Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

EIF4E (eukaryotic translation initiation factor 4E)

Written2010-05Katherine LB Borden, Biljana Culjkovic-Kraljacic, Laurent Volpon
Institute of Research in Immunology, Cancer (IRIC), Department of Pathology, Cell Biology, Universite de Montreal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada

(Note : for Links provided by Atlas : click)


HGNC Alias symbEIF4E1
HGNC Previous nameEIF4EL1
LocusID (NCBI) 1977
Atlas_Id 40431
Location 4q23  [Link to chromosome band 4q23]
Location_base_pair Starts at 98871684 and ends at 98930637 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping EIF4E.png]
Local_order EIF4E gene covers 51.38 kb, from 100070829 to 100019447 (NCBI 36, March 2006), on the reverse strand.
Gene Card (Weitzmann): GeneLoc location for GC04M100046: starts 100020235 bp from pter and ends 100070139 bp from pter (minus strand).
1 alternative location: Ensembl: Chromosome 4: 99799607-99851786 reverse strand.
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
ABCA1 (9q31.1)::EIF4E (4q23)EIF4E (4q23)::UBXN7 (3q29)METAP1 (4q23)::EIF4E (4q23)
TSPAN5 (4q23)::EIF4E (4q23)


Description The EIF4E gene spans >50 kbp and contains 8 exons, one of them being alternative. It codes for the major, 4749 nucleotides long transcript variant 1, that codes 217 aa long protein. The longest transcript, variant 2 (4842 nucleotides) contains an additional in-frame exon in 3' coding region compared to variant 1 and codes for a protein (248 aa long, isoform 2) with a longer c-terminus compared to isoform 1. Transcript variant 3 is 3406 nucleotide long and uses an alternative exon for the 5'UTR and 5' coding region that results in translation initiation from a distinct ATG, and an isoform 3, (237 aa) with a longer and distinct N-terminus compared to isoform 1. Transcript variants 2 and 3 are predicted from cDNA sequences, but their expression at mRNA or protein levels was not studied.
Transcription The promoter of the EIF4E gene lacks a canonical TATA box, but it contains a polypyrimidine element at position -25, named the eIF4E basal element (4EBE) that binds hnRNPK. hnRNPK interacts with TATA-binding protein and recruits it to the promoter, explaining how the 4EBE might replace the TATA box in the EIF4E promoter (Lynch et al., 2005). Mapping of the minimal EIF4E promoter was found to contain CACGTG E box repeats (positions -77 and -232) that are c-myc responsive (Jones et al., 1996; Makhlouf et al., 2001). The same elements overlap for USF binding. Later mapping studies of the 2 kb promoter found AP-1 binding elements involved in EIF4E transcriptional regulation in cardiac muscle cells (Makhlouf et al., 2001) as well as Rel, Myb, NF-kB, SP-1, NF1, STAT, AP-4, ATB and CREB consensus motifs. p53 could also be involved in the regulation of eIF4E-1 expression through its binding to c-myc, thereby preventing c-myc binding to the EIF4E promoter (Gao et al., 1998; Zhu et al., 2005).
It was shown that eIF4E mRNA contains an AU-rich elements in the 3'UTR that is responsible for HuR-mediated binding and stabilization (Topisirovic et al., 2009b).
Pseudogene Two pseudogenes are mapped so far: EIF4EP1 (also known as EIF4EL2 and dJ1022P6.3), on chromosome 20 (location 20p13), (Entrez Gene ID: 1980), (Pelletier et al., 1991), and EIF4EP2 on chromosome 17 (17q21.32), (Entrez Gene ID: 100113387).
In the report by Gao et al. (1998), numerous intronless eIF4E pseudogenes were found, all containing premature in-frame stop codons.


  Ternary complex of m7GpppA-eIF4E-4EBP1 peptide. eIF4E (blue) and the 4E-BP1 peptide (green) are shown with the ribbon model. The cap-recognition mode of eIF4E is characterized by a pi-pi sandwiching of the m7G base of the cap (here m7GpppA, orange) by the Trp56 and Trp102 indole rings.
Description eIF4E is a 25 kD cap-binding protein, which exists both in a free form and as part of a multiprotein complex termed eIF4F. The eIF4E protein has two distinct functions. First, the eIF4E polypeptide functions in delivering cellular mRNAs to the eIF4F complex to further facilitate ribosome loading and mRNA translation. The other subunits of eIF4F complex are: eIF4A, a 50 kD polypeptide, ATP-dependent RNA helicase that facilitates melting of the mRNA secondary structure, and eIF4G, a 220 kD scaffolding protein of this complex. Second, eIF4E functions in mRNA export (see below).
The cap-bound form of eIF4E was solved by X-ray crystallography for the human and mouse eIF4E and by NMR solution structure for the yeast homolog. It was shown that each consists of eight-stranded anti-parallel beta-sheets supported by three alpha-helices forming the palm and back of a "cupped" hand (Marcotrigiano et al., 1997; Matsuo et al., 1997; Tomoo et al., 2002). Two Trp residues (Trp56 and Trp102 for human eIF4E) located within a narrow cavity inside the concave surface, hold the guanine residue of the cap-analogue through pi-pi stacking interactions (McCoy et al., 1997; Wieczorek et al., 1997). A third Trp residue (Trp166 in human eIF4E) recognizes the presence of the N7-methyl group of the cap structure. NMR structure of cap-free eIF4E (apo-eIF4E) exhibits structural differences in the cap-binding site and dorsal surface relative to cap-eIF4E. Alterations in the S4-H4 loop distal to cap binding site seems to be a key in modulating conformational changes of eIF4E upon ligand binding (Volpon et al., 2006).
Although human and S. cerevisiae eIF4E counterparts have only approximately 30% sequence identity, they are functionally conserved and mammalian eIF4Es can rescue the lethality of eIF4E gene disruption in S. cerevisiae (Altmann et al., 1989; Joshi et al., 2002). Amino acid alignments of mammalian eIF4Es with eIF4Es from plants and yeast, coupled with deletion analyses from S. cerevisiae and D. rerio, reveal that the core of eIF4E represented by ~170 amino acids (from His37 to His200 in human eIF4E) is conserved in all eukaryotes and is sufficient for cap recognition and binding to eIF4G and 4E-BPs (Vasilescu et al., 1996; Robalino et al., 2004), while N- and C-termini are considerably variable both in length and sequence (suggesting that they are dispensable for translation). It is possible that N- and C-termini may be involved in the regulation of eIF4E activity or could affect the stability of the protein (Scheper et al., 2002; Gross et al., 2003). Crystallographic studies of mouse eIF4E bound to either a fragment of eIF4G or 4E-BP1 revealed that His37, Pro38, Val69, Trp73, Leu131, Glu132 and Leu135 (of human eIF4E) interact with eIF4E-binding regions of eIF4G and 4E-BPs (Marcotrigiano et al., 1999). Residues Val69 and Trp73 are found within the phylogenetically conserved part of the consensus sequence. Substitution of Trp73 of mammalian eIF4E to non-aromatic amino acid disrupts ability of eIF4E to interact with eIF4G and 4E-BPs (Ptushkina et al., 1999). Substitution of human eIF4E Val69 for a Gly results in a variant that efficiently binds 4E-BP1, but has reduced capacity to interact with eIF4G and 4E-BP2 (Vasilescu et al., 1996; Ptushkina et al., 1999).
eIF4E undergoes regulated phosphorylation at residue Ser209 (Flynn et al., 1995; Joshi et al., 1995). Mnk1 and Mnk2 are identified as kinases that phosphorylate Ser209, and they are targets for mitogen-activated extracellular signal-regulated kinase and stress/cytokine-activated p38 mitogen-activated protein kinase pathways (Waskiewicz et al., 1997; Wang et al., 1998; Waskiewicz et al., 1999; Scheper et al., 2001). Both enzymes also associate with eIF4G in vivo (Pyronnet et al., 1999; Waskiewicz et al., 1999; Scheper et al., 2001). The structural basis is still not clear as to whether phosphorylation of Ser209 substantially changes the affinity of eIF4E for the cap structure (Minich et al., 1994; Scheper et al., 2002b).
