Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

EPHA3 (EPH receptor A3)

Identity

Other namesEC 2.7.10.1
ETK
ETK1
EphA3
HEK
HEK4
TYRO4
HGNC (Hugo) EPHA3
LocusID (NCBI) 2042
Location 3p11.1
Location_base_pair Starts at 89156674 and ends at 89531284 bp from pter ( according to hg19-Feb_2009)  [Mapping]
Local_order (tel) C3orf38 (ENSG00000179021) ->, 949,562bp, EPHA3 (374,609bp) ->, 720,071bp, <- AC139337.5 (ENSG00000189002) (cen)
 
  Figure 1: Chromosomal location of EPHA3 (based on Ensembl Homo sapiens version 53.36o (NCBI36)).
Figure 2: Genomic neighbourhood of EPHA3 (based on Ensembl Homo sapiens version 53.36o (NCBI36)).
Note EPHA3 is flanked by two gene deserts.

DNA/RNA

Note EPHA3 spans the human tile path clones CTD-2532M17, RP11-784B9 and RP11-547K2.
 
  Figure 3: Genomic organisation of EPHA3.
Description EPHA3 consists of 17 exons and 16 introns and spans 375kb of genomic DNA. It is the second largest of the EPH genes after EPHA6.
Transcription Two alternatively spliced transcript variants have been described (NM_005233.5, a 5,807 nucleotide mRNA and NM_182644.2, a 2,684 nucleotide mRNA). The shorter transcript results in truncation within the extracellular domain of EphA3 and is predicted to produce a soluble protein. The 5' end of EPHA3 is associated with a CpG island, a feature common to all EPH genes. The EPHA3 promoter also lacks a TATA box and transcription initiates from multiple start sites.
Pseudogene None identified.

Protein

Note The Eph receptors constitute the largest of the 20 subfamilies of human receptor tyrosine kinases. The founding member of this group was isolated originally from an erythropoietin producing hepatoma cell line.
 
