 | 8q24.3 | t(1;8)(q22;q24) | Translocation | - | Cell line | RT4 | Klijn et al., 2015 | POLI/EEF1D | POLI | EEF1D | 18q21.2 | 8q24.3 | t(8;18)(q24;q21) | Translocation | (?) | - | - | - | POU2F1/EEF1D | POU2F1 | EEF1D | 1q24.2 | 8q24.3 | t(1;8)(q24;q24) | Translocation | (?) | - | - | - | PSMB7/EEF1D | PSMB7 | EEF1D | 9q33.3 | 8q24.3 | t(8;9)(q24;q33) | Translocation | (?) | - | - | - | PTP4A3/EEF1D | PTP4A3 | EEF1D | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | (?) | - | - | - | RAB3GAP1/EEF1D | RAB3GAP1 | EEF1D | 2q21.3 | 8q24.3 | t(2;8)(q21;q24) | Translocation | (?) | - | - | - | RAB40C/EEF1D | RAB40C | EEF1D | 16p13.3 | 8q24.3 | t(8;16)(q24;p13) | Translocation | (?) | - | - | - | RCC1/EEF1D | RCC1 | EEF1D | 1p35.3 | 8q24.3 | t(1;8)(p35;q24) | Translocation | (?) | - | - | - | RILPL2/EEF1D | RILPL2 | EEF1D | 12q24.31 | 8q24.3 | t(8;12)(q24;q24) | Translocation | (?) | - | - | - | RNF14/EEF1D | RNF14 | EEF1D | 5q31.3 | 8q24.3 | t(5;8)(q31;q24) | Translocation | (?) | - | - | - | RNF44/EEF1D | RNF44 | EEF1D | 5q35.2 | 8q24.3 | t(5;8)(q35;q24) | Translocation | (?) | - | - | - | RPL30 /EEF1D | RPL30 | EEF1D | 8q22.2 | 8q24.3 | t(8;8)(q22;q24) | Fusion gene | Adenocarcinoma | Breast | BRCA | - | RPL36AL/EEF1D | RPL36AL | EEF1D | 14q21.3 | 8q24.3 | t(8;14)(q24;q21) | Fusion gene | (?) | - | - | - | RPS9/EEF1D | RPS9 | EEF1D | 19q13.42 | 8q24.3 | t(8;19)(q24;q13) | Translocation | Burkitt lymphoma | Blood | BL | - | RSAD1/EEF1D | RSAD1 | EEF1D | 17q21.33 | 8q24.3 | t(8;17)(q24;q21) | Translocation | (?) | - | - | - | SCRIB/EEF1D | SCRIB | EEF1D | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | Serous Cystadenocarcinoma | Ovary | OVSC | - | SCYL1/EEF1D | SCYL1 | EEF1D | 11q13.1 | 8q24.3 | t(8;11)(q24;q13) | Translocation | (?) | - | - | - | SH2B2/EEF1D | SH2B2 | EEF1D | 7q22.1 | 8q24.3 | t(7;8)(q22;q24) | Translocation | Burkitt lymphoma | Blood | BL | - | SMYD3/EEF1D | SMYD3 | EEF1D | 1q44 | 8q24.3 | t(1;8)(q44;q24) | Translocation | (?) | - | - | - | SORBS1/EEF1D | SORBS1 | EEF1D | 10q24.1 | 8q24.3 | t(8;10)(q24;q24) | Translocation | (?) | - | - | - | SORT1 /EEF1D | SORT1 | EEF1D | 1p13.3 | 8q24.3 | t(1;8)(p13;q24) | Translocation | (?) | - | - | - | SPIB/EEF1D | SPIB | EEF1D | 19q13.33 | 8q24.3 | t(8;19)(q24;q13) | Translocation | Burkitt lymphoma | Blood | BL | - | ST3GAL1/EEF1D | ST3GAL1 | EEF1D | 8q24.22 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | (?) | - | - | - | TATDN1/EEF1D | TATDN1 | EEF1D | 8q24.13 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | Adenocarcinoma | Breast | BRCA | - | TMEM99/EEF1D | TMEM99 | EEF1D | 17q21.2 | 8q24.3 | t(8;17)(q24;q21) | Translocation | (?) | - | - | - | TMLHE/EEF1D | TMLHE | EEF1D | Xq28 | 8q24.3 | t(X;8)(q28;q24) | Translocation | (?) | - | - | - | TOP2B/EEF1D | TOP2B | EEF1D | 3p24.2 | 8q24.3 | t(3;8)(p24;q24) | Translocation | (?) | - | - | - | TP53I3/EEF1D | TP53I3 | EEF1D | 2p23.3 | 8q24.3 | t(2;8)(p23;q24) | Translocation | (?) | - | - | - | TP53TG5/EEF1D | TP53TG5 | EEF1D | 20q13.12 | 8q24.3 | t(8;20)(q24;q13) | Translocation | (?) | - | - | - | TTC21B/EEF1D | TTC21B | EEF1D | 2q24.3 | 8q24.3 | t(2;8)(q24;q24) | Translocation | (?) | - | - | - | TTLL3/EEF1D | TTLL3 | EEF1D | 3p25.3 | 8q24.3 | t(3;8)(p25;q24) | Translocation | Carcinoma | Esophagus | ESCA | - | UBAP2/EEF1D | UBAP2 | EEF1D | 9p13.3 | 8q24.3 | t(8;9)(q24;p13) | Translocation | (?) | - | - | - | UBE2G1/EEF1D | UBE2G1 | EEF1D | 17p13.2 | 8q24.3 | t(8;17)(q24;p13) | Translocation | (?) | - | - | - | UFM1/EEF1D | UFM1 | EEF1D | 13q13.3 | 8q24.3 | t(8;13)(q24;q13) | Translocation | Adenocarcinoma | Colon | COAD | - | XRN2/EEF1D | XRN2 | EEF1D | 20p11.23 | 8q24.3 | t(8;20)(q24;p11) | Translocation | (?) | - | - | - | ZC3H3/EEF1D | ZC3H3 | EEF1D | 8q24.3 | 8q24.3 | t(8;8)(q24;q24) | Fusion gene | - | Bone marrow | - | Babiceanu et al.,2016 | Cell line | Ca Ski | Klijn et al., 2015 | Carcinoma | Esophagus | ESCA | - | ZG16B/EEF1D | ZG16B | EEF1D | 16p13.3 | 8q24.3 | t(8;16)(q24;p13) | Translocation | (?) | - | - | - | ZNF146/EEF1D | ZNF146 | EEF1D | 19q13.12 | 8q24.3 | t(8;19)(q24;q13) | Translocation | (?) | - | - | - | ZNF232/EEF1D | ZNF232 | EEF1D | 17p13.2 | 8q24.3 | t(8;17)(q24;p13) | Translocation | (?) | - | - | - | ZNF429/EEF1D | ZNF429 | EEF1D | 19p12 | 8q24.3 | t(8;19)(q24;p12) | Translocation | (?) | - | - | - | ZNF608/EEF1D | ZNF608 | EEF1D | 5q23.2 | 8q24.3 | t(5;8)(q23;q24) | Translocation | (?) | - | - | - | |