It was shown that eIF4E could be ubiquitinated and degraded in proteasome-dependent manner (Othumpangat et al., 2005; Murata et al., 2006).
Recently, it was suggested that eIF4E could be modified by SUMO1 conjugation (Xu et al., 2010).
Expression eIF4E is ubiquitously expressed, and its presence is essential for viability of cells or whole organisms (Altmann et al., 1987). The level of expression and phosphorylation status may vary between tissues and cellular differentiation state (Mao et al., 1992; Fahrenkrug et al., 1999; Walsh et al., 2003). It was shown that eIF4E is over-expressed in many types of cancer (see below).
Localisation eIF4E is localized both in the cytoplasm and the nucleus of the cell. Up to 68% of eIF4E is found in the nucleus of cells from a wide variety of species ranging from yeast to humans (Lejbkowicz et al., 1992; Iborra et al., 2001; Strudwick et al., 2002). Localization of eIF4E can also be dynamic (Fahrenkrug et al., 1999; Strudwick et al., 2002).
Function In the cytoplasm, eIF4E functions in the rate limiting step of cap-dependent translation initiation (Sonenberg et al., 1998). Here, eIF4E directly binds the 7-methyl guanosine "m7G cap" structure found on the 5' end of mRNAs, and recruits transcripts to the ribosomes thereby increasing translational efficiency (Pestova et al., 2000; von der Haar et al., 2004). In order for translation to proceed, eIF4E must associate with other factors of the eIF4F complex (eIF4G and eIF4A), as well as the other factors such as the ribosome-bound eIF3 and the poly(A)-binding protein. Once formed, the eIF4F complex is thought to scan 5'-3' from the cap, unwinding any existing secondary structure within the 5'UTR region to reveal the translation initiation codon and to facilitate ribosome loading on the mRNA (Gingras et al., 1999). Importantly, eIF4E effects the translation of some mRNAs, known as eIF4E sensitive, more than other transcripts. When eIF4E is overexpressed, sensitive transcripts have a higher ribosome/mRNA ratio enabling more efficient translation (without modulating mRNA levels in the cytoplasm). Notably, sensitive mRNAs have more highly structured 5'UTRs versus insensitive housekeeping mRNAs such as GAPDH or actin, which contain short, unstructured 5'UTRs (Rhoads et al., 1993; Sonenberg et al., 1998; De Benedetti et al., 1999). Transcripts controlled at this level often code for proteins involved in proliferation such as c-myc, Pim 1, VEGF and ODC (Rhoads et al., 1993; Kevil et al., 1996; Rousseau et al., 1996; Hoover et al., 1997).
In the nucleus, eIF4E functions in the mRNA export of a specific subset of mRNAs, which contain a discrete 50 nucleotides element in their 3'UTR known as the eIF4E sensitivity element (4E-SE) (Rousseau et al., 1996; Culjkovic et al., 2005; Culjkovic et al., 2006; Culjkovic et al., 2007). Many mRNAs sensitive to eIF4E at the export level code for proteins that promote proliferation and survival (such as cyclin D1 and ODC mRNAs). Unlike bulk mRNA export which is TAP/NXF1 dependent, eIF4E dependent mRNA export is CRM1 dependent and requires the 4E-SE and the mRNA export factor LRPPRC (Culjkovic et al., 2006; Topisirovic et al., 2009a).
Thus eIF4E can modulate gene expression at two levels: by exporting mRNAs to the cytoplasm increasing their concentration therein and by enhancing the translational efficiency of transcripts that are already in the cytoplasm. Not all transcripts are affected at both levels. Importantly, eIF4E requires its m7G cap binding function in order to act in either of these functions.
eIF4E activity is regulated by many proteins. One of the best-characterized regulators of eIF4E is eIF4E binding protein 1 (BP1) (Sonenberg et al., 1998; Gingras et al., 1999; Zimmer et al., 2000; Wendel et al., 2007). This protein uses a conserved eIF4E binding site to associate with eIF4E, and thereby precludes access of eIF4E to eIF4G and the rest of the translation machinery (Sonenberg et al., 1998). This binding site is defined as follows: YXXXXLPhi (where X is any residue and Phi is a hydrophobic residue). Studies suggest that BP1 increases cap affinity and thereby sequesters both eIF4E and the RNA in question from the translational machinery (von der Haar et al., 2004). Further, endogenous BP1 associates with eIF4E in both the nuclear and cytoplasmic compartments and thus likely modulates eIF4E activity at both the level of translation and mRNA export (Rong et al., 2008). Phosphorylation of 4E-BP1 leads to a reduction in its interaction with eIF4E and thereby, results in increased translational activity of eIF4E. 4E-BP1 phosphorylation is mTOR dependent (Proud, 2007). However, BP1-/- and BP1-/-BP2-/- mice do not develop cancers more readily than controls (Blackshear et al., 1997; Tsukiyama-Kohara et al., 2001; Banko et al., 2006; Le Bacquer et al., 2007), highlighting the importance of redundancy of regulators in the control of eIF4E.
The vast majority of other eIF4E regulators contain the YXXXXLPhi motif like eIF4G and the BPs. These regulators include a set of over 200 homeodomain proteins that contain this motif. Some of these members are negative regulators of eIF4E, such as PRH/Hex. PRH is a nuclear protein that impedes eIF4E's mRNA export function, and its overexpression leads to the cytoplasmic re-distribution of eIF4E (Topisirovic et al., 2003a; Topisirovic et al., 2003b). Other members of this group of homeodomain containing regulators include Emx2, Otx, Engrailed 2, Hox11, Bicoid and HoxA9 (Topisirovic et al., 2005a). HoxA9 can stimulate both the nuclear and cytoplasmic functions of eIF4E (Topisirovic et al., 2005b).
There is also a discrete class of eIF4E regulators that utilize a RING domain to impede eIF4E function. These regulators include the promyelocytic leukemia protein PML, and arenaviral Z proteins from LCMV and Lassa viruses (Lai et al., 2000; Cohen et al., 2001; Ardley et al., 2001). Binding of PML or the Z proteins to eIF4E reduces the affinity of eIF4E for the m7G cap by up to 100 fold (Nathan et al., 1997; Graff et al., 2003; Topisirovic et al., 2003a). PML is a mostly nuclear protein, and thus primarily inhibits the mRNA export activity of eIF4E (Cohen et al., 2001; Kentsis et al., 2001; Culjkovic et al., 2005; Culjkovic et al., 2006; Culjkovic et al., 2008).
In conclusion, the regulation of eIF4E activity is redundant and multi-factorial. There are tissue specific regulators such as the homeodomain proteins and more ubiquitous regulators such as PML and 4E-BP1. Redundancy of regulators is seen for both the nuclear and cytoplasmic arms of eIF4E activity.
