Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

FANCL (FA complementation group L)

Written2019-06Sylvie van Twest, Andrew Deans
St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy VIC 3065;

Abstract FANCL is the catalytically active component of the Fanconi anemia (FA) DNA repair pathway that maintains genomic stability by recognizing and repairing interstand cross links (ICL), and DNA damage incurred during replication. The FA pathway is comprised of 22 genes, biallelic mutations in any one of these genes causes Fanconi anemia, a cancer pre-disposition syndrome characterized by chromosomal instability and hypersensitivity to DNA crosslinking agents, such as those used in chemotherapy like mitomycin C (MMC) (Niraj, Färkkilä et al., 2019). FANCL acts within the 9 protein FA "core complex" (FANCA, FANCG, FAAP20 (AG20), FANCC, FANCE, FANCF (CEF), FANCB, FANCL, FAAP100 (BL100) that forms in response to DNA damage. Together with E2 conjugating enzyme Ube2t (FANCT), the E3 RING ligase FANCL monoubiquitinates FANCD2 and FANCI (ID2), this signals downstream repair processes, and is defective in 95% of all FA patients (Inc, 2014).

Keywords FANCL, RING E3 ligase, Fanconi Anemia, ubiquitination, cancer pre-disposition

(Note : for Links provided by Atlas : click)


Alias (NCBI)FA Complementation Group L
Fanconi Anemia-Associated Polypeptide Of 43 KDa
RING-Type E3 Ubiquitin Transferase FANCL
Fanconi Anemia Complementation Group L
E3 Ubiquitin-Protein Ligase FANCL
Fanconi Anemia Group L Protein
PHD finger protein 9
HGNC Alias symbFLJ10335
HGNC Previous namePHF9
HGNC Previous namePHD finger protein 9
 Fanconi anemia complementation group L
LocusID (NCBI) 55120
Atlas_Id 40529
Location FANCL is located on 2p16.1 which is the short arm (p) of chromosome 2 at position 16.1 between base pairs 58,159,243 to 58,241,681.  [Link to chromosome band 2p16]
Location_base_pair Starts at 58159247 and ends at 58241325 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping FANCL.png]
  Figure 1: Genomic context of FANCL on chromosome 2 (Adapted from NCBI).
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)


Note FANCL has 2 described isoforms produced by alternative splicing. Isoform one (Q9NW38-1). Is known as the canonical isoform, while isoform 2 (Q9NW38-2) differs from the canonical sequence at 178-178: T--> TPQVNS.