Table.4 EEF1D rearrangements: translocations and fusion genes (reworked from ps://www.ncbi.nlm.nih.gov/homologene; http://www.tumorfusions.org; https://cgap.nci.nih.gov/Chromosomes; http://quiver.archerdx.com; http://atlasgeneticsoncology.org//Bands/8q24.html#REFERENCES; https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html) [ (?) ] unknown; [ - ] no reference |
| |
Entity | Amyotrophic lateral sclerosis (ALS) |
Note | EEF1D is a potential candidate gene associated with ALS (Wain et al., 2009) but more studies are needed to clarify its effective contribution. |
| |
| |
Entity | Bladder cancer |
Note | There are no data about EEF1D expression alterations in bladder cancer. However, it was reported the translocation t(1;8)(q22;q24) PMF1/EEF1D (Klijn et al., 2015). |
Hybrid/Mutated Gene | The t(1;8)(q22;q24) PMF1/EEF1D was detected in bladder transitional-cell carcinoma RT4 cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "polyamine modulated factor 1" ( PMF1) gene at 5'-end with EEF1D gene at 3' end. There are no data about its chimeric transcript or protein and the role of this genomic alteration is poorly understood. |
| |
| |
Entity | Brain and central nervous system (CNS) cancers |
Note | EEF1D is found to be overexpressed in astrocytoma and in glioblastoma samples and also in low-risk patients. This may associate its expression to favourable survival outcome (Hassan et al., 2018). |
| |
| |
Entity | Breast cancer |
Note | EEF1D is involved in breast cancer (Jurca et al., 2016). In fact, was detected an EEF1D gene copy number gain in BT483, EFM19, HCC1143, HCC1395, HCC1569, HCC1806, HCC1937, HCC2157, HCC2218, HDQP1, MDAMB436 and UACC893 breast cancer cell lines and in about 10% of breast invasive carcinoma donor samples (http://www.oasis-genomics.org/). EEF1D was found overexpressed in T-47, MCF-7, MDA-MB-361 and MDA-MB-453 breast cancer cell lines (Joseph et al., 2004). It is also overexpressed in breast cancer samples and this predicted worse relapse-free survival (RFS) in luminal A subtype patients and poor overall survival (OS) and RFS in basal subtype (Hassan et al., 2018). Some authors have found an EEF1D downregulation in ER+/ER- cancer cell lines and in human breast cancer samples when high levels of bone morphogenetic protein-6 ( BMP6) are expressed (Yang et al., 2007). This seems to be linked with the prevention of eEF1D-induced breast cancer metastasis. In fact, EEF1D is a candidate protein marker of human brain metastasis in primary breast tumors (Sanz-Pamplona et al., 2011; van't Veer et al., 2002). In addition, some fusion genes and genomic translocations were reported (https://fusionhub.persistent.co.in/home.html). |
Hybrid/Mutated Gene | The translocation t(8;22)(q24;q13) PLA2G6/EEF1D was found in breast carcinoma (BRCA) and consists by the fusion of 'phospholipase A2 group VI' (< CC: TXT: PLA2G6 ID: 45836>) gene at 5'-end with EEF1D gene at 3' end. In addition, other uncharacterized and rare rearrangements due to the translocation t(8;8)(q24;q24) are reported, i.e. the RPL30 /EEF1D and TATDN1/EEF1D fusion genes (https://fusionhub.persistent.co.in/home.html). In particular, the t(8;8)(q24;q24) RPL30 /EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of RPL30 joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimerseq_link.cdb?gene_pair=RPL30_EEF1D), while the t(8;8)(q24;q24) TATDN1/EEF1D brings to the formation of a transcript composed by the exon 1 of TATDN1 joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimerseq_link.cdb?gene_pair=TATDN1_EEF1D). Despite what has just been said, these genomic alterations are still poorly understood. |
| |
| |
Entity | Chondrosarcoma |
Note | The human chondrosarcoma cells are able to respond to mechanical stimuli, like cellular stretching, with different phosphorylation events. Increase of phosphorylations impacts also on the EEF1D protein. It is unclearly the significance or the effect on the cell of these phosphorylations as also if these changes may affect the level or speed of protein synthesis (Pitti et al., 2008). |
| |
| |
Entity | Colorectal cancer |
Note | It was detected an EEF1D gene copy number gain in LS123 and RKO colorectal cancer cell lines and in about 5% of colon adenocarcinoma donor samples (http://www.oasis-genomics.org/). In addition, EEF1D transcript is found to be significantly overexpressed (Hassan et al., 2018), especially in the right-sided colon cancer (RSCC) respect left-sided colon cancer (LSCC) samples (Shen et al., 2013). It was reported the translocation t(8;13)(q24;q13) UFM1/EEF1D (https://fusionhub.persistent.co.in/home.html). |