Homology By analysis of expressed sequence tag sequences, two additional eIF4E-family members in mammals named eIF4E-2 (also known as 4EHP, 4E-LP) and eIF4E-3 were identified (Joshi et al., 2004). They differ in their structural signatures, functional characteristics and expression pattern from eIF4E (eIF4E-1). Like eIF4E-1, eIF4E-2 is expressed in all tissues, with highest levels in the testis, while eIF4E-3 is detectable only in muscles, spleen and lung. Unlike eIF4E-1, eIF4E-2 and eIF4E-3 are not able to rescue the growth of S. cerevisiae lacking a functional EIF4E gene. While both, eIF4E-2 and eIF4E-3 can bind the cap in vitro, eIF4E-2 and eIF4E-3 differ from eIF4E-1 and between each-other in their affinities to 4E-BPs and eIF4G. It is proposed that each eIF4E-family member fills a specialized role in the regulation of recruitment of mRNAs to ribosomes through differences in their ability to bind the cap and/or to interact with eIF4G and 4E-BPs.


Note Autism
Germinal Genome wide linkage studies in autism patients have shown linkage to the region containing the EIF4E locus on chromosome 4q (Yonan et al., 2003; Schellenberg et al., 2006). Recently, de novo chromosome translocation between 4q and 5q was reported in a boy with classic autism, and a breakpoint site was mapped within a proposed alternative transcript of eIF4E (Neves-Pereira et al., 2009). In the same study, screening of 120 autism families, two unrelated families were found, where in each case both autistic siblings and one of the parents harbored the same single nucleotide insertion at position -25 in the basal element of the EIF4E promoter. EMSA assays and reporter gene studies show that this mutation enhances EIF4E promoter activity by two fold.

Implicated in

Entity Various cancers
Prognosis eIF4E is overexpressed in many epithelial cell cancers, including breast (Kerekatte et al., 1995; Li et al., 1997; Li et al., 1998; Li et al., 2002; McClusky et al., 2005), colon (Rosenwald et al., 1999; Berkel et al., 2001), bladder (Dickinson et al., 1994; Bochner et al., 1995; Jaeger et al., 1995; Crew et al., 1996; Crew et al., 2000), cervix (Lee et al., 2005; Matthews-Greer et al., 2005), prostate (Graff et al., 2009), lung (Rosenwald et al., 2001; Seki et al., 2002; Jacobson et al., 2006) and squamous cell carcinoma of the head and neck (Nathan et al., 1997b; Franklin et al., 1999; Nathan et al., 1999a; Nathan et al., 1999b; Sorrells et al., 1999b; Nathan et al., 2000; Chandy et al., 2002; Nathan et al., 2002). Some studies report that eIF4E is overexpressed in almost 100% of tumors of the breast, head and neck, and colon (Kerekatte et al., 1995; Nathan et al., 1999a; Nathan et al., 1999b). Several retrospective studies indicate that eIF4E overexpression is correlated with poor prognosis.
Oncogenesis It has been demonstrated that eIF4E overexpression is associated with eIF4E gene amplification in both HNSCC and in breast carcinomas (Sorrells et al., 1998; Sorrells et al., 1999a; Sorrells et al., 1999b; Haydon et al., 2000). An increased level of eIF4E gene amplification was observed in invasive carcinomas of the head and neck as compared to benign tumors. Benign tumors only had moderate evidence for gene amplification, while malignant tumors had a 4-15 fold level of amplification. These studies suggest that progression to the malignant phenotype paralleled eIF4E gene amplification and overexpression (Haydon et al., 2000). Also, there was a progressive increase in the degree of eIF4E gene amplification and protein expression when comparisons were made among samples from tumor free margins of resected carcinoma specimens, tumor free regions adjacent to tumor core and tumor core samples (Sorrells et al., 1998). This suggests that molecular events such as eIF4E gene amplification may precede cellular morphological changes, and that surgical margins which appear tumor free microscopically, may have elevated eIF4E protein levels. Thus, eIF4E levels could be used as a marker for prediction of early recurrence. It has been postulated that somewhere in the multi-step pathway of carcinogenesis, elevation of eIF4E is a necessary event in progression of most solid tumors, and that eIF4E does not only reflect the proliferative status of cells but also their malignant properties (Anthony et al., 1996; Nathan et al., 1997b).
Entity Breast cancer
Note eIF4E overexpression was detected at a range of 3-30 fold in breast carcinomas compared to normal breast tissue (Kerekatte et al., 1995; Li et al., 1997), and eIF4E levels were significantly increased in vascularized malignant ductules of invasive carcinomas (Nathan et al., 1997a). Breast cancer patients with high eIF4E expression (>7 fold relative to normal) experienced a statistically significant poorer clinical outcome with a higher risk for recurrence and cancer related death (Li et al., 1998). There were no correlation between node stage and the degree of 4E overexpression (McClusky et al., 2005).
Entity Prostate cancer
Note 78% of prostate cancer samples in tissue microarray showed elevated eIF4E (Yang et al., 2007). eIF4E was found to be more than 3 times increased at protein level in prostate cancer, and also correlated with worse prognosis (Graff et al., 2008).
Entity Head and neck squamous cell carcinoma (HNSCC)
Note In the HNSCC, eIF4E levels were found 3 to 22 fold elevated relative to normal controls (Nathan et al., 1997b; Nathan et al., 1999a; Nathan et al., 1999b; Nathan et al., 2000; Nathan et al., 2002). High eIF4E levels in surgical margins are also predictive of increased risk of recurrence in HNSCC (Nathan et al., 1997b; Nathan et al., 1999a; Nathan et al., 2000; Nathan et al., 2002). Overexpression of eIF4E in >5% of the basal layer of histologically tumor-free surgical margins of HNSCC patients predicted a significantly increased risk of recurrence (Nathan et al., 1999a). This prediction is important for patient outcome, as most HNSCC patients will succumb due to local recurrence (Nathan et al., 1997b; Nathan et al., 2000; Nathan et al., 2002).
Entity Acute myeloid leukemia
Note In acute myeloid leukemia (AML), elevated eIF4E levels are characteristic of the poor prognosis in M4 and M5 AML subtypes (Topisirovic et al., 2003b). Ribavirin, a competitive inhibitor of the cap was used in the clinical trial to target eIF4E in poor prognosis leukemia patients and led to striking clinical responses including complete and partial remissions (Assouline et al., 2009). This was the first time eIF4E was directly targeted in humans.
Entity Non-Hodgkin lymphoma
Note Increased level of eIF4E was observed in non-Hodgkin's lymphomas and not in benign lesions (Wang et al., 1999; Mossafa et al., 2006). Here, eIF4E levels correlated with the aggressiveness of these lesions (Wang et al., 1999; Mossafa et al., 2006). Recently it was reported that eIF4E is overexpressed in 40% of mantle cell lymphoma (Inamdar et al., 2009) and that eIF4E is an independent predictor of clinical outcome in MCL patients treated with the R-hyper CVAD regimen.
Entity Hodgkin lymphoma
Note By immunohistochemical analysis it was shown that eIF4E is elevated in 69% of nodular sclerosis Hodgkin lymphomas (HL), 75% mixed cellularity HL, and 91% lymphocyte predominant HL ID: 2157> (Rosenwald et al., 2008).
Entity Colorectal adenomas and carcinomas
Note eIF4E protein was found to be 2-6 times increased in tumor samples, and even more in the tumor margins (Rosenwald et al., 1999).
Entity Pancreatic ductal adenocarcinoma
Note 85% of pancreatic ductal adenocarcinoma samples showed high eIF4E staining in cancer tissue. There was no significant correlation between eIF4E expression and age, gender, histopathological grading, lymphatic invasion or lymph node metastasis. Also, there were no significant differences between the high eIF4E expressing group and either the low or moderate eIF4E expressing groups (Mishra et al., 2009).