  Figure 2: Exons in FANCL gene. Colour coded to indicate ELF, DRWD, and RING finger domains. Adapted from Chandrasekharappa et al. 2013.
Description The FANCL gene encodes FANCL protein comprised of 375 amino acids with a molecular mass of 42905 Da. FANCL is comprised of 3 domains, an N-terminal E2-like fold (ELF), a novel double-RWD (DRWD) and C-terminal RING domain (Hodson, Purkiss et al., 2014).
Expression From total RNA sequencing, FANCL was found to be expressed in adrenal gland (RPKM 2.1), prostate (RPKM 2.34), thymus (RPKM 2.1), and thyroid (RPKM 2.2) (Bioproject PRJNA280600 (PMID 25970244 ). In another RNA sequencing project on 27 different tissues from 95 human individuals, FANCL was highly expressed in adrenal gland (RPKM 16.8), endometrium (RPKM 10.6), lymph nodes (RPKM 8.5), ovary (RPKM 9.2), prostate (RPKM 8.5), and testis (RPKM 12) (Bioproject PRJEB4337, PMID 24309898).
  Figure 3: A) Schematic of D2 monoubiquitination by E3 RING ligase FANCL and E2 conjugating enzyme. B) Ribbon diagram of FANCL with ELF domain (brown), DRWD domain (green), and RING domain (green). C) Surface representation of protein binding domains on FANCL. The binding patch for ubiquitin (orange) is within the ELF domain, while the substrate binding domain (red) is in the DRWD domain, and the Ube2t binding domain (light purple) is in the RING domain. Figure from Specificity and disease in the ubiquitin system by Viduth K. Chaugule and Helen Walden in Biochemical Society Transactions Feb 2016, 44 (1) 212-227; DOI: 10.1042/BST20150209.
Function FANCL the catalytically active part of the 9 protein Fanconi anemia (FA) core complex comprised of FANCB, FAAP100, FANCA, FANCG, FAAP20, FANCC, FANCE and FANCF that forms in response to DNA damage incurred during DNA replication in S-phase, or to detection of interstand cross links (ICL) (Ceccaldi, Sarangi et al., 2016). FANCL is an E3 ubiquitin ligase that specifically monoubiquitinates FANCD2 (at lysine 561) and FANCI (at lysine 523) (ID2; Note the FANCD2-FANCI heterodimer "ID2" must not to be confused with the gene ID2) in the presence ofUBE2T (FANCT) to signal downstream DNA repair proteins. FANCL is comprised of 3 distinct functional domains: the RING domain interacts with the E2 conjugating enzyme UBE2T (FANCT), the central DRWD domain interacts with FANCD2, and the N-terminal E2-like fold domain (ELF) domain interacts with ubiquitin (Hodson et al., 2014, Miles, Frost et al., 2015). Within the core complex, FANCL interacts as a subcomplex with FANCB and FAAP100 (Huang, Leung et al., 2014, van Twest, Murphy et al., 2017); both proteins stabilize FANCL (Rajendra, Oestergaard et al., 2014), and enhance it's activity 5-fold in vitro assays (Ling, Ishiai et al., 2007).
Along with FANCA, FANCG, FANCF, FANCL was found to interact directly with hairy enhancer of split 1 ( HES1), which is a part of the NOTCH1 developmental pathway involved hematopoietic stem cell (HSC) self-renewal (Tremblay, Huang et al., 2008). Depletion of HES1 from cells resulted in FA-like phenotype with disrupted interaction between individual core complex proteins, increased cell sensitivity to DNA crosslinking agents, and reduced MMC-induced ID2 monoubiquitination (Tremblay et al., 2008). Finally HES1 did not interact FA-mutated core complex proteins. HSC defects and eventual bone marrow failure in FA patients may be linked to inability of HES1 to interact with a defective core complex (Tremblay et al., 2008, Tremblay, Huang et al., 2018).
  Figure 4: Schematic of Fanconi Anemia DNA damage response pathway. In response to interstrand cross links (ICL), or DNA damage from DNA replication, FANCM recruits the 9 protein core complex to DNA damage sites to monoubiquitinate FANC D2 and I. The core complex is comprised of 3 sub-complexes AG20 (FANC A, G, FAAP20), BL100 (FANC B, L, FAAP100), and CEF (FANC C,E,F). Dashed lines indicate groupings of sub-complexes, while triple lines indicate putative direct protein interactions. Within the core complex, FANCL has a RING E3 domain with ubiquitin ligase activity, but mutation in any one of the FA genes leads to defective DNA repair. Ubiquitinated ID2 is activated, and localized to chromatin in nuclear foci to interact with downstream DNA repair proteins (FANCD1, FANCD1, FANCN) to repair DNA via homologous recombination. Once DNA repair is completed, USP1 deubiquitinates ID2 so that DNA damage response can be reinitiated. Figure adapted from


Germinal FANCL-associated Fanconi anemia is inherited in an autosomal recessive manner, and accounts for 0.2% of all FA cases (Wu, Liu et al., 2017). To date, there are only 9 documented cases of FANCL-associated FA (Ali, Kirby et al., 2009, Ameziane, Sie et al., 2012, Chandrasekharappa, Lach et al., 2013, Meetei, de Winter et al., 2003, Vetro, Iascone et al., 2015, Wu et al., 2017).
Of the 5 cases with phenotypic and genotypic data, four were severe, and one was mild. Two severe cases frame shift deletions in exon 4 and 6 that truncated FANC, resulted in postnatal mortality and presented with VACTERL association (vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula, renal malformations, and limb defects) (Vetro et al., 2015). Another case with homozygous frameshift insertion of exon 9 had a severe phenotype with esophageal atresia (Ameziane et al., 2012). Finally, a novel homozygous mutation c.822_823insCTTTCAGG (p.Asp275LeufsX13) had a typical FA presentation with progression to bone marrow failture and death at age 9 from acute myelomonocytic leukemia (AML-M4) (Wu et al., 2017). The patient with mild FANCL-associated FA had bi-allelic mutation (Ali et al., 2009). One allele had an in-frame 3-bp deletion c.1007_1009delTAT (p.Ile336_Cys337delinsSer) in exon 12 within the PHD/RING-finger domain that resulted in loss of one amino acid, isoleucine-336, and conversion of cysteine-337 to serine null mutation (produces non-function protein). The other mutated allele had a 4-bp duplication (c.1095_1098dupAATT (p.Thr367AsnfsX13) that resulted in a frameshift just outside the RING-finger domain in exon 14. 4-bp duplication mutation is a hypomorphic mutation (produces partially functional protein) (Ali et al., 2009).
Sequencing screen of 27 FA cases with unidentified mutations uncovered 3 FANCL FA associated mutations: c.375-2033C>G (skips exons 4,6,7), c.375-2033 C>G (multiple splicing aberrations), c.1092G>A (skips exon 13), but didn't have corresponding phenotypic data (Chandrasekharappa et al., 2013). There is no phenotypic data