  Figure 4: Domain organisation of EphA3.
Description The EPHA3 gene encodes a 983 amino acid protein with a calculated molecular weight of 110.1kDa and an isoelectric point of 6.7302. Amino acids 1-20 constitute a signal peptide. The predicted molecular mass of the translated protein minus the signal peptide is 92.8kDa. The 521 amino acid extracellular domain contains five potential sites for N-glycosylation such that EphA3 is typically detected as a 135kDa glycoprotein. This mature isoform of EphA3 is a single-pass transmembrane receptor tyrosine kinase. At its N-terminus is a 174 amino acid ligand binding domain, a 14 amino acid EGF-like domain and two membrane proximal fibronectin type III repeats. Amino acids 21-376 of the extracellular domain also are rich in cysteine residues. The intracellular domain contains the tyrosine kinase domain and a sterile alpha motif. EphA3 lacks a PDZ domain interacting motif present in EphA7, EphB2, EphB3, EphB5 and EphB6. Activation of the EphA3 receptor tyrosine kinase domain is associated with two tyrosine residues in the juxtamembrane region (Y596, Y602) that are sites of autophosphorylation and interact with the kinase domain to modulate its activity.
EphA3 belongs to an evolutionarily ancient subfamily of receptor tyrosine kinases with members being present in sponges, worms and fruit flies. The expansion in the number of Eph receptor-encoding genes along with genes encoding their ligands, the ephrins (Eph receptor interacting proteins), is proposed to have contributed to the increase in complexity of the bilaterian body plan. Genes encoding EphA3 are found in the genomes of representative members of at least five of the seven classes of vertebrates including bony fish (zebrafish, pufferfish, medaka), amphibians (African clawed frog), reptiles (green anole lizard), birds (chicken) and mammals (platypus, possum, human).
Fourteen Eph receptors have been identified in vertebrates. These are subdivided into either EphA (EphA1, EphA2, EphA3, EphA4, EphA5, EphA6, EphA7, EphA8, EphA10) or EphB (EphB1, EphB2, EphB3, EphB4, EphB6) subclasses which differ primarily in the structure of their ligand binding domains. EphA receptors also exhibit greater affinity for binding GPI-linked ephrin-A ligands while EphB receptors bind transmembrane ephrin-B ligands. While interactions are somewhat promiscuous, and some cross-class binding occurs, each Eph receptor displays distinct affinity for the different ephrin ligands. The high affinity ligands for EphA3 are ephrin-A2 and ephrin-A5. EphA3 also binds ephrin-A3 and ephrin-A4 with lower affinity.
Eph-ephrin binding involves contact between cells. Upon binding, receptor-ligand dimers form heterotetramers, which further assemble into higher order signalling clusters. Several moieties in the EphA3 receptor extracellular region mediate ephrin binding. A high-affinity binding site in the N-terminal ephrin binding domain mediates intercellular Eph-ephrin interaction. Two additional lower-affinity ephrin-binding sites, one in the ephrin-binding domain and the other in the cysteine-rich region, are involved in clustering of Eph-ephrin complexes.
Following ephrin-A5-mediated EphA3 receptor clustering, intracellular signalling by EphA3 receptors is initiated by autophosphorylation of three defined tyrosine residues, two in the highly conserved juxtamembrane region and the third in the activation loop of the kinase domain (Y779). Rapid reorganisation of the actin and myosin cytoskeleton follows, leading to retraction of cellular protrusions, membrane blebbing and cell detachment, following association of the adaptor protein CrkII with tyrosine phosphorylated EphA3 and activation of RhoA signalling.
Such Eph-ephrin interaction triggers bidirectional signalling, that is signalling events within both Eph- and ephrin-bearing cells, an unusual phenomenon for receptor tyrosine kinases, most of which interact with soluble ligands. Subsequently, depending on the cellular context (including the identity of the interacting Eph-ephrin receptor-ligand pairs, their relative levels on interacting cells, the presence of additional Ephs and ephrins and their alternative isoforms, and the net effect of interaction with additional signalling pathways) this either results in repulsion or promotes adhesion of the interacting cells.
Cellular repulsion and the termination of Eph-ephrin signalling require disruption of the receptor-ligand complex. This is brought about either by enzymatic cleavage of the tethered ephrin ligand in cis or in trans or by endocytosis of Eph-ephrin complexes. EphA3-ephrin-A2 receptor-ligand complexes are shed from ephrin-A2 bearing cells following receptor-ligand binding when ADAM10 (a disintegrin and metalloprotease 10), associated with ephrin-A2, cleaves ephrin-A2. Conversely, intercellular EphA3-ephrin-A5 receptor-ligand complexes are broken when EphA3-associated ADAM10 cleaves ephrin-A5 on opposing cells, following binding to EphA3. The post-cleavage ephrin-A5-EphA3 complex is then endocytosed by the EphA3-expressing cell.
While cellular repulsion is often the outcome of Eph-ephrin interaction, in some circumstances adhesion may persist. For example, ADAM10 has been observed not to cleave ephrin-A5 following EphA3-ephrin-A5 interaction involving LK63 cells in which high intracellular protein tyrosine phosphatase activity also appears to counter ephrin-A5 stimulated phosphorylation of EphA3, holding the receptor in an inactive, unphosphorylated state. Also cis interaction between EphA3 and ephrin-A2 expressed on the same cell surface has been reported to block EphA3 activation by ephrins acting in trans, the cis interaction site being independent of the ligand binding domain. Another mechanism that may favour stable cell-cell adhesion involves truncated Eph receptor isoforms acting in a dominant negative manner. While activation of full length EphA7 by ephrin-A5 results in cellular repulsion, ephrin-A5-induced phosphorylation of EphA7 is inhibited by two EphA7 splice variants with truncated kinase domains and adhesion results. A splice variant of EPHA3 also has been reported and is predicted to give rise to a soluble isoform of EphA3. Whether this soluble variant of EphA3, which is truncated before the transmembrane domain, functions in a similar manner to the shorter EphA7 isoforms has not been established.
