|  |
| |
| Figure 2: Exons in FANCL gene. Colour coded to indicate ELF, DRWD, and RING finger domains. Adapted from Chandrasekharappa et al. 2013. |
| |
Description | The FANCL gene encodes FANCL protein comprised of 375 amino acids with a molecular mass of 42905 Da. FANCL is comprised of 3 domains, an N-terminal E2-like fold (ELF), a novel double-RWD (DRWD) and C-terminal RING domain (Hodson, Purkiss et al., 2014). |
Expression | From total RNA sequencing, FANCL was found to be expressed in adrenal gland (RPKM 2.1), prostate (RPKM 2.34), thymus (RPKM 2.1), and thyroid (RPKM 2.2) (Bioproject PRJNA280600 (PMID 25970244 ). In another RNA sequencing project on 27 different tissues from 95 human individuals, FANCL was highly expressed in adrenal gland (RPKM 16.8), endometrium (RPKM 10.6), lymph nodes (RPKM 8.5), ovary (RPKM 9.2), prostate (RPKM 8.5), and testis (RPKM 12) (Bioproject PRJEB4337, PMID 24309898). |
|  |
| |
| Figure 3: A) Schematic of D2 monoubiquitination by E3 RING ligase FANCL and E2 conjugating enzyme. B) Ribbon diagram of FANCL with ELF domain (brown), DRWD domain (green), and RING domain (green). C) Surface representation of protein binding domains on FANCL. The binding patch for ubiquitin (orange) is within the ELF domain, while the substrate binding domain (red) is in the DRWD domain, and the Ube2t binding domain (light purple) is in the RING domain. Figure from Specificity and disease in the ubiquitin system by Viduth K. Chaugule and Helen Walden in Biochemical Society Transactions Feb 2016, 44 (1) 212-227; DOI: 10.1042/BST20150209. |
| |
Function | FANCL the catalytically active part of the 9 protein Fanconi anemia (FA) core complex comprised of FANCB, FAAP100, FANCA, FANCG, FAAP20, FANCC, FANCE and FANCF that forms in response to DNA damage incurred during DNA replication in S-phase, or to detection of interstand cross links (ICL) (Ceccaldi, Sarangi et al., 2016). FANCL is an E3 ubiquitin ligase that specifically monoubiquitinates FANCD2 (at lysine 561) and FANCI (at lysine 523) (ID2; Note the FANCD2-FANCI heterodimer "ID2" must not to be confused with the gene ID2) in the presence ofUBE2T (FANCT) to signal downstream DNA repair proteins. FANCL is comprised of 3 distinct functional domains: the RING domain interacts with the E2 conjugating enzyme UBE2T (FANCT), the central DRWD domain interacts with FANCD2, and the N-terminal E2-like fold domain (ELF) domain interacts with ubiquitin (Hodson et al., 2014, Miles, Frost et al., 2015). Within the core complex, FANCL interacts as a subcomplex with FANCB and FAAP100 (Huang, Leung et al., 2014, van Twest, Murphy et al., 2017); both proteins stabilize FANCL (Rajendra, Oestergaard et al., 2014), and enhance it's activity 5-fold in vitro assays (Ling, Ishiai et al., 2007). Along with FANCA, FANCG, FANCF, FANCL was found to interact directly with hairy enhancer of split 1 ( HES1), which is a part of the NOTCH1 developmental pathway involved hematopoietic stem cell (HSC) self-renewal (Tremblay, Huang et al., 2008). Depletion of HES1 from cells resulted in FA-like phenotype with disrupted interaction between individual core complex proteins, increased cell sensitivity to DNA crosslinking agents, and reduced MMC-induced ID2 monoubiquitination (Tremblay et al., 2008). Finally HES1 did not interact FA-mutated core complex proteins. HSC defects and eventual bone marrow failure in FA patients may be linked to inability of HES1 to interact with a defective core complex (Tremblay et al., 2008, Tremblay, Huang et al., 2018). |
|  |
| |