Entity Lung carcinomas
Note In bronchioalveolar carcinoma, estimated by immunohistochemistry, eIF4E was found to be 3-8 times elevated (Rosenwald et al., 2001). Analysis of atypical adenomatous hyperplasia and peripheral lung adenocarcinoma samples showed 3.4-7.4 fold of eIF4E protein elevation (Seki et al., 2002). In Another study, 54% of lung adenocarcinoma samples showed high eIF4E expression by immunostaining. Analyses of mRNA and protein from tumor tissues showed 6-10x elevation compared to surrounding normal tissues (Wang et al., 2009). Elevated eIF4E immunostaining was found in 81% of non small cell lung cancer (NSCLC) samples from tissue microarray (Yang et al., 2007).
Another study reported that 91% of NSCLC samples had stronger eIF4E staining than adjacent normal bronchial mucosa. According to subtypes, eIF4E was positive in 88% of adenocarcinoma and 100% cases of squamous cell carcinomas (Khoury et al., 2009). Patients with eIF4E had more than 3 times risk of death than those with negative eIF4E (Khoury et al., 2009).
Entity Bladder cancers
Note eIF4E was found 4-10 times increased at protein and mRNA levels (Crew et al., 2000).
Entity Brain tumors (oligodendroglial, astrocytomas and meningiomas)
Note In brain tumors, eIF4E was more than 3 times increased at protein level, being highest in oligodendroglial tumors (Tejada et al., 2009).
Entity Glioblastoma multiforme
Note In tissue microarray 48% of samples showed elevated eIF4E immunostaining (Yang et al., 2007).
Entity Thyroid carcinoma
Note Elevated immunostaining especially in aggressive types (Wang et al., 2001).
Entity Cervical cancers
Note In cervical cancer, eIF4E was found 2-4 fold elevated by immunohistochemical staining (Matthews-Greer et al., 2005). Another study showed 7 fold increased mRNA levels of eIF4E (Van Trappen et al., 2002). Strong immunostaining of eIF4E was found in 21.1% of low-grade cervical intraepithelial neoplasias (CIN) and in 89.5% of high grade CIN, and none in low grade CINs. In another study, 100% of invasive squamous cell carcinoma showed strong eIF4E immunostaining, while mRNA was 2-4 times elevated comparing to normal samples (Lee et al., 2005). No significant difference in eIF4E expression was found between HPV+ and HPV- negative, single or double infected samples (Matthews-Greer et al., 2005).
Entity Ovarian cancers
Note In tissue microarray 50% of ovarian cancer samples showed elevated eIF4E (Yang et al., 2007). Also, p-eIF4E was increased in 56% analyzed samples (Noske et al., 2008).


mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae.
Altmann M, Handschin C, Trachsel H.
Mol Cell Biol. 1987 Mar;7(3):998-1003.
PMID 3550438
A mammalian translation initiation factor can substitute for its yeast homologue in vivo.
Altmann M, Muller PP, Pelletier J, Sonenberg N, Trachsel H.
J Biol Chem. 1989 Jul 25;264(21):12145-7.
PMID 2663851
Overexpression of the proto-oncogene/translation factor 4E in breast-carcinoma cell lines.
Anthony B, Carter P, De Benedetti A.
Int J Cancer. 1996 Mar 15;65(6):858-63.
PMID 8631604
Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitin-conjugating enzyme, Ubch7.
Ardley HC, Tan NG, Rose SA, Markham AF, Robinson PA.
J Biol Chem. 2001 Jun 1;276(22):19640-7. Epub 2001 Mar 13.
PMID 11278816
Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin.
Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, Caplan S, Leber B, Roy DC, Miller WH Jr, Borden KL.
Blood. 2009 Jul 9;114(2):257-60. Epub 2009 May 11.
PMID 19433856
Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression.
Banko JL, Hou L, Poulin F, Sonenberg N, Klann E.
J Neurosci. 2006 Feb 22;26(8):2167-73.
PMID 16495443
Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon.
Berkel HJ, Turbat-Herrera EA, Shi R, de Benedetti A.
Cancer Epidemiol Biomarkers Prev. 2001 Jun;10(6):663-6.
PMID 11401917
Disruption of the gene encoding the mitogen-regulated translational modulator PHAS-I in mice.
Blackshear PJ, Stumpo DJ, Carballo E, Lawrence JC Jr.
J Biol Chem. 1997 Dec 12;272(50):31510-4.
PMID 9395487
Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis.
Bochner BH, Cote RJ, Weidner N, Groshen S, Chen SC, Skinner DG, Nichols PW.
J Natl Cancer Inst. 1995 Nov 1;87(21):1603-12.
PMID 7563203
Expression of the proto-oncogene eIF4E in inflammation of the oral cavity.
Chandy B, Abreo F, Nassar R, Stucker FJ, Nathan CO.
Otolaryngol Head Neck Surg. 2002 Mar;126(3):290-5.
PMID 11956537
PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA.
Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL.
EMBO J. 2001 Aug 15;20(16):4547-59.
PMID 11500381
Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression.
Crew JP, Fuggle S, Bicknell R, Cranston DW, de Benedetti A, Harris AL.
Br J Cancer. 2000 Jan;82(1):161-6.
PMID 10638984
Bladder cancer angiogenesis, its role in recurrence, stage progression and as a therapeutic target.
Crew JP, O'Brien TS, Harris AL.
Cancer Metastasis Rev. 1996 Jun;15(2):221-30. (REVIEW)
PMID 8842494
The eIF4E RNA regulon promotes the Akt signaling pathway.
Culjkovic B, Tan K, Orolicki S, Amri A, Meloche S, Borden KL.
J Cell Biol. 2008 Apr 7;181(1):51-63.
PMID 18391071
eIF4E expression in tumors: its possible role in progression of malignancies.
De Benedetti A, Harris AL.
Int J Biochem Cell Biol. 1999 Jan;31(1):59-72. (REVIEW)
PMID 10216944
Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas.
Dickinson AJ, Fox SB, Persad RA, Hollyer J, Sibley GN, Harris AL.
Br J Urol. 1994 Dec;74(6):762-6.
PMID 7530131
Dynamic and tissue-specific expression of eIF4E during zebrafish embryogenesis.
Fahrenkrug SC, Dahlquist MO, Clark KJ, Hackett PB.
Differentiation. 1999 Dec;65(4):191-201.
PMID 10653355
Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells.
Flynn A, Proud CG.
J Biol Chem. 1995 Sep 15;270(37):21684-8.
PMID 7665584
Detection of the proto-oncogene eIF4E in larynx and hypopharynx cancers.
Franklin S, Pho T, Abreo FW, Nassar R, De Benedetti A, Stucker FJ, Nathan CO.
Arch Otolaryngol Head Neck Surg. 1999 Feb;125(2):177-82.
PMID 10037284
Cloning and characterization of human eIF4E genes.
Gao M, Rychlik W, Rhoads RE.
J Biol Chem. 1998 Feb 20;273(8):4622-8.
PMID 9468520
Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism.
Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N.
Genes Dev. 1999 Jun 1;13(11):1422-37.
PMID 10364159
Targeting the eukaryotic translation initiation factor 4E for cancer therapy.
Graff JR, Konicek BW, Carter JH, Marcusson EG.
Cancer Res. 2008 Feb 1;68(3):631-4. (REVIEW)
PMID 18245460
Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs.
Graff JR, Zimmer SG.