While important details of EphA3 signalling have been determined, more complete understanding of EphA3 activity will require knowledge of the full complement of EphA3 interacting proteins. Substrates that are targets for the tyrosine kinase activity of EphA3 have yet to be defined and potential mediators or modulators of EphA3 signalling output such as Src family kinases, additional phosphotyrosine binding adaptors, SAM domain interacting factors, interaction with other receptor kinases and crosstalk with other signalling pathways, and the regulatory role of phosphatases all remain to be explored. Based on the range of interacting proteins identified for other Eph receptors (some common to more than one Eph, others apparently unique to individual Ephs) additional effectors of EphA3 signalling output are likely.
Expression EphA3 was first identified as an antigen expressed at high levels (10,000-20,000 copies per cell) on the surface of the LK63 pre-B cell acute lymphoblastic leukaemia cell line. It also was found to be expressed by JM, HSB-2 and MOLT-4 T-cell leukaemic cell lines, in CD28-stimulated Jurkat cells, and in 16 of 42 cases of primary T-cell lymphoma (but not normal peripheral T lymphocytes nor in any subset of thymus-derived developing T cells), as well as at low frequency in acute myeloid leukaemia and chronic lymphocytic leukaemia EphA3 is not expressed by many other haematopoietic cell lines.
Subsequently, EphA3 expression has been shown to be most abundant, and also highly regulated both temporally and spatially, during vertebrate development. Prominent EphA3 expression occurs in the neural system, including the retinal ganglion cells of the embryonic retina in a graded distribution from anterior/nasal (lowest) to posterior/temporal (highest); the cerebrum, thalamus, striatum, olfactory bulb, anterior commissure, and corpus callosum of the forebrain; and the medial motor column ventral motor neurons of the spinal cord; and extraneurally by mesodermally-derived tissues including the paraxial musculature, tongue musculature, submucosa of the soft palate, capsule of the submandibular gland, cortical rim of bone, thymic septae, media of the pharynx, trachea, great vessels, small intestine and portal vein, cardiac valves, and the renal medulla. In adult tissues EphA3 expression is more restricted and detected at significantly lower levels than during early development.
Localisation Isoform 1: Cell membrane; single-pass type I membrane protein.
Isoform 2: Secreted.
Function Eph receptors modulate cell shape and movement through reorganisation of the cytoskeleton and changes in cell-cell and cell-substrate adhesion, and are involved in many cellular migration, sorting (tissue patterning) and guidance events, most often during development, and in particular involving the nervous system. There is evidence too that Eph receptor signalling influences cell proliferation and cell-fate determination and growing recognition that Eph receptors function in adult tissue homeostasis.
EphA3 is thought to play a role in retinotectal mapping, the tightly patterned projection of retinal ganglion cell axons from the retina to the optic tectum (or superior colliculus in mammals). In chicks, posterior retinal ganglion axons expressing highest levels of EphA3 project to the anterior tectum where the graded expression of ephrin-A2 and ephrin-A5 is lowest and are excluded from projecting more posteriorly where ephrin-A2/A5 expression is highest. More direct evidence of non-redundant function for EphA3 has come from phenotypic analysis of EphA3 knockout mice. Approximately 70-75% of EphA3 null mice die within 48 hours of birth with post-mortem evidence of pulmonary oedema secondary to cardiac failure. These mice exhibit hypoplastic atrioventricular endocardial cushions and subsequent atrioventricular valve and atrial membranous septal defects, with endocardial cushion explants from these mice giving rise to fewer migrating cells arising from epithelial to mesenchymal transformation. Expression of EphA3 in the spinal cord appears to be redundant as axial muscle targeting by medial motor column motor axons and the organisation of the motor neuron columns is not altered. EphA4 is the only other EphA receptor also expressed by developing spinal cord motor neurons and in mice lacking EphA3 and EphA4 these receptors together repel axial motor axons from neighbouring ephrin-A-expressing sensory axons, inhibiting intermingling of motor and sensory axons and preventing mis-projection of motor axons into the dorsal root ganglia. In contrast to the chick, EphA3 is not expressed by mouse retinal ganglion cells. Instead the closely related receptors EphA5 and EphA6 (see homology below) are expressed in a low nasal to high temporal gradient. However, if EphA3 is ectopically expressed in retinal ganglion cells in mice these axons project to more rostral positions in the superior colliculus.
A function for soluble EphA3 has not been reported although potentially this isoform might play a role in promoting cell adhesion (see above) or act as a tumour suppressor protein (see below).
Homology Phylogenetic tree for the Eph receptors. Amino acid sequences used for this compilation were EphA1 (NP_005223), EphA2 (NM_004431), EphA3 (NP_005224), EphA4 (NP_004429), EphA5 (NM_004439), EphA6 (ENSP00000374323), EphA7 (NP_004431), EphA8 (NP_065387), EphA10 (NP_001092909), EphB1 (NP_004432), EphB2 (NP_004433), EphB3 (NP_004434), EphB4 (NP_004435) and EphB6 (NP_004436).
 