Hybrid/Mutated Gene | The t(8;13)(q24;q13) UFM1/EEF1D was found in colon adenocarcinoma. This rearrangement is originated by the fusion of 'ubiquitin fold modifier 1' ( UFM1) gene at 5'-end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown. |
| |
| |
Entity | Gastric cancer |
Note | It was detected an EEF1D gene copy number gain in 2313287, LMSU, MKN1, SNU5, SNU216, SNU601 and SNU668 gastric cancer cell lines (http://www.oasis-genomics.org/) but it was found down-expressed in gastric cancer samples (Hassan et al., 2018). Some fusion genes and genomic translocation are reported (Klijn et al., 2015; https://fusionhub.persistent.co.in/home.html). |
Hybrid/Mutated Gene | The t(8;22)(q24;q11) IGLL5/EEF1D was found in gastric adenocarcinoma samples (Klijn et al., 2015) and consists by the fusion of 'immunoglobulin lambda-like polypeptide 5' ( IGLL5) gene at 5'-end with EEF1D gene at 3' end. In addition, other uncharacterized and rare rearrangements are reported, i.e. OPLAH/EEF1D fusion gene and t(8;9)(q24;q22) EEF1D/ANKRD19P (https://fusionhub.persistent.co.in/home.html). In particular, the t(8;9)(q24;q22) EEF1D/ANKRD19P brings to the formation of a new chimeric gene with a transcript formed by the exons 1 to 5 of EEF1D joined with exon 10 of 'ankyrin repeat domain 19 pseudogene' ( ANKRD19P). The protein resulting from this rearrangement lacks the GEF domain in the C-terminal (http://203.255.191.229:8080/chimerdbv31/chimerseq_link.cdb?gene_pair=EEF1D_ANKRD19P). Despite what has just been said, these genomic alterations are still poorly understood. |
| |
| |
Entity | Head and neck squamous cell carcinoma (HNSC) |
Note | EEF1D gene was found up-regulated in head and neck squamous cell carcinoma (HNSC) (Hassan et al., 2018; Han et al., 2009). In particular, Flores and colleagues (Flores et al., 2016) detected its overexpression in oral squamous cell carcinoma (OSCC) respect to oral healthy mucosa. It could have a critical role both in cell proliferation and in epithelial-mesenchymal transition (EMT). In fact, EEF1D knockdown shown a decrease in cell cycle rate and proliferation. Some fusion genes and genomic translocation are reported (Klijn et al., 2015). In addition, EEF1D was found up-regulated in human laryngeal cancer (Peyvandi et al., 2018) and was found an intrachromosomal translocation with the formation of a chimeric fusion gene between EEF1D and NAPRT1 genes in laryngeal cancer (Tao et al., 2018). |
Hybrid/Mutated Gene | The t(8;12)(q24;q13) EEF1D/KRT5 and the t(8;12)(q24;q13) EEF1D/KRT6A were found in head and neck squamous cell carcinoma (HNSC) samples with the production of chimeric genes originated by the fusion of EEF1D at 5'-end with 'keratin 5' ( KRT5) or 'keratin 6A' ( KRT6A) genes at 3' end (Klijn et al., 2015). In addition, it was detected in laryngeal cancer the fusion gene 5' EEF1D - 3' NAPRT (Tao et al., 2018) that is probably originated by readthrough transcription, a known mechanism into the cell (He et al., 2018). In fact, EEF1D and NAPRT1 are two neighboring genes on the same chromosome. The roles of all these genomic alterations are unknown. |
| |
| |
Entity | Kidney cancer |
Note | High EEF1D mRNA levels were found in renal Wilms tumor and in clear cell carcinoma (Hassan et al., 2018). Some authors have detected missense mutations of EEF1D in papillary renal cell carcinoma (PRCC)(Liu et al., 2015). These mutations could contribute to the pathogenic mechanism for PRCC but more studies are necessary. |
| |
| |
Entity | Liver cancer |
Note | EEF1D was found overexpressed in moderately to poorly differentiated (M/P-) primary human hepatocellular carcinoma (HCC) tissues (Hassan et al., 2018; Shuda et al., 2000). In addition, it was found the EEF1D/NAPRT fusion gene (https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html). |
Hybrid/Mutated Gene | The EEF1D/NAPRT fusion gene was found in hepatocellular carcinoma (LIHC). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with 'nicotinate phosphoribosyltransferase domain containing 1' (NAPRT) gene at 3' end and it is probably due to readthrough transcription. In fact, EEF1D and NAPRT1 are two neighboring genes on the same chromosome. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown. |
| |
| |
Entity | Lung cancer |