Clin Exp Metastasis. 2003;20(3):265-73. (REVIEW)
PMID 12741684
Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E.
Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, Wagner G.
Cell. 2003 Dec 12;115(6):739-50.
PMID 14675538
Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck.
Haydon MS, Googe JD, Sorrells DS, Ghali GE, Li BD.
Cancer. 2000 Jun 15;88(12):2803-10.
PMID 10870064
Pim-1 protein expression is regulated by its 5'-untranslated region and translation initiation factor elF-4E.
Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS.
Cell Growth Differ. 1997 Dec;8(12):1371-80.
PMID 9419425
Coupled transcription and translation within nuclei of mammalian cells.
Iborra FJ, Jackson DA, Cook PR.
Science. 2001 Aug 10;293(5532):1139-42. Epub 2001 Jun 21.
PMID 11423616
Expression of eukaryotic initiation factor 4E predicts clinical outcome in patients with mantle cell lymphoma treated with hyper-CVAD and rituximab, alternating with rituximab, high-dose methotrexate, and cytarabine.
Inamdar KV, Romaguera JE, Drakos E, Knoblock RJ, Garcia M, Leventaki V, Medeiros LJ, Rassidakis GZ.
Cancer. 2009 Oct 15;115(20):4727-36.
PMID 19708031
Repression of cap-dependent translation attenuates the transformed phenotype in non-small cell lung cancer both in vitro and in vivo.
Jacobson BA, Alter MD, Kratzke MG, Frizelle SP, Zhang Y, Peterson MS, Avdulov S, Mohorn RP, Whitson BA, Bitterman PB, Polunovsky VA, Kratzke RA.
Cancer Res. 2006 Apr 15;66(8):4256-62.
PMID 16618749
Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer.
Jaeger TM, Weidner N, Chew K, Moore DH, Kerschmann RL, Waldman FM, Carroll PR.
J Urol. 1995 Jul;154(1):69-71.
PMID 7539869
An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc.
Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, Callanan L, Schmidt EV.
Mol Cell Biol. 1996 Sep;16(9):4754-64.
PMID 8756633
Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209.
Joshi B, Cai AL, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E, Rhoads RE.
J Biol Chem. 1995 Jun 16;270(24):14597-603.
PMID 7782323
Characterization of mammalian eIF4E-family members.
Joshi B, Cameron A, Jagus R.
Eur J Biochem. 2004 Jun;271(11):2189-203.
PMID 15153109
Yeast "knockout-and-rescue" system for identification of eIF4E-family members possessing eIF4E-activity.
Joshi B, Robalino J, Schott EJ, Jagus R.
Biotechniques. 2002 Aug;33(2):392-3, 395-6, 398 passim.
PMID 12188192
The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E.
Kentsis A, Dwyer EC, Perez JM, Sharma M, Chen A, Pan ZQ, Borden KL.
J Mol Biol. 2001 Sep 28;312(4):609-23.
PMID 11575918
The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas.
Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A.
Int J Cancer. 1995 Feb 20;64(1):27-31.
PMID 7665244
Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis.
Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS.
Int J Cancer. 1996 Mar 15;65(6):785-90.
PMID 8631593
Eukaryotic initiation factor-4E and cyclin D1 expression associated with patient survival in lung cancer.
Khoury T, Alrawi S, Ramnath N, Li Q, Grimm M, Black J, Tan D.
Clin Lung Cancer. 2009 Jan;10(1):58-66.
PMID 19289374
The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA.
Lai HK, Borden KL.
Oncogene. 2000 Mar 23;19(13):1623-34.
PMID 10763819
Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2.
Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, Sonenberg N.
J Clin Invest. 2007 Feb;117(2):387-96.
PMID 17273556
eIF-4E expression is associated with histopathologic grades in cervical neoplasia.
Lee JW, Choi JJ, Lee KM, Choi CH, Kim TJ, Lee JH, Kim BG, Ahn G, Song SY, Bae DS.
Hum Pathol. 2005 Nov;36(11):1197-203. Epub 2005 Oct 7.
PMID 16260273
A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus.
Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R, Sonenberg N.
Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9612-6.
PMID 1384058
Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome.
Li BD, Gruner JS, Abreo F, Johnson LW, Yu H, Nawas S, McDonald JC, DeBenedetti A.
Ann Surg. 2002 May;235(5):732-8; discussion 738-9.
PMID 11981220
Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma.
Li BD, Liu L, Dawson M, De Benedetti A.
Cancer. 1997 Jun 15;79(12):2385-90.
PMID 9191527
Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression.
Li BD, McDonald JC, Nassar R, De Benedetti A.
Ann Surg. 1998 May;227(5):756-6l; discussion 761-3.
PMID 9605667
hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation.
Lynch M, Chen L, Ravitz MJ, Mehtani S, Korenblat K, Pazin MJ, Schmidt EV.
Mol Cell Biol. 2005 Aug;25(15):6436-53.
PMID 16024782
Transcriptional regulation of the rat eIF4E gene in cardiac muscle cells: the role of specific elements in the promoter region.
Makhlouf AA, Namboodiri AM, McDermott PJ.
Gene. 2001 Apr 4;267(1):1-12.
PMID 11311550
Regulation of translation initiation factor gene expression during human T cell activation.
Mao X, Green JM, Safer B, Lindsten T, Frederickson RM, Miyamoto S, Sonenberg N, Thompson CB.
J Biol Chem. 1992 Oct 5;267(28):20444-50.
PMID 1400363
Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G.
Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK.
Mol Cell. 1999 Jun;3(6):707-16.
PMID 10394359
Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein.
Matsuo H, Li H, McGuire AM, Fletcher CM, Gingras AC, Sonenberg N, Wagner G.
Nat Struct Biol. 1997 Sep;4(9):717-24.
PMID 9302999
eIF4E as a marker for cervical neoplasia.
Matthews-Greer J, Caldito G, de Benedetti A, Herrera GA, Dominguez-Malagon H, Chanona-Vilchis J, Turbat-Herrera EA.
Appl Immunohistochem Mol Morphol. 2005 Dec;13(4):367-70.
PMID 16280668
A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-positive breast cancer.
McClusky DR, Chu Q, Yu H, Debenedetti A, Johnson LW, Meschonat C, Turnage R, McDonald JC, Abreo F, Li BD.
Ann Surg. 2005 Oct;242(4):584-90; discussion 590-2.
PMID 16192819
Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain.
McCoy M, Stavridi ES, Waterman JL, Wieczorek AM, Opella SJ, Halazonetis TD.
EMBO J. 1997 Oct 15;16(20):6230-6.
PMID 9321402
Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form.
Minich WB, Balasta ML, Goss DJ, Rhoads RE.
Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7668-72.
PMID 8052640
Adenovirus-mediated eukaryotic initiation factor 4E binding protein-1 in combination with rapamycin inhibits tumor growth of pancreatic ductal adenocarcinoma in vivo.
Mishra R, Miyamoto M, Yoshioka T, Ishikawa K, Matsumura Y, Shoji Y, Ichinokawa K, Itoh T, Shichinohe T, Hirano S, Kondo S.
Int J Oncol. 2009 May;34(5):1231-40.
PMID 19360336
Non-Hodgkin's lymphomas with Burkitt-like cells are associated with c-Myc amplification and poor prognosis.
Mossafa H, Damotte D, Jenabian A, Delarue R, Vincenneau A, Amouroux I, Jeandel R, Khoury E, Martelli JM, Samson T, Tapia S, Flandrin G, Troussard X.
Leuk Lymphoma. 2006 Sep;47(9):1885-93.