Mutations

Note Seven nonsynonymous single nucleotide polymorphisms (all missense) are recorded in the dbSNP database for EPHA3. Recognised allelic variation occurs for the following EphA3 amino acids: I564V (rs56081642), C568S (rs56077781), L590P (rs56081642), T608A (rs17855794), G777A (rs34437982), W924R (rs35124509) and H914R (rs17801309).
 
  Figure 6: Sites of somatic mutations in EphA3 identified in lung adenocarcinoma colorectal carcinoma, glioblastoma multiforme and metastatic melanoma.
Germinal To date no germinal mutations in EPHA3 have been associated with disease.
Somatic Somatic mutations in EPHA3 have been detected in lung adenocarcinoma (T166N, G187R, S229Y, W250R, M269I, N379K, T393K, A435S, D446Y, S449F, G518L, T660K, D678E, R728L, K761N, G766E, T933M), colorectal carcinoma (T37K, N85S, I621L, S792P, D806N), glioblastoma multiforme (K500N, A971P) and metastatic melanoma (G228R).

Implicated in

Entity Prostate cancer
Note EPHA3 was among the genes whose expression was upregulated during androgen-independent progression in an LNCaP in vitro cell model of prostate cancer.
  
Entity Melanoma
Note A melanoma patient with an especially favourable evolution of disease, associated with a very strong and sustained anti-tumour cytotoxic T lymphocyte response, was found to have a lytic CD4 clone that recognised an EphA3 antigen presented by the HLA class II molecule HLA- DRB1*1101. 94% (75 of 80) of melanomas examined expressed EphA3 in contrast to normal melanocytes which do not express detectable EphA3.
  
Entity Lung cancer, Sarcoma, and Renal cell carcinoma
Note 44% (11 of 25) of small cell lung cancer, 24% (10 of 41) of non-small cell lung cancer, 58% (17 of 29) of sarcomas, and 31% (12 of 38) of renal cell carcinomas expressed EphA3 at levels significantly higher than the corresponding normal tissues.
  

Breakpoints

Note No reported breakpoints identified to date nor recognised fusion proteins involving EphA3.

To be noted

Soluble forms of EphA3 appear to inhibit tumour angiogenesis and tumour progression suggesting that specific inhibition by soluble EphA3 may be therapeutically useful.
The IIIA4 monoclonal antibody originally raised against LK63 human acute pre-B leukemia cells and used to affinity isolate EphA3 binds the native EphA3 globular ephrin-binding domain with sub-nanomolar affinity (KD ~5x10-10 mol/L). Like ephrin-A5, pre-clustered IIIA4 effectively triggers EphA3 activation, contraction of the cytoskeleton, and cell rounding. Moreover, radio-metal conjugates of ephrin-A5 and IIIA4 retain their EphA3-binding affinity, and in mouse xenografts localise to, and are internalised rapidly into EphA3-positive, human tumours.