| Figure 4: Schematic of Fanconi Anemia DNA damage response pathway. In response to interstrand cross links (ICL), or DNA damage from DNA replication, FANCM recruits the 9 protein core complex to DNA damage sites to monoubiquitinate FANC D2 and I. The core complex is comprised of 3 sub-complexes AG20 (FANC A, G, FAAP20), BL100 (FANC B, L, FAAP100), and CEF (FANC C,E,F). Dashed lines indicate groupings of sub-complexes, while triple lines indicate putative direct protein interactions. Within the core complex, FANCL has a RING E3 domain with ubiquitin ligase activity, but mutation in any one of the FA genes leads to defective DNA repair. Ubiquitinated ID2 is activated, and localized to chromatin in nuclear foci to interact with downstream DNA repair proteins (FANCD1, FANCD1, FANCN) to repair DNA via homologous recombination. Once DNA repair is completed, USP1 deubiquitinates ID2 so that DNA damage response can be reinitiated. Figure adapted from https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fancb |
| |
Presenting signs of retinoblastoma |
Abramson DH, Frank CM, Susman M, Whalen MP, Dunkel IJ, Boyd NW 3rd |
J Pediatr 1998 Mar;132(3 Pt 1):505-8 |
PMID 9544909 |
|
Spectrum of gross deletions and insertions in the RB1 gene in patients with retinoblastoma and association with phenotypic expression |
Albrecht P, Ansperger-Rescher B, Schüler A, Zeschnigk M, Gallie B, Lohmann DR |
Hum Mutat 2005 Nov;26(5):437-45 |
PMID 16127685 |
|
De novo t(2;13)(p24 |
Blanquet V, Turleau C, Créau-Goldberg N, Cochet C, de Grouchy J |
3;q14 2) and retinoblastoma |
PMID 3502693 |
|
Incidence of retinoblastoma in the USA: 1975-2004 |
Broaddus E, Topham A, Singh AD |
Br J Ophthalmol 2009 Jan;93(1):21-3 |
PMID 18621794 |
|
Retinoblastoma and mental retardation microdeletion syndrome: clinical characterization and molecular dissection using array CGH |
Caselli R, Speciale C, Pescucci C, Uliana V, Sampieri K, Bruttini M, Longo I, De Francesco S, Pramparo T, Zuffardi O, Frezzotti R, Acquaviva A, Hadjistilianou T, Renieri A, Mari F |
J Hum Genet 2007;52(6):535-42 |
PMID 17502991 |
|
Expression of recessive alleles by chromosomal mechanisms in retinoblastoma |
Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL |
Nature 1983 Oct 27-Nov 2;305(5937):779-84 |
PMID 6633649 |
|
Retinoblastoma in a patient with a 13qXp translocation |
Cross HE, Hansen RC, Morrow G 3rd, Davis JR |
Am J Ophthalmol 1977 Oct;84(4):548-54 |
PMID 910860 |
|
The survival gene MED4 explains low penetrance retinoblastoma in patients with large RB1 deletion |
Dehainault C, Garancher A, Castéra L, Cassoux N, Aerts I, Doz F, Desjardins L, Lumbroso L, Montes de Oca R, Almouzni G, Stoppa-Lyonnet D, Pouponnot C, Gauthier-Villars M, Houdayer C |
Hum Mol Genet 2014 Oct 1;23(19):5243-50 |
PMID 24858910 |
|
Retinoblastoma |
Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F, Gallie BL |
Nat Rev Dis Primers 2015 Aug 27;1:15021 |
PMID 27189421 |
|
Interstitial deletion of 13q and a 13;X chromosome translocation results in partial trisomy 13 and bilateral retinoblastoma |
Dries D, Baca K, Truss L, Dobin S |
Ophthalmic Genet 2003 Sep;24(3):175-80 |
PMID 12868036 |
|
RB1: a prototype tumor suppressor and an enigma |
Dyson NJ |
Genes Dev 2016 Jul 1;30(13):1492-502 |
PMID 27401552 |
|
A Parent-of-Origin Effect Impacts the Phenotype in Low Penetrance Retinoblastoma Families Segregating the c |
Eloy P, Dehainault C, Sefta M, Aerts I, Doz F, Cassoux N, Lumbroso le Rouic L, Stoppa-Lyonnet D, Radvanyi F, Millot GA, Gauthier-Villars M, Houdayer C |
1981C>T/p Arg661Trp Mutation of RB1 |
PMID 26925970 |
|
A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma |
Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP |
Nature 1986 Oct 16-22;323(6089):643-6 |
PMID 2877398 |
|
Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma |
Greger V, Debus N, Lohmann D, Höpping W, Passarge E, Horsthemke B |