PMID 17065002
Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E.
Murata T, Shimotohno K.
J Biol Chem. 2006 Jul 28;281(30):20788-800. Epub 2006 May 23.
PMID 16720573
Molecular analysis of surgical margins in head and neck squamous cell carcinoma patients.
Nathan CO, Amirghahri N, Rice C, Abreo FW, Shi R, Stucker FJ.
Laryngoscope. 2002 Dec;112(12):2129-40.
PMID 12461330
Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas.
Nathan CO, Carter P, Liu L, Li BD, Abreo F, Tudor A, Zimmer SG, De Benedetti A.
Oncogene. 1997a Aug 28;15(9):1087-94.
PMID 9285563
Expression of eIF4E during head and neck tumorigenesis: possible role in angiogenesis.
Nathan CO, Franklin S, Abreo FW, Nassar R, de Benedetti A, Williams J, Stucker FJ.
Laryngoscope. 1999b Aug;109(8):1253-8. (REVIEW)
PMID 10443829
Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer.
Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A.
Oncogene. 1997b Jul 31;15(5):579-84.
PMID 9247311
Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications.
Nathan CO, Sanders K, Abreo FW, Nassar R, Glass J.
Cancer Res. 2000 Jul 1;60(13):3599-604.
PMID 10910074
Deregulation of EIF4E: a novel mechanism for autism.
Neves-Pereira M, Muller B, Massie D, Williams JH, O'Brien PC, Hughes A, Shen SB, Clair DS, Miedzybrodzka Z.
J Med Genet. 2009 Nov;46(11):759-65. Epub 2009 Jun 25.
PMID 19556253
Activation of mTOR in a subgroup of ovarian carcinomas: correlation with p-eIF-4E and prognosis.
Noske A, Lindenberg JL, Darb-Esfahani S, Weichert W, Buckendahl AC, Roske A, Sehouli J, Dietel M, Denkert C.
Oncol Rep. 2008 Dec;20(6):1409-17.
PMID 19020722
Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride.
Othumpangat S, Kashon M, Joseph P.
J Biol Chem. 2005 Jul 1;280(26):25162-9. Epub 2005 May 5.
PMID 15878868
The structure and function of initiation factors in eukaryotic protein synthesis.
Pestova TV, Hellen CU.
Cell Mol Life Sci. 2000 Apr;57(4):651-74. (REVIEW)
PMID 11130464
Signalling to translation: how signal transduction pathways control the protein synthetic machinery.
Proud CG.
Biochem J. 2007 Apr 15;403(2):217-34. (REVIEW)
PMID 17376031
Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state.
Ptushkina M, von der Haar T, Karim MM, Hughes JM, McCarthy JE.
EMBO J. 1999 Jul 15;18(14):4068-75.
PMID 10406811
Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E.
Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N.
EMBO J. 1999 Jan 4;18(1):270-9.
PMID 9878069
Mechanism of action and regulation of protein synthesis initiation factor 4E: effects on mRNA discrimination, cellular growth rate, and oncogenesis.
Rhoads RE, Joshi-Barve S, Rinker-Schaeffer C.
Prog Nucleic Acid Res Mol Biol. 1993;46:183-219. (REVIEW)
PMID 8234784
Two zebrafish eIF4E family members are differentially expressed and functionally divergent.
Robalino J, Joshi B, Fahrenkrug SC, Jagus R.
J Biol Chem. 2004 Mar 12;279(11):10532-41. Epub 2003 Dec 29.
PMID 14701818
Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs.
Rong L, Livingstone M, Sukarieh R, Petroulakis E, Gingras AC, Crosby K, Smith B, Polakiewicz RD, Pelletier J, Ferraiuolo MA, Sonenberg N.
RNA. 2008 Jul;14(7):1318-27. Epub 2008 May 30.
PMID 18515545
Expression of the translation initiation factors eIF-4E and eIF-2* is frequently increased in neoplastic cells of Hodgkin lymphoma.
Rosenwald IB, Koifman L, Savas L, Chen JJ, Woda BA, Kadin ME.
Hum Pathol. 2008 Jun;39(6):910-6. Epub 2008 Jan 30.
PMID 18234281
Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E.
Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N.
Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1065-70.
PMID 8577715
Evidence for multiple loci from a genome scan of autism kindreds.
Schellenberg GD, Dawson G, Sung YJ, Estes A, Munson J, Rosenthal E, Rothstein J, Flodman P, Smith M, Coon H, Leong L, Yu CE, Stodgell C, Rodier PM, Spence MA, Minshew N, McMahon WM, Wijsman EM.
Mol Psychiatry. 2006 Nov;11(11):1049-60, 979. Epub 2006 Aug 1.
PMID 16880825
Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA.
Scheper GC, van Kollenburg B, Hu J, Luo Y, Goss DJ, Proud CG.
J Biol Chem. 2002b Feb 1;277(5):3303-9. Epub 2001 Nov 26.
PMID 11723111
Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung.
Seki N, Takasu T, Mandai K, Nakata M, Saeki H, Heike Y, Takata I, Segawa Y, Hanafusa T, Eguchi K.
Clin Cancer Res. 2002 Oct;8(10):3046-53.
PMID 12374671
The mRNA 5' cap-binding protein eIF4E and control of cell growth.
Sonenberg N, Gingras AC.
Curr Opin Cell Biol. 1998 Apr;10(2):268-75.
PMID 9561852
Progressive amplification and overexpression of the eukaryotic initiation factor 4E gene in different zones of head and neck cancers.
Sorrells DL Jr, Ghali GE, De Benedetti A, Nathan CO, Li BD.
J Oral Maxillofac Surg. 1999b Mar;57(3):294-9.
PMID 10077200
Pattern of amplification and overexpression of the eukaryotic initiation factor 4E gene in solid tumor.
Sorrells DL, Meschonat C, Black D, Li BD.
J Surg Res. 1999a Jul;85(1):37-42.
PMID 10383835
The emerging roles of translation factor eIF4E in the nucleus.
Strudwick S, Borden KL.
Differentiation. 2002 Mar;70(1):10-22. (REVIEW)
PMID 11963652
Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors.
Tejada S, Lobo MV, Garcia-Villanueva M, Sacristan S, Perez-Morgado MI, Salinas M, Martin ME.
J Histochem Cytochem. 2009 May;57(5):503-12. Epub 2009 Feb 2.
PMID 19188486
Crystal structures of 7-methylguanosine 5'-triphosphate (m(7)GTP)- and P(1)-7-methylguanosine-P(3)-adenosine-5',5'-triphosphate (m(7)GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region.
Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S, Morino S, Ishida T, Taniguchi T, Hasegawa H, Terashima A, Sasaki M, Katsuya Y, Kitamura K, Miyoshi H, Ishikawa M, Miura K.
Biochem J. 2002 Mar 15;362(Pt 3):539-44.
PMID 11879179
Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer.
Topisirovic I, Siddiqui N, Orolicki S, Skrabanek LA, Tremblay M, Hoang T, Borden KL.
Mol Cell Biol. 2009b Mar;29(5):1152-62. Epub 2008 Dec 29.
PMID 19114552
Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1.
Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, Gingras AC, Katsume A, Elchebly M, Spiegelman BM, Harper ME, Tremblay ML, Sonenberg N.
Nat Med. 2001 Oct;7(10):1128-32.
PMID 11590436
A model for co-expression pattern analysis of genes implicated in angiogenesis and tumour cell invasion in cervical cancer.
Van Trappen PO, Ryan A, Carroll M, Lecoeur C, Goff L, Gyselman VG, Young BD, Lowe DG, Pepper MS, Shepherd JH, Jacobs IJ.