External links

Nomenclature
HGNC (Hugo)EPHA3   3387
Cards
AtlasEPHA3ID40463ch3p11
Entrez_Gene (NCBI)EPHA3  2042  EPH receptor A3
GeneCards (Weizmann)EPHA3
Ensembl (Hinxton)ENSG00000044524 [Gene_View]  chr3:89156674-89531284 [Contig_View]  EPHA3 [Vega]
ICGC DataPortalENSG00000044524
cBioPortalEPHA3
AceView (NCBI)EPHA3
Genatlas (Paris)EPHA3
WikiGenes2042
SOURCE (Princeton)NM_005233 NM_182644
Genomic and cartography
GoldenPath (UCSC)EPHA3  -  3p11.1   chr3:89156674-89531284 +  3p11.2   [Description]    (hg19-Feb_2009)
EnsemblEPHA3 - 3p11.2 [CytoView]
Mapping of homologs : NCBIEPHA3 [Mapview]
OMIM179611   
Gene and transcription
Genbank (Entrez)AF213459 AF213460 AK024352 AK291411 BC026247
RefSeq transcript (Entrez)NM_005233 NM_182644
RefSeq genomic (Entrez)AC_000135 NC_000003 NC_018914 NG_023239 NT_022517 NW_001838879 NW_004929310
Consensus coding sequences : CCDS (NCBI)EPHA3
Cluster EST : UnigeneHs.123642 [ NCBI ]
CGAP (NCI)Hs.123642
Alternative Splicing : Fast-db (Paris)GSHG0020961
Alternative Splicing GalleryENSG00000044524
Gene ExpressionEPHA3 [ NCBI-GEO ]     EPHA3 [ SEEK ]   EPHA3 [ MEM ]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP29320 (Uniprot)
NextProtP29320  [Medical]
With graphics : InterProP29320
Splice isoforms : SwissVarP29320 (Swissvar)
Catalytic activity : Enzyme2.7.10.1 [ Enzyme-Expasy ]   2.7.10.12.7.10.1 [ IntEnz-EBI ]   2.7.10.1 [ BRENDA ]   2.7.10.1 [ KEGG ]   
Domaine pattern : Prosite (Expaxy)EGF_2 (PS01186)    EPH_LBD (PS51550)    FN3 (PS50853)    PROTEIN_KINASE_ATP (PS00107)    PROTEIN_KINASE_DOM (PS50011)    PROTEIN_KINASE_TYR (PS00109)    RECEPTOR_TYR_KIN_V_1 (PS00790)    RECEPTOR_TYR_KIN_V_2 (PS00791)    SAM_DOMAIN (PS50105)   
Domains : Interpro (EBI)Eph_TM [organisation]   Ephrin_rcpt_lig-bd_dom [organisation]   Fibronectin_type3 [organisation]   Galactose-bd-like [organisation]   Growth_fac_rcpt_N_dom [organisation]   Ig-like_fold [organisation]   Kinase-like_dom [organisation]   Prot_kinase_dom [organisation]   Protein_kinase_ATP_BS [organisation]   SAM [organisation]   SAM/pointed [organisation]   SAM_2 [organisation]   Ser-Thr/Tyr_kinase_cat_dom [organisation]   Tyr-kin_ephrin_A/B_rcpt-like [organisation]   Tyr_kinase_AS [organisation]   Tyr_kinase_cat_dom [organisation]   Tyr_kinase_ephrin_rcpt [organisation]   Tyr_kinase_rcpt_V_CS [organisation]  
Related proteins : CluSTrP29320
Domain families : Pfam (Sanger)EphA2_TM (PF14575)    Ephrin_lbd (PF01404)    fn3 (PF00041)    GCC2_GCC3 (PF07699)    Pkinase_Tyr (PF07714)    SAM_2 (PF07647)   
Domain families : Pfam (NCBI)pfam14575    pfam01404    pfam00041    pfam07699    pfam07714    pfam07647   
Domain families : Smart (EMBL)EPH_lbd (SM00615)  FN3 (SM00060)  SAM (SM00454)  TyrKc (SM00219)  
DMDM Disease mutations2042
Blocks (Seattle)P29320
PDB (SRS)2GSF    2QO2    2QO7    2QO9    2QOB    2QOC    2QOD    2QOF    2QOI    2QOK    2QOL    2QON    2QOO    2QOQ    3DZQ    3FXX    3FY2    4G2F    4GK2    4GK3    4GK4   
PDB (PDBSum)2GSF    2QO2    2QO7    2QO9    2QOB    2QOC    2QOD    2QOF    2QOI    2QOK    2QOL    2QON    2QOO    2QOQ    3DZQ    3FXX    3FY2    4G2F    4GK2    4GK3    4GK4   
PDB (IMB)2GSF    2QO2    2QO7    2QO9    2QOB    2QOC    2QOD    2QOF    2QOI    2QOK    2QOL    2QON    2QOO    2QOQ    3DZQ    3FXX    3FY2    4G2F    4GK2    4GK3    4GK4   
PDB (RSDB)2GSF    2QO2    2QO7    2QO9    2QOB    2QOC    2QOD    2QOF    2QOI    2QOK    2QOL    2QON    2QOO    2QOQ    3DZQ    3FXX    3FY2    4G2F    4GK2    4GK3    4GK4   
Human Protein AtlasENSG00000044524 [gene] [tissue] [antibody] [cell] [cancer]
Peptide AtlasP29320
HPRD01555
IPIIPI00298105   IPI00219172   IPI00418427   
Protein Interaction databases
DIP (DOE-UCLA)P29320
IntAct (EBI)P29320
FunCoupENSG00000044524
BioGRIDEPHA3
InParanoidP29320
Interologous Interaction database P29320
IntegromeDBEPHA3
STRING (EMBL)EPHA3
Ontologies - Pathways
Ontology : AmiGOGPI-linked ephrin receptor activity  protein binding  ATP binding  extracellular region  early endosome  integral component of plasma membrane  cell adhesion  regulation of epithelial to mesenchymal transition  positive regulation of neuron projection development  cell migration  peptidyl-tyrosine phosphorylation  regulation of Rho GTPase activity  regulation of actin cytoskeleton organization  ephrin receptor signaling pathway  regulation of focal adhesion assembly  regulation of microtubule cytoskeleton organization  cellular response to retinoic acid  fasciculation of sensory neuron axon  fasciculation of motor neuron axon  
Ontology : EGO-EBIGPI-linked ephrin receptor activity  protein binding  ATP binding  extracellular region  early endosome  integral component of plasma membrane  cell adhesion  regulation of epithelial to mesenchymal transition  positive regulation of neuron projection development  cell migration  peptidyl-tyrosine phosphorylation  regulation of Rho GTPase activity  regulation of actin cytoskeleton organization  ephrin receptor signaling pathway  regulation of focal adhesion assembly  regulation of microtubule cytoskeleton organization  cellular response to retinoic acid  fasciculation of sensory neuron axon  fasciculation of motor neuron axon  
Pathways : KEGGAxon guidance   
Protein Interaction DatabaseEPHA3
Wikipedia pathwaysEPHA3
Gene fusion - rearrangments
Polymorphisms : SNP, mutations, diseases
SNP Single Nucleotide Polymorphism (NCBI)EPHA3
snp3D : Map Gene to Disease2042
SNP (GeneSNP Utah)EPHA3
SNP : HGBaseEPHA3
Genetic variants : HAPMAPEPHA3
Exome VariantEPHA3
1000_GenomesEPHA3 
ICGC programENSG00000044524 
Somatic Mutations in Cancer : COSMICEPHA3 
CONAN: Copy Number AnalysisEPHA3 
Mutations and Diseases : HGMDEPHA3
Mutations and Diseases : intOGenEPHA3
Genomic VariantsEPHA3  EPHA3 [DGVbeta]
dbVarEPHA3
ClinVarEPHA3
Pred. of missensesPolyPhen-2  SIFT(SG)  SIFT(JCVI)  Align-GVGD  MutAssessor  Mutanalyser  
Pred. splicesGeneSplicer  Human Splicing Finder  MaxEntScan  
Diseases
OMIM179611   
MedgenEPHA3
GENETestsEPHA3
Disease Genetic AssociationEPHA3
Huge Navigator EPHA3 [HugePedia]  EPHA3 [HugeCancerGEM]
General knowledge
Homologs : HomoloGeneEPHA3
Homology/Alignments : Family Browser (UCSC)EPHA3
Phylogenetic Trees/Animal Genes : TreeFamEPHA3
Chemical/Protein Interactions : CTD2042
Chemical/Pharm GKB GenePA27819
Clinical trialEPHA3
Cancer Resource (Charite)ENSG00000044524
Other databases
Probes
Litterature
PubMed56 Pubmed reference(s) in Entrez
CoreMineEPHA3
iHOPEPHA3
OncoSearchEPHA3