Note | EEF1D was found to be down-expressed in lung carcinoid tumor and not shows any correlation with survival parameters (Hassan et al., 2018). It was also found down-expressed in adriamycin-resistant variants of DLKP squamous lung cancer cell line (Keenan et al., 2009). On the contrary, other authors found overexpression of EEF1D mRNA in some adenocarcinoma of the lung and squamous lung cell carcinoma tissue samples (Varemieva et al., 2014). In addition, eEF1D was found both in the cytoplasm and in the nucleus of lung adenocarcinoma A549 cell line (Varemieva et al., 2014) and the EEF1D/TSTA3 fusion gene was reported for lung adenocarcinoma (LUAD)(Yoshihara et al 2015). |
Hybrid/Mutated Gene | The EEF1D/TSTA3 fusion gene was found in lung adenocarcinoma (LUAD) samples (Yoshihara et al 2015). This rearrangement is originated by t(8;8)(q24;q24) i.e. from the fusion of EEF1D gene at 5'-end with 'tissue specific transplantation antigen P35B' ( TSTA3) gene at 3' end. In particular, this rearrangement brings to the formation of a transcript composed by the exon 1 of EEF1D joined with exons 4 to 11 of TSTA3 (http://203.255.191.229:8080/chimerdbv31/chimerseq_link.cdb?gene_pair=EEF1D_TSTA3). Despite what has just been said, this genomic alteration is still poorly understood. |
| |
| |
Entity | Lymphoma and other blood cancers |
Note | EEF1D is significantly overexpressed in different lymphoma subtypes, i.e. ALK-negative/ ALK positive anaplastic large cell lymphomas, Hodgkin's lymphoma, acute adult T-cell leukaemia/lymphoma, Burkitt's lymphoma, follicular lymphoma and diffuse large B-cell lymphoma (Hassan et al., 2018). Some fusion genes and genomic translocation were reported (Klijn et al., 2015; https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html). |
Cytogenetics | The t(8;19)(q24;q13) EEF1D/ SPIB, t(8;17)(q24;q21) HDAC5/EEF1D, t(8;19)(q24;q13) RPS9/EEF1D, t(7;8)(q22;q24) SH2B2/EEF1D, t(8;19)(q24;q13) SPIB/EEF1D translocations and EEF1D/NAPRT fusion gene were reported for Burkitt's lymphoma (BL). In addition, the t(8;22)(q24;q11) IGLL5/EEF1D was observed in multiple myeloma MOLP-8 cell line (Klijn et al., 2015). There are no data about the respective chimeric transcripts or proteins and the role of these genomic alterations is unknown. |
| |
| |
Entity | Medulloblastoma / Ependymoma |
Note | EEF1D is overexpressed in medulloblastoma samples and it is adversely associated with overall and progression-free survival regardless of cytogenetic profile (De Bortoli et al., 2006). In addition, EEF1D was found highly expressed in ependymoma and this is related to poor outcome (de Bont et al., 2008). |
| |
| |
Entity | Melanoma |
Note | EEF1D was found overexpressed in human chemoresistant melanoma cell lines (Sinha et al., 2000) and it was reported the translocation t(8;17)(q24;q25) FAM104A/EEF1D (Klijn et al., 2015). |
Hybrid/Mutated Gene | The t(8;17)(q24;q25) FAM104A/EEF1D was reported in COLO794 cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "family with sequence similarity 104 member A" ( FAM104A) gene at 5'-end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown. |
| |
| |
Entity | Neurological and neurodevelopmental disorders |
Note | Mutations of EEF1D are involved in neurodevelopmental abnormalities, severe intellectual disability (ID) and microcephaly (McLachlan et al., 2018; Reuter et al., 2017). In particular, some authors identified a pathogenic variant of EEF1DL that could be a candidate for the autosomal recessive ID (ARID) due to its loss of function (Ugur Iseri et al., 2019). In addition, also the interaction between eEF1D and SIAH1 could impact on the initiation of neurodegenerative diseases when eEF1D is over-expressed (Wu et al., 2011). |
| |
| |
Entity | Oesophageal carcinoma |
Note | It was detected an EEF1D gene copy number gain in TE8, TE10 and TE11 oesophageal cancer cell lines (http://www.oasis-genomics.org/) and an EEF1D overexpression in oesophageal carcinoma and cardioesophageal carcinoma samples respect noncancerous ones (Veremieva et al., 2011; Ogawa et al., 2004). In addition, it was found a significant correlation between EEF1D overexpression and advanced disease stages and also lymph node metastasis and this correlates with poor prognosis (Ogawa et al., 2004). Some fusion genes and genomic translocation are reported (Babiceanu et al.,2016; https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html). |