Br J Cancer. 2002 Aug 27;87(5):537-44.
PMID 12189553
Mutants of eukaryotic initiation factor eIF-4E with altered mRNA cap binding specificity reprogram mRNA selection by ribosomes in Saccharomyces cerevisiae.
Vasilescu S, Ptushkina M, Linz B, Muller PP, McCarthy JE.
J Biol Chem. 1996 Mar 22;271(12):7030-7.
PMID 8636134
Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands.
Volpon L, Osborne MJ, Topisirovic I, Siddiqui N, Borden KL.
EMBO J. 2006 Nov 1;25(21):5138-49. Epub 2006 Oct 12.
PMID 17036047
Increased levels of the translation initiation factor eIF4E in differentiating epithelial lung tumor cell lines.
Walsh D, Meleady P, Power B, Morley SJ, Clynes M.
Differentiation. 2003 Mar;71(2):126-34.
PMID 12641566
Overexpression of eukaryotic initiation factor 4E (eIF4E) and its clinical significance in lung adenocarcinoma.
Wang R, Geng J, Wang JH, Chu XY, Geng HC, Chen LB.
Lung Cancer. 2009 Nov;66(2):237-44. Epub 2009 Mar 3.
PMID 19261348
Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma.
Wang S, Lloyd RV, Hutzler MJ, Rosenwald IB, Safran MS, Patwardhan NA, Khan A.
Thyroid. 2001 Dec;11(12):1101-7.
PMID 12186496
Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin's lymphomas.
Wang S, Rosenwald IB, Hutzler MJ, Pihan GA, Savas L, Chen JJ, Woda BA.
Am J Pathol. 1999 Jul;155(1):247-55.
PMID 10393856
The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways.
Wang X, Flynn A, Waskiewicz AJ, Webb BL, Vries RG, Baines IA, Cooper JA, Proud CG.
J Biol Chem. 1998 Apr 17;273(16):9373-7.
PMID 9545260
Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo.
Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA.
Mol Cell Biol. 1999 Mar;19(3):1871-80.
PMID 10022874
Dissecting eIF4E action in tumorigenesis.
Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruya-Feldstein J, Pelletier J, Lowe SW.
Genes Dev. 2007 Dec 15;21(24):3232-7. Epub 2007 Nov 30.
PMID 18055695
Fluorescence and NMR studies of intramolecular stacking of mRNA cap-analogues.
Wieczorek Z, Zdanowski K, Chlebicka L, Stepin'ski J, Jankowska M, Kierdaszuk B, Temeriusz A, Darzynkiewicz E, Stolarski R.
Biochim Biophys Acta. 1997 Nov 1;1354(2):145-52.
PMID 9396631
Sumoylation of eIF4E activates mRNA translation.
Xu X, Vatsyayan J, Gao C, Bakkenist CJ, Hu J.
EMBO Rep. 2010 Apr;11(4):299-304. Epub 2010 Mar 12.
PMID 20224576
Expression levels of eIF4E, VEGF, and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray.
Yang SX, Hewitt SM, Steinberg SM, Liewehr DJ, Swain SM.
Oncol Rep. 2007 Feb;17(2):281-7.
PMID 17203162
A genomewide screen of 345 families for autism-susceptibility loci.
Yonan AL, Alarcon M, Cheng R, Magnusson PK, Spence SJ, Palmer AA, Grunn A, Juo SH, Terwilliger JD, Liu J, Cantor RM, Geschwind DH, Gilliam TC.
Am J Hum Genet. 2003 Oct;73(4):886-97. Epub 2003 Sep 17.
PMID 13680528
Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53.
Zhu N, Gu L, Findley HW, Zhou M.
Biochem Biophys Res Commun. 2005 Oct 7;335(4):1272-9.
PMID 16112647
Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis.
Zimmer SG, DeBenedetti A, Graff JR.
Anticancer Res. 2000 May-Jun;20(3A):1343-51. (REVIEW)
PMID 10928042
The mRNA cap-binding protein eIF4E in post-transcriptional gene expression.
von der Haar T, Gross JD, Wagner G, McCarthy JE.
Nat Struct Mol Biol. 2004 Jun;11(6):503-11. (REVIEW)
PMID 15164008


This paper should be referenced as such :
Borden, KLB ; Culjkovic-Kraljacic, B ; Volpon, L
EIF4E (eukaryotic translation initiation factor 4E)
Atlas Genet Cytogenet Oncol Haematol. 2011;15(2):159-168.
Free journal version : [ pdf ]   [ DOI ]

External links


HGNC (Hugo)EIF4E   3287
Atlas Explorer : (Salamanque)EIF4E
Entrez_Gene (NCBI)EIF4E    eukaryotic translation initiation factor 4E
AliasesAUTS19; CBP; EIF4E1; EIF4EL1; 
GeneCards (Weizmann)EIF4E
Ensembl hg19 (Hinxton)ENSG00000151247 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000151247 [Gene_View]  ENSG00000151247 [Sequence]  chr4:98871684-98930637 [Contig_View]  EIF4E [Vega]
ICGC DataPortalENSG00000151247
TCGA cBioPortalEIF4E
Genatlas (Paris)EIF4E
SOURCE (Princeton)EIF4E
Genetics Home Reference (NIH)EIF4E
Genomic and cartography
GoldenPath hg38 (UCSC)EIF4E  -     chr4:98871684-98930637 -  4q23   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)EIF4E  -     4q23   [Description]    (hg19-Feb_2009)
GoldenPathEIF4E - 4q23 [CytoView hg19]  EIF4E - 4q23 [CytoView hg38]
Genome Data Viewer NCBIEIF4E [Mapview hg19]  
OMIM133440   615091   
Gene and transcription
Genbank (Entrez)AJ844638 AK091502 AK098333 AK295083 AK300982
RefSeq transcript (Entrez)NM_001130678 NM_001130679 NM_001331017 NM_001968
Consensus coding sequences : CCDS (NCBI)EIF4E
Gene ExpressionEIF4E [ NCBI-GEO ]   EIF4E [ EBI - ARRAY_EXPRESS ]   EIF4E [ SEEK ]   EIF4E [ MEM ]
Gene Expression Viewer (FireBrowse)EIF4E [ Firebrowse - Broad ]
GenevisibleExpression of EIF4E in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)1977
GTEX Portal (Tissue expression)EIF4E
Human Protein AtlasENSG00000151247-EIF4E [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP06730   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtP06730  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProP06730
Domaine pattern : Prosite (Expaxy)IF4E (PS00813)   
Domains : Interpro (EBI)TIF_eIF4e-like    TIF_eIF_4E    TIF_eIF_4E_CS   
Domain families : Pfam (Sanger)IF4E (PF01652)   
Domain families : Pfam (NCBI)pfam01652   
Conserved Domain (NCBI)EIF4E
PDB (RSDB)1IPB    1IPC    1WKW    2GPQ    2V8W    2V8X    2V8Y    2W97    3AM7    3TF2    3U7X    4AZA    4BEA    4DT6    4DUM    4TPW    4TQB    4TQC    4UED    5EHC    5EI3    5EIR    5EKV    5GW6    5T46    5ZJY    5ZJZ    5ZK5    5ZK7    5ZK9    5ZML   
PDB Europe1IPB    1IPC    1WKW    2GPQ    2V8W    2V8X    2V8Y    2W97    3AM7    3TF2    3U7X    4AZA    4BEA    4DT6    4DUM    4TPW    4TQB    4TQC    4UED    5EHC    5EI3    5EIR    5EKV    5GW6    5T46    5ZJY    5ZJZ    5ZK5    5ZK7    5ZK9    5ZML   
PDB (PDBSum)1IPB    1IPC    1WKW    2GPQ    2V8W    2V8X    2V8Y    2W97    3AM7    3TF2    3U7X    4AZA    4BEA    4DT6    4DUM    4TPW    4TQB    4TQC    4UED    5EHC    5EI3    5EIR    5EKV    5GW6    5T46    5ZJY    5ZJZ    5ZK5    5ZK7    5ZK9    5ZML   