Bibliography

A novel putative tyrosine kinase receptor encoded by the eph gene.
Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F.
Science. 1987 Dec 18;238(4834):1717-20.
PMID 2825356
 
Isolation and characterization of a novel receptor-type protein tyrosine kinase (hek) from a human pre-B cell line.
Boyd AW, Ward LD, Wicks IP, Simpson RJ, Salvaris E, Wilks A, Welch K, Loudovaris M, Rockman S, Busmanis I.
J Biol Chem. 1992 Feb 15;267(5):3262-7.
PMID 1737782
 
Molecular cloning of HEK, the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines.
Wicks IP, Wilkinson D, Salvaris E, Boyd AW.
Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1611-5.
PMID 1311845
 
Expression of the Tyro4/Mek4/Cek4 gene specifically marks a subset of embryonic motor neurons and their muscle targets.
Kilpatrick TJ, Brown A, Lai C, Gassmann M, Goulding M, Lemke G.
Mol Cell Neurosci. 1996 Jan;7(1):62-74.
PMID 8812059
 
Ligand for EPH-related kinase (LERK) 7 is the preferred high affinity ligand for the HEK receptor.
Lackmann M, Mann RJ, Kravets L, Smith FM, Bucci TA, Maxwell KF, Howlett GJ, Olsson JE, Vanden Bos T, Cerretti DP, Boyd AW.
J Biol Chem. 1997 Jun 27;272(26):16521-30.
PMID 9195962
 
PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor.
Hock B, Bohme B, Karn T, Yamamoto T, Kaibuchi K, Holtrich U, Holland S, Pawson T, Rubsamen-Waigmann H, Strebhardt K.
Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9779-84.
PMID 9707552
 
Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization.
Lackmann M, Oates AC, Dottori M, Smith FM, Do C, Power M, Kravets L, Boyd AW.
J Biol Chem. 1998 Aug 7;273(32):20228-37.
PMID 9685371
 
Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells.
Dottori M, Down M, Huttmann A, Fitzpatrick DR, Boyd AW.
Blood. 1999 Oct 1;94(7):2477-86.
PMID 10498621
 
Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling.
Brown A, Yates PA, Burrola P, Ortuno D, Vaidya A, Jessell TM, Pfaff SL, O'Leary DD, Lemke G.
Cell. 2000 Jul 7;102(1):77-88.
PMID 10929715
 
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.
Castresana J.
Mol Biol Evol. 2000 Apr;17(4):540-52.
PMID 10742046
 
Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class II molecules.
Chiari R, Hames G, Stroobant V, Texier C, Maillere B, Boon T, Coulie PG.
Cancer Res. 2000 Sep 1;60(17):4855-63.
PMID 10987298
 
Regulated cleavage of a contact-mediated axon repellent.
Hattori M, Osterfield M, Flanagan JG.
Science. 2000 Aug 25;289(5483):1360-5.
PMID 10958785
 
The protein tyrosine kinase family of the human genome.
Robinson DR, Wu YM, Lin SF.
Oncogene. 2000 Nov 20;19(49):5548-57. (REVIEW)
PMID 11114734
 
Signals from Eph and ephrin proteins: a developmental tool kit.
Boyd AW, Lackmann M.
Sci STKE. 2001 Dec 11;2001(112):RE20. (REVIEW)
PMID 11741094
 
Crystal structure of an Eph receptor-ephrin complex.
Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB.
Nature. 2001 Dec 20-27;414(6866):933-8.
PMID 11780069
 
Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo.
Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, Lin C, Chen J.
Oncogene. 2002 Oct 10;21(46):7011-26.
PMID 12370823
 