Hybrid/Mutated Gene | The t(3;8)(p25;q24) TTLL3/EEF1D, t(8;17)(q24;q21) KRT13/EEF1D, t(8;12)(q24;q13) EEF1D/KRT4 translocations and ZC3H3/EEF1D fusion gene were reported in oesophageal carcinoma (ESCA). In particular, the t(3;8)(p25;q24) TTLL3/EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of "tubulin tyrosine ligase like 3" ( TTLL3) joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimerseq_link.cdb?gene_pair=TTLL3_EEF1D), while the t(8;8)(q24;q24) ZC3H3/EEF1D brings to the formation of a transcript composed by the exon 1 of "zinc finger CCCH-type containing 3" ( ZC3H3) joined with exons 4 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimerseq_link.cdb?gene_pair=ZC3H3_EEF1D). Despite what has just been said, these genomic alterations are still poorly understood. |
| |
| |
Entity | Osteosarcoma |
Note | EEF1D may play an important role in osteosarcoma tumorigenesis because it is overexpressed in osteosarcoma tissues samples respect to adjacent non-tumor tissues and this enhances the Akt-mTOR and Akt-Bad signalling pathways. In fact, knockdown of EEF1D in MNNG/HOS and U2OS cells (both osteosarcoma cell lines) shows a slight decrease in the phosphorylation of Akt, MTOR and BAD. In addition, the high expression of EEF1D has a positive correlation with recurrences and its expression levels are higher in patients in advanced Enneking stage than in the early stage ones (Cheng et al., 2018). It was reported the translocation t(3;8)(p25;q24) OGG1/EEF1D (Klijn et al., 2015). |
Hybrid/Mutated Gene | The t(3;8)(p25;q24) OGG1/EEF1D was detected in sarcoma ES2-TO cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "8-oxoguanine DNA glycosylase" ( OGG1) gene at 5'-end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and so this genomic alteration is still poorly understood. |
| |
| |
Entity | Ovarian cancer |
Note | It was detected an EEF1D gene copy number gain in COV362, KURAMOCHI, OVCAR4, OVCAR8 and SNU119 ovarian cancer cell lines, in about 26% of ovarian serous cystadenocarcinoma donor samples (http://www.oasis-genomics.org/) and also in ovarian clear cell adenocarcinomas and other ovarian cancer samples (Zhang et al., 2015; Sung et al., 2013). Some fusion genes and genomic translocation are reported (Klijn et al., 2015; https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html). |
Hybrid/Mutated Gene | The EEF1D/ PUF60, EEF1D/ TSNARE1 and SCRIB/EEF1D fusion genes originated by t(8;8)(q24;q24) were found in ovarian serous cystadenocarcinoma (OVSC) samples. In addition, the t(8;14)(q24;q23) HIF1A/EEF1D was reported for ovarian clear cell adenocarcinoma OVTOKO cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "hypoxia inducible factor 1 subunit alpha" ( HIF1A) gene at 5'-end with EEF1D gene at 3' end. The roles of these genomic alterations are still unknown. |
| |
| |
Entity | Pancreatic cancer |
Note | EEF1D mRNA is found to be down-regulated in pancreatic cancer tissue samples (Hassan et al., 2018). |
| |
| |
Entity | Parkinson's disease |
Note | Some rare mutated variants of eEF1D are considered potential candidates in Parkinson's disease. These mutated variants differ from the amino acid sequence of EEF1D for some amino acids substitutions, i.e. in position 290 (Gly/Arg), 325 (Ala/Thr), 549 (Ala/Val) and 601 (Pro/Ser) (Schulte et al., 2014). |
| |
| |
Entity | Prostate cancer |
Note | EEF1D mRNA is found to be up-regulated in prostate cancer tissue samples (Hassan et al., 2018). In addition, it was found the translocation t(8;20)(q24;q13) EEF1D/SDC4 (Wu et al., 2012). |
Hybrid/Mutated Gene | The t(8;20)(q24;q13) EEF1D/SDC4 was found in prostate adenocarcinoma (PRAD). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "syndecan 4" ( SDC4) gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration in prostate cancer is unknown. |
| |
| |
Entity | Thyroid cancer |
Note | There are no data about EEF1D expression alterations in thyroid cancers. However, it was reported the EEF1D/TG fusion gene (https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html). |
Hybrid/Mutated Gene | The EEF1D/TG fusion gene was reported in thyroid Carcinoma (THCA). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "thyroglobulin" ( TG) gene at 3' end due to the translocation t(8;8)(q24;q24). There are no data about its chimeric transcript or protein and the role of this genomic alteration is unknown. |
| |
| |
Entity | Uterine cancer |
Note | It was detected an EEF1D gene copy number gain in about 14% of uterine carcinosarcoma donor samples (http://www.oasis-genomics.org/). It was found the translocation t(8;17)(q24;q21) EEF1D/KRT14 (Alaei-Mahabadi et al., 2016). |