PDB (IMB)1IPB    1IPC    1WKW    2GPQ    2V8W    2V8X    2V8Y    2W97    3AM7    3TF2    3U7X    4AZA    4BEA    4DT6    4DUM    4TPW    4TQB    4TQC    4UED    5EHC    5EI3    5EIR    5EKV    5GW6    5T46    5ZJY    5ZJZ    5ZK5    5ZK7    5ZK9    5ZML   
Structural Biology KnowledgeBase1IPB    1IPC    1WKW    2GPQ    2V8W    2V8X    2V8Y    2W97    3AM7    3TF2    3U7X    4AZA    4BEA    4DT6    4DUM    4TPW    4TQB    4TQC    4UED    5EHC    5EI3    5EIR    5EKV    5GW6    5T46    5ZJY    5ZJZ    5ZK5    5ZK7    5ZK9    5ZML   
SCOP (Structural Classification of Proteins)1IPB    1IPC    1WKW    2GPQ    2V8W    2V8X    2V8Y    2W97    3AM7    3TF2    3U7X    4AZA    4BEA    4DT6    4DUM    4TPW    4TQB    4TQC    4UED    5EHC    5EI3    5EIR    5EKV    5GW6    5T46    5ZJY    5ZJZ    5ZK5    5ZK7    5ZK9    5ZML   
CATH (Classification of proteins structures)1IPB    1IPC    1WKW    2GPQ    2V8W    2V8X    2V8Y    2W97    3AM7    3TF2    3U7X    4AZA    4BEA    4DT6    4DUM    4TPW    4TQB    4TQC    4UED    5EHC    5EI3    5EIR    5EKV    5GW6    5T46    5ZJY    5ZJZ    5ZK5    5ZK7    5ZK9    5ZML   
AlphaFold pdb e-kbP06730   
Human Protein Atlas [tissue]ENSG00000151247-EIF4E [tissue]
Protein Interaction databases
IntAct (EBI)P06730
Complex Portal (EBI)P06730 CPX-2666 Eukaryotic translation initiation factor 4F, EIF4A1 and EIF4G1 variant
P06730 CPX-5634 Eukaryotic translation initiation factor 4F, EIF4A2 and EIF4G1 variant
P06730 CPX-5635 Eukaryotic translation initiation factor 4F, EIF4A1 and EIF4G3 variant
P06730 CPX-5636 Eukaryotic translation initiation factor 4F, EIF4A2 and EIF4G3 variant
Ontologies - Pathways
Ontology : AmiGOG1/S transition of mitotic cell cycle  RNA cap binding  RNA 7-methylguanosine cap binding  RNA 7-methylguanosine cap binding  P-body  behavioral fear response  RNA binding  translation initiation factor activity  translation initiation factor activity  translation initiation factor activity  protein binding  nucleus  cytoplasm  cytosol  cytosol  mRNA cap binding complex  RNA export from nucleus  mRNA export from nucleus  translational initiation  regulation of translation  cytoplasmic stress granule  negative regulation of autophagy  eukaryotic translation initiation factor 4F complex  eukaryotic translation initiation factor 4F complex  RISC complex  negative regulation of translation  stem cell population maintenance  enzyme binding  lung development  eukaryotic initiation factor 4G binding  chromatoid body  cytoplasmic ribonucleoprotein granule  negative regulation of neuron differentiation  positive regulation of mitotic cell cycle  perinuclear region of cytoplasm  extracellular exosome  cellular response to dexamethasone stimulus  glutamatergic synapse  postsynaptic cytosol  regulation of translation at postsynapse, modulating synaptic transmission  DNA-binding transcription factor binding  
Ontology : EGO-EBIG1/S transition of mitotic cell cycle  RNA cap binding  RNA 7-methylguanosine cap binding  RNA 7-methylguanosine cap binding  P-body  behavioral fear response  RNA binding  translation initiation factor activity  translation initiation factor activity  translation initiation factor activity  protein binding  nucleus  cytoplasm  cytosol  cytosol  mRNA cap binding complex  RNA export from nucleus  mRNA export from nucleus  translational initiation  regulation of translation  cytoplasmic stress granule  negative regulation of autophagy  eukaryotic translation initiation factor 4F complex  eukaryotic translation initiation factor 4F complex  RISC complex  negative regulation of translation  stem cell population maintenance  enzyme binding  lung development  eukaryotic initiation factor 4G binding  chromatoid body  cytoplasmic ribonucleoprotein granule  negative regulation of neuron differentiation  positive regulation of mitotic cell cycle  perinuclear region of cytoplasm  extracellular exosome  cellular response to dexamethasone stimulus  glutamatergic synapse  postsynaptic cytosol  regulation of translation at postsynapse, modulating synaptic transmission  DNA-binding transcription factor binding  
Pathways : BIOCARTAEukaryotic protein translation [Genes]    Regulation of eIF4e and p70 S6 Kinase [Genes]    Internal Ribosome entry pathway [Genes]    Skeletal muscle hypertrophy is regulated via AKT/mTOR pathway [Genes]    mTOR Signaling Pathway [Genes]    SARS Coronavirus Protease [Genes]   
Pathways : KEGGRNA transport    HIF-1 signaling pathway    mTOR signaling pathway    PI3K-Akt signaling pathway    Insulin signaling pathway   
REACTOMEP06730 [protein]
REACTOME PathwaysR-HSA-72706 [pathway]   
NDEx NetworkEIF4E
Atlas of Cancer Signalling NetworkEIF4E
Wikipedia pathwaysEIF4E
Orthology - Evolution
GeneTree (enSembl)ENSG00000151247
Phylogenetic Trees/Animal Genes : TreeFamEIF4E
Homologs : HomoloGeneEIF4E
Homology/Alignments : Family Browser (UCSC)EIF4E
Gene fusions - Rearrangements
Fusion : QuiverEIF4E
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerEIF4E [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)EIF4E
Exome Variant ServerEIF4E
GNOMAD BrowserENSG00000151247
Varsome BrowserEIF4E
ACMGEIF4E variants
Genomic Variants (DGV)EIF4E [DGVbeta]
DECIPHEREIF4E [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisEIF4E 
ICGC Data PortalEIF4E 
TCGA Data PortalEIF4E 
Broad Tumor PortalEIF4E
OASIS PortalEIF4E [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICEIF4E  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DEIF4E
Mutations and Diseases : HGMDEIF4E
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
DgiDB (Drug Gene Interaction Database)EIF4E
DoCM (Curated mutations)EIF4E
CIViC (Clinical Interpretations of Variants in Cancer)EIF4E
NCG (London)EIF4E
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
OMIM133440    615091   
Genetic Testing Registry EIF4E
NextProtP06730 [Medical]
Target ValidationEIF4E
Huge Navigator EIF4E [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTDEIF4E
Pharm GKB GenePA27714
Clinical trialEIF4E
DataMed IndexEIF4E
PubMed434 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Mon Jan 17 15:30:31 CET 2022

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us