Eph family functions from an evolutionary perspective.
Drescher U.
Curr Opin Genet Dev. 2002 Aug;12(4):397-402. (REVIEW)
PMID 12100883
 
Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling.
Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW, Alewood PF, Lackmann M.
J Cell Sci. 2002 Mar 1;115(Pt 5):1059-72.
PMID 11870224
 
Mutational analysis of the tyrosine kinome in colorectal cancers.
Bardelli A, Parsons DW, Silliman N, Ptak J, Szabo S, Saha S, Markowitz S, Willson JK, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE.
Science. 2003 May 9;300(5621):949.
PMID 12738854
 
Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors.
Cheng N, Brantley D, Fang WB, Liu H, Fanslow W, Cerretti DP, Bussell KN, Reith A, Jackson D, Chen J.
Neoplasia. 2003 Sep-Oct;5(5):445-56.
PMID 14670182
 
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.
Guindon S, Gascuel O.
Syst Biol. 2003 Oct;52(5):696-704.
PMID 14530136
 
EphA3 null mutants do not demonstrate motor axon guidance defects.
Vaidya A, Pniak A, Lemke G, Brown A.
Mol Cell Biol. 2003 Nov;23(22):8092-8.
PMID 14585969
 
MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Edgar RC.
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. Print 2004.
PMID 15034147
 
Loss-of-function analysis of EphA receptors in retinotectal mapping.
Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, Yancopoulos GD, Flanagan JG.
J Neurosci. 2004 Mar 10;24(10):2542-50.
PMID 15014130
 
Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers.
Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T.
Clin Chem. 2004 Mar;50(3):490-9. Epub 2004 Jan 15.
PMID 14726470
 
Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly.
Poliakov A, Cotrina M, Wilkinson DG.
Dev Cell. 2004 Oct;7(4):465-80. (REVIEW)
PMID 15469835
 
Dissecting the EphA3/Ephrin-A5 interactions using a novel functional mutagenesis screen.
Smith FM, Vearing C, Lackmann M, Treutlein H, Himanen J, Chen K, Saul A, Nikolov D, Boyd AW.
J Biol Chem. 2004 Mar 5;279(10):9522-31. Epub 2003 Dec 2.
PMID 14660665
 
EphA3 is induced by CD28 and IGF-1 and regulates cell adhesion.
Smith LM, Walsh PT, Rudiger T, Cotter TG, Mc Carthy TV, Marx A, O'Connor R.
Exp Cell Res. 2004 Jan 15;292(2):295-303.
PMID 14697337
 
Recruitment of Eph receptors into signaling clusters does not require ephrin contact.
Wimmer-Kleikamp SH, Janes PW, Squire A, Bastiaens PI, Lackmann M.
J Cell Biol. 2004 Mar 1;164(5):661-6.
PMID 14993233
 
Somatic mutations of the protein kinase gene family in human lung cancer.
Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, Teague J, Butler A, Edkins S, Stevens C, Parker A, O'Meara S, Avis T, Barthorpe S, Brackenbury L, Buck G, Clements J, Cole J, Dicks E, Edwards K, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Shepherd R, Small A, Solomon H, Stephens Y, Tofts C, Varian J, Webb A, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Green A, Knowles M, Leung SY, Looijenga LH, Malkowicz B, Pierotti MA, Teh BT, Yuen ST, Lakhani SR, Easton DF, Weber BL, Goldstraw P, Nicholson AG, Wooster R, Stratton MR, Futreal PA.
Cancer Res. 2005 Sep 1;65(17):7591-5.
PMID 16140923
 
Three distinct molecular surfaces in ephrin-A5 are essential for a functional interaction with EphA3.
Day B, To C, Himanen JP, Smith FM, Nikolov DB, Boyd AW, Lackmann M.
J Biol Chem. 2005 Jul 15;280(28):26526-32. Epub 2005 May 18.
PMID 15901737
 
Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans.
Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB.
Cell. 2005 Oct 21;123(2):291-304.
PMID 16239146
 
Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain.
Kudo C, Ajioka I, Hirata Y, Nakajima K.
J Comp Neurol. 2005 Jul 4;487(3):255-69.
PMID 15892098
 
Concurrent binding of anti-EphA3 antibody and ephrin-A5 amplifies EphA3 signaling and downstream responses: potential as EphA3-specific tumor-targeting reagents.
Vearing C, Lee FT, Wimmer-Kleikamp S, Spirkoska V, To C, Stylianou C, Spanevello M, Brechbiel M, Boyd AW, Scott AM, Lackmann M.
Cancer Res. 2005 Aug 1;65(15):6745-54.
PMID 16061656
 