Hum Genet 1994 Nov;94(5):491-6 |
PMID 7959682 |
|
Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity in retinoblastomas |
Hagstrom SA, Dryja TP |
Proc Natl Acad Sci U S A 1999 Mar 16;96(6):2952-7 |
PMID 10077618 |
|
A novel translocation t(11;13) (q21;q14 |
Huddleston S, McNall-Knapp RY, Siatkowski M, Odom C, Brennan R, Wilson MW |
2) in a child with suprasellar primitive neuroectodermal tumor and retinoblastoma Ophthalmic Genet |
PMID 22924820 |
|
Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma |
Imperatore V, Pinto AM, Gelli E, Trevisson E, Morbidoni V, Frullanti E, Hadjistilianou T, De Francesco S, Toti P, Gusson E, Roversi G, Accogli A, Capra V, Mencarelli MA, Renieri A, Ariani F |
Eur J Hum Genet 2018 Jul;26(7):1026-1037 |
PMID 29662154 |
|
Fanconi Anemia: Guidelines for Diagnosis and Management. |
Inc F ni |
Fanconi Anemia Research Fund (2014) |
|
Translocation (X;13)(p11 |
Kajii T, Tsukahara M, Fukushima Y, Hata A, Matsuo K, Kuroki Y |
21;q12 3) in a girl with incontinentia pigmenti and bilateral retinoblastoma |
PMID 3879432 |
|
Retinoblastoma and retinoma occurring in a child with a translocation and deletion of the long arm of chromosome 13 |
Keith CG, Webb GC |
Arch Ophthalmol 1985 Jul;103(7):941-4 |
PMID 4015485 |
|
Characterization of deletions at the retinoblastoma locus in patients with bilateral retinoblastoma |
Kloss K, Währisch P, Greger V, Messmer E, Fritze H, Höpping W, Passarge E, Horsthemke B |
Am J Med Genet 1991 May 1;39(2):196-200 |
PMID 2063924 |
|
RB1 gene mutations in peripheral blood DNA of patients with isolated unilateral retinoblastoma |
Klutz M, Horsthemke B, Lohmann DR |
Am J Hum Genet 1999 Feb;64(2):667-8 |
PMID 9973307 |
|
Mutation and cancer: statistical study of retinoblastoma |
Knudson AG Jr |
Proc Natl Acad Sci U S A 1971 Apr;68(4):820-3 |
PMID 5279523 |
|
Retinoblastoma in a patient with an X;13 translocation and facial abnormalities consistent with 13q-syndrome |
Laquis SJ, Rodriguez-Galindo C, Wilson MW, Fleming JC, Haik BG |
Am J Ophthalmol 2002 Feb;133(2):285-7 |
PMID 11812445 |
|
Constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma |
Lohmann DR, Gerick M, Brandt B, Oelschläger U, Lorenz B, Passarge E, Horsthemke B |
Am J Hum Genet 1997 Aug;61(2):282-94 |
PMID 9311732 |
|
Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma |
Ohtani-Fujita N, Dryja TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, Watanabe Y, Hayashi K, Maeda K, Kinoshita S, Matsumura T, Ohnishi Y, Hotta Y, Takahashi R, Kato MV, Ishizaki K, Sasaki MS, Horsthemke B, Minoda K, Sakai T |
Cancer Genet Cytogenet 1997 Oct 1;98(1):43-9 |
PMID 9309117 |
|
Selective ophthalmic artery infusion of chemotherapy for advanced intraocular retinoblastoma: initial experience with 17 tumors |
Peterson EC, Elhammady MS, Quintero-Wolfe S, Murray TG, Aziz-Sultan MA |
J Neurosurg 2011 Jun;114(6):1603-8 |
PMID 21294621 |
|
Characterization by FISH of a t(5;13) in a patient with bilateral retinoblastoma |
Triviño E, Guitart M, Egozcue J, Coll MD |
Cancer Genet Cytogenet 1997 Jul 1;96(1):23-5 |
PMID 9209465 |
|
Superselective ophthalmic artery infusion of melphalan for intraocular retinoblastoma: preliminary results from 140 treatments |
Venturi C, Bracco S, Cerase A, Cioni S, Galluzzi P, Gennari P, Vallone IM, Tinturini R, Vittori C, De Francesco S, Caini M, D'Ambrosio A, Toti P, Renieri A, Hadjistilianou T |
Acta Ophthalmol 2013 Jun;91(4):335-42 |
PMID 22268993 |
|
Genetics of retinoblastoma |
Vogel F |
Hum Genet 1979 Nov 1;52(1):1-54 |
PMID 393614 |
|
Mechanisms of loss of heterozygosity in retinoblastoma |
Zhu X, Dunn JM, Goddard AD, Squire JA, Becker A, Phillips RA, Gallie BL |
Cytogenet Cell Genet 1992;59(4):248-52 |
PMID 1544317 |
|