Hybrid/Mutated Gene | The t(8;17)(q24;q21) EEF1D/KRT14 was found in cervical squamous cell carcinoma (CESC). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "keratin 14" ( KRT14) gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown. |
| |
Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers |
Alaei-Mahabadi B, Bhadury J, Karlsson JW, Nilsson JA, Larsson E |
Proc Natl Acad Sci U S A 2016 Nov 29;113(48):13768-13773 |
PMID 27856756 |
|
Recurrent chimeric fusion RNAs in non-cancer tissues and cells |
Babiceanu M, Qin F, Xie Z, Jia Y, Lopez K, Janus N, Facemire L, Kumar S, Pang Y, Qi Y, Lazar IM, Li H |
Nucleic Acids Res 2016 Apr 7;44(6):2859-72 |
PMID 26837576 |
|
Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex |
Bec G, Kerjan P, Waller JP |
Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation J Biol Chem |
PMID 8294461 |
|
Regulation of peptide-chain elongation in mammalian cells |
Browne GJ, Proud CG |
Eur J Biochem 2002 Nov;269(22):5360-8 |
PMID 12423334 |
|
Characterisation of translation elongation factor eEF1B subunit expression in mammalian cells and tissues and co-localisation with eEF1A2 |
Cao Y, Portela M, Janikiewicz J, Doig J, Abbott CM |
PLoS One 2014 Dec 1;9(12):e114117 |
PMID 25436608 |
|
EEF1D overexpression promotes osteosarcoma cell proliferation by facilitating Akt-mTOR and Akt-bad signaling |
Cheng DD, Li SJ, Zhu B, Zhou SM, Yang QC |
J Exp Clin Cancer Res 2018 Mar 6;37(1):50 |
PMID 29510727 |
|
Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8 |
De Bortoli M, Castellino RC, Lu XY, Deyo J, Sturla LM, Adesina AM, Perlaky L, Pomeroy SL, Lau CC, Man TK, Rao PH, Kim JY |
BMC Cancer 2006 Sep 12;6:223 |
PMID 16968546 |
|
Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer |
Erho N, Buerki C, Triche TJ, Davicioni E, Vergara IA |
J Oncol 2012;2012:541353 |
PMID 22956952 |
|
EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma |
Flores IL, Kawahara R, Miguel MC, Granato DC, Domingues RR, Macedo CC, Carnielli CM, Yokoo S, Rodrigues PC, Monteiro BV, Oliveira CE, Salmon CR, Nociti FH Jr, Lopes MA, Santos-Silva A, Winck FV, Coletta RD, Paes Leme AF |
Clin Sci (Lond) 2016 May 1;130(10):785-99 |
PMID 26823560 |
|
Unbiased functional proteomics strategy for protein kinase inhibitor validation and identification of bona fide protein kinase substrates: application to identification of EEF1D as a substrate for CK2 |
Gyenis L, Duncan JS, Turowec JP, Bretner M, Litchfield DW |
J Proteome Res 2011 Nov 4;10(11):4887-901 |
PMID 21936567 |
|
Identification of potential therapeutic targets in human head & neck squamous cell carcinoma |
Han J, Kioi M, Chu WS, Kasperbauer JL, Strome SE, Puri RK |
Head Neck Oncol 2009 Jul 14;1:27 |
PMID 19602232 |
|
The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers |
Hassan MK, Kumar D, Naik M, Dixit M |
PLoS One 2018 Jan 17;13(1):e0191377 |
PMID 29342219 |
|
Transcriptional-Readthrough RNAs Reflect the Phenomenon of "A Gene Contains Gene(s)" or "Gene(s) within a Gene" in the Human Genome, and Thus Are Not Chimeric RNAs |
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ |
Genes (Basel) 2018 Jan 16;9(1) |
PMID 29337901 |
|
A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant |
Hensen SM, Heldens L, van Genesen ST, Pruijn GJ, Lubsen NH |
Cell Stress Chaperones 2013 Jul;18(4):455-73 |
PMID 23321918 |
|
An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene |
Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A |
Nature 2003 May 1;423(6935):91-6 |
PMID 12721631 |
|
The subunit structure of elongation factor 1 from Artemia |
Janssen GM, van Damme HT, Kriek J, Amons R, Möller W |
Why two alpha-chains in this complex? J Biol Chem 1994 Dec 16;269(50):31410-7 |
PMID 7989307 |
|
Three-dimensional reconstruction of the valyl-tRNA synthetase/elongation factor-1H complex and localization of the delta subunit |
Jiang S, Wolfe CL, Warrington JA, Norcum MT |
FEBS Lett 2005 Nov 7;579(27):6049-54 |
PMID 16229838 |
|
Oncogenic potential of mouse translation elongation factor-1 delta, a novel cadmium-responsive proto-oncogene |
Joseph P, Lei YX, Whong WZ, Ong TM |
J Biol Chem 2002 Feb 22;277(8):6131-6 |
PMID 11711542 |
|
Expression profile of eukaryotic translation factors in human cancer tissues and cell lines |
Joseph P, O'Kernick CM, Othumpangat S, Lei YX, Yuan BZ, Ong TM |
Mol Carcinog 2004 Jul;40(3):171-9 |
PMID 15224349 |
|
Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends |
Jurca G, Addam O, Aksac A, Gao S, Özyer T, Demetrick D, Alhajj R |
BMC Res Notes 2016 Apr 26;9:236 |
PMID 27112211 |
|
Transformation of eEF1Bδ into heat-shock response transcription factor by alternative splicing |