Eph-modulated cell morphology, adhesion and motility in carcinogenesis.
Wimmer-Kleikamp SH, Lackmann M.
IUBMB Life. 2005 Jun;57(6):421-31. (REVIEW)
PMID 16012051
 
Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative.
Anisimova M, Gascuel O.
Syst Biol. 2006 Aug;55(4):539-52.
PMID 16785212
 
TreeDyn: towards dynamic graphics and annotations for analyses of trees.
Chevenet F, Brun C, Banuls AL, Jacq B, Christen R.
BMC Bioinformatics. 2006 Oct 10;7:439.
PMID 17032440
 
Silencing of EphA3 through a cis interaction with ephrinA5.
Carvalho RF, Beutler M, Marler KJ, Knoll B, Becker-Barroso E, Heintzmann R, Ng T, Drescher U.
Nat Neurosci. 2006 Mar;9(3):322-30. Epub 2006 Feb 19.
PMID 16491080
 
The consensus coding sequences of human breast and colorectal cancers.
Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE.
Science. 2006 Oct 13;314(5797):268-74. Epub 2006 Sep 7.
PMID 16959974
 
Somatic mutations of GUCY2F, EPHA3, and NTRK3 in human cancers.
Wood LD, Calhoun ES, Silliman N, Ptak J, Szabo S, Powell SM, Riggins GJ, Wang TL, Yan H, Gazdar A, Kern SE, Pennacchio L, Kinzler KW, Vogelstein B, Velculescu VE.
Hum Mutat. 2006 Oct;27(10):1060-1.
PMID 16941478
 
Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma.
Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A, van Tilborg AA, Leenstra S, Zanon C, Bardelli A.
Cancer Res. 2007 Apr 15;67(8):3545-50.
PMID 17440062
 
Patterns of somatic mutation in human cancer genomes.
Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR.
Nature. 2007 Mar 8;446(7132):153-8.
PMID 17344846
 
Cell-cell signaling via Eph receptors and ephrins.
Himanen JP, Saha N, Nikolov DB.
Curr Opin Cell Biol. 2007 Oct;19(5):534-42. Epub 2007 Oct 24. (REVIEW)
PMID 17928214
 
A critical role for the EphA3 receptor tyrosine kinase in heart development.
Stephen LJ, Fawkes AL, Verhoeve A, Lemke G, Brown A.
Dev Biol. 2007 Feb 1;302(1):66-79. Epub 2006 Aug 30.
PMID 17046737
 
Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3).
Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S.
Structure. 2008 Jun;16(6):873-84.
PMID 18547520
 
Phylogeny.fr: robust phylogenetic analysis for the non-specialist.
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9. Epub 2008 Apr 19.
PMID 18424797
 
Somatic mutations affect key pathways in lung adenocarcinoma.
Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK.
Nature. 2008 Oct 23;455(7216):1069-75.
PMID 18948947
 
Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling.
Gallarda BW, Bonanomi D, Muller D, Brown A, Alaynick WA, Andrews SE, Lemke G, Pfaff SL, Marquardt T.
Science. 2008 Apr 11;320(5873):233-6.
PMID 18403711
 
Eph-ephrin bidirectional signaling in physiology and disease.
Pasquale EB.
Cell. 2008 Apr 4;133(1):38-52. (REVIEW)
PMID 18394988
 
Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells.
Singh AP, Bafna S, Chaudhary K, Venkatraman G, Smith L, Eudy JD, Johansson SL, Lin MF, Batra SK.
Cancer Lett. 2008 Jan 18;259(1):28-38. Epub 2007 Oct 30.
PMID 17977648
 
Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells.
Wimmer-Kleikamp SH, Nievergall E, Gegenbauer K, Adikari S, Mansour M, Yeadon T, Boyd AW, Patani NR, Lackmann M.
Blood. 2008 Aug 1;112(3):721-32. Epub 2008 Apr 2.
PMID 18385452
 
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

Contributor(s)

Written04-2009Brett Stringer, Bryan Day, Jennifer McCarron, Martin Lackmann, Andrew Boyd
Leukaemia Foundation Research Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane Queensland 4006, Australia (BS, BD, JM, AB); Department of Biochemistry and Molecular Biology, PO Box 13D, Monash University, Clayton Victoria 3800, Australia (ML); Department of Medicine, University of Queensland, St Lucia Queensland 4067, Australia (AB)

Citation

This paper should be referenced as such :
Stringer, B ; Day, B ; McCarron, J ; Lackmann, M ; Boyd, A
EPHA3 (EPH receptor A3)
Atlas Genet Cytogenet Oncol Haematol. 2010;14(3):-.
Free online version   Free pdf version   [Bibliographic record ]
URL : http://AtlasGeneticsOncology.org/Genes/EPHA3ID40463ch3p11.html

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Tue Aug 26 15:29:12 CEST 2014

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.