Kaitsuka T, Tomizawa K, Matsushita M |
EMBO Rep 2011 Jul 1;12(7):673-81 |
PMID 21597468 |
|
Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta |
Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamanashi Y |
J Virol 2003 Feb;77(4):2359-68 |
PMID 12551973 |
|
Proteomic analysis of multidrug-resistance mechanisms in adriamycin-resistant variants of DLKP, a squamous lung cancer cell line |
Keenan J, Murphy L, Henry M, Meleady P, Clynes M |
Proteomics 2009 Mar;9(6):1556-66 |
PMID 19242932 |
|
Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples |
Kim J, Kim S, Ko S, In YH, Moon HG, Ahn SK, Kim MK, Lee M, Hwang JH, Ju YS, Kim JI, Noh DY, Kim S, Park JH, Rhee H, Kim S, Han W |
Genes Chromosomes Cancer 2015 Nov;54(11):681-91 |
PMID 26227178 |
|
A comprehensive transcriptional portrait of human cancer cell lines |
Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder J, Cao Y, Mukhyala K, Selvaraj SK, Yu M, Zynda GJ, Brauer MJ, Wu TD, Gentleman RC, Manning G, Yauch RL, Bourgon R, Stokoe D, Modrusan Z, Neve RM, de Sauvage FJ, Settleman J, Seshagiri S, Zhang Z |
Nat Biotechnol 2015 Mar;33(3):306-12 |
PMID 25485619 |
|
eEF1B: At the dawn of the 21st century |
Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O |
Biochim Biophys Acta 2006 Jan-Feb;1759(1-2):13-31 |
PMID 16624425 |
|
Blocking the translation elongation factor-1 delta with its antisense mRNA results in a significant reversal of its oncogenic potential |
Lei YX, Chen JK, Wu ZL |
Teratog Carcinog Mutagen 2002;22(5):377-83 |
PMID 12210501 |
|
Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study |
Liu K, Ren Y, Pang L, Qi Y, Jia W, Tao L, Hu Z, Zhao J, Zhang H, Li L, Yue H, Han J, Liang W, Hu J, Zou H, Yuan X, Li F |
Int J Clin Exp Pathol 2015 Jul 1;8(7):8311-35 |
PMID 26339402 |
|
Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system |
Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen CR |
Biochem J 2002 Aug 1;365(Pt 3):669-76 |
PMID 11985494 |
|
The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders |
McLachlan F, Sires AM, Abbott CM |
Hum Mutat 2019 Feb;40(2):131-141 |
PMID 30370994 |
|
Characterization of staufen1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1 |
Milev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ |
Front Microbiol 2012 Oct 25;3:367 |
PMID 23125841 |
|
Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF-1betagammadelta/ValRS) control the various functions of EF-1alpha |
Minella O, Mulner-Lorillon O, Bec G, Cormier P, Bellé R |
Biosci Rep 1998 Jun;18(3):119-27 |
PMID 9798784 |
|
Clinical significance of elongation factor-1 delta mRNA expression in oesophageal carcinoma |
Ogawa K, Utsunomiya T, Mimori K, Tanaka Y, Tanaka F, Inoue H, Murayama S, Mori M |
Br J Cancer 2004 Jul 19;91(2):282-6 |
PMID 15199388 |
|
Kinectin anchors the translation elongation factor-1 delta to the endoplasmic reticulum |
Ong LL, Er CP, Ho A, Aung MT, Yu H |
J Biol Chem 2003 Aug 22;278(34):32115-23 |
PMID 12773547 |
|
Introducing Potential Key Proteins and Pathways in Human Laryngeal Cancer: A System Biology Approach |
Peyvandi H, Peyvandi AA, Safaei A, Zamanian Azodi M, Rezaei-Tavirani M |
Iran J Pharm Res 2018 Winter;17(1):415-425 |
PMID 29755572 |
|
Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells |
Piltti J, Häyrinen J, Karjalainen HM, Lammi MJ |
Biorheology 2008;45(3-4):323-35 |
PMID 18836233 |
|
Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders |
Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C, Uebe S, Ekici AB, Krumbiegel M, Zweier C, Hoyer J, Eberlein K, Bauer J, Scheller U, Strom TM, Hoffjan S, Abdelraouf ER, Meguid NA, Abboud A, Al Khateeb MA, Fakher M, Hamdan S, Ismael A, Muhammad S, Abdallah E, Sticht H, Wieczorek D, Reis A, Abou Jamra R |
JAMA Psychiatry 2017 Mar 1;74(3):293-299 |
PMID 28097321 |
|
Immunofluorescence studies of human fibroblasts demonstrate the presence of the complex of elongation factor-1 beta gamma delta in the endoplasmic reticulum |
Sanders J, Brandsma M, Janssen GM, Dijk J, Möller W |
J Cell Sci 1996 May;109 ( Pt 5):1113-7 |
PMID 8743958 |
|
The human leucine zipper-containing guanine-nucleotide exchange protein elongation factor-1 delta |
Sanders J, Raggiaschi R, Morales J, Möller W |
Biochim Biophys Acta 1993 Jul 18;1174(1):87-90 |
PMID 8334168 |
|
Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors |
Sanz-Pamplona R, Arags R, Driouch K, Martín B, Oliva B, Gil M, Boluda S, Fernández PL, Martínez A, Moreno V, Acebes JJ, Lidereau R, Reyal F, Van de Vijver MJ, Sierra A |
Am J Pathol 2011 Aug;179(2):564-79 |
PMID 21708117 |
|
Rare variants in LRRK1 and Parkinson's disease |
Schulte EC, Ellwanger DC, Dihanich S, Manzoni C, Stangl K, Schormair B, Graf E, Eck S, Mollenhauer B, Haubenberger D, Pirker W, Zimprich A, Brücke T, Lichtner P, Peters A, Gieger C, Trenkwalder C, Mewes HW, Meitinger T, Lewis PA, Klünemann HH, Winkelmann J |
Neurogenetics 2014 Mar;15(1):49-57 |
PMID 24241507 |
|
Association study of copy number variation in BMP8A gene with the risk of ankylosing spondylitis in Iranian population |
Shahba S, Jafari Shakib R, Jamshidi A, Vojdanian M, Akhtari M, Aslani S, Poursani S, Nikokar I, Mahmoudi M |
J Cell Biochem 2018 Nov 28 |
|
Comparative proteomic study for profiling differentially expressed proteins between Chinese left- and right-sided colon cancers |
Shen H, Huang J, Pei H, Zeng S, Tao Y, Shen L, Zeng L, Zhu H |
Cancer Sci 2013 Jan;104(1):135-41 |
PMID 23004678 |
|
Recombinant subunits of mammalian elongation factor 1 expressed in Escherichia coli |
Sheu GT, Traugh JA |
Subunit interactions, elongation activity, and phosphorylation by protein kinase CKII J Biol Chem |
PMID 9407120 |
|
Enhanced expression of translation factor mRNAs in hepatocellular carcinoma |
Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Shichita M, Yamamoto N, Yamamoto M |
Anticancer Res 2000 Jul-Aug;20(4):2489-94 |
PMID 10953316 |
|
Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis |
Sinha P, Kohl S, Fischer J, Hütter G, Kern M, Köttgen E, Dietel M, Lage H, Schnölzer M, Schadendorf D |
Electrophoresis 2000 Aug;21(14):3048-57 |
PMID 11001322 |
|
Genomic and phenotypic analysis of BRCA2 mutated breast cancers reveals co-occurring changes linked to progression |
Stefansson OA, Jonasson JG, Olafsdottir K, Bjarnason H, Th Johannsson O, Bodvarsdottir SK, Valgeirsdottir S, Eyfjord JE |
Breast Cancer Res 2011 Sep 29;13(5):R95 |
PMID 21958427 |
|
Integrative analysis of copy number alteration and gene expression profiling in ovarian clear cell adenocarcinoma |
Sung CO, Choi CH, Ko YH, Ju H, Choi YL, Kim N, Kang SY, Ha SY, Choi K, Bae DS, Lee JW, Kim TJ, Song SY, Kim BG |
Cancer Genet 2013 May;206(5):145-53 |
PMID 23726144 |
|
Identification of novel enriched recurrent chimeric COL7A1-UCN2 in human laryngeal cancer samples using deep sequencing |
Tao Y, Gross N, Fan X, Yang J, Teng M, Li X, Li G, Zhang Y, Huang Z |
BMC Cancer 2018 Mar 2;18(1):248 |
PMID 29499655 |
|
Biallelic loss of EEF1D function links heat shock response pathway to autosomal recessive intellectual disability |
Ugur Iseri SA, Yucesan E, Tuncer FN, Calik M, Kesim Y, Altiokka Uzun G, Ozbek U |
J Hum Genet 2019 May;64(5):421-426 |
PMID 30787422 |
|
Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma |
Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A |
Eur J Clin Invest 2011 Mar;41(3):269-76 |
PMID 20964681 |
|
The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci |
Wain LV, Pedroso I, Landers JE, Breen G, Shaw CE, Leigh PN, Brown RH, Tobin MD, Al-Chalabi A |
PLoS One 2009 Dec 4;4(12):e8175 |
PMID 19997636 |
|
Poly-gene fusion transcripts and chromothripsis in prostate cancer |
Wu C, Wyatt AW, McPherson A, Lin D, McConeghy BJ, Mo F, Shukin R, Lapuk AV, Jones SJ, Zhao Y, Marra MA, Gleave ME, Volik SV, Wang Y, Sahinalp SC, Collins CC |
Genes Chromosomes Cancer 2012 Dec;51(12):1144-53 |
PMID 22927308 |
|
Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1 |
Wu H, Shi Y, Lin Y, Qian W, Yu Y, Huo K |
Mol Cell Biochem 2011 Nov;357(1-2):209-15 |
PMID 21633900 |
|
BMP-6 promotes E-cadherin expression through repressing deltaEF1 in breast cancer cells |
Yang S, Du J, Wang Z, Yuan W, Qiao Y, Zhang M, Zhang J, Gao S, Yin J, Sun B, Zhu T |
BMC Cancer 2007 Nov 13;7:211 |
PMID 17997862 |
|
The landscape and therapeutic relevance of cancer-associated transcript fusions |
Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG |
Oncogene 2015 Sep 10;34(37):4845-54 |
PMID 25500544 |
|
Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach |
Zhang D, Chen P, Zheng CH, Xia J |
Oncotarget 2016 Jan 26;7(4):4298-309 |
PMID 26735889 |
|
Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective |
de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R |
Neuro Oncol 2008 Dec;10(6):1040-60 |
PMID 18676356 |
|
Gene expression profiling predicts clinical outcome of breast cancer |
van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH |
Nature 2002 Jan 31;415(6871):530-6 |
PMID 11823860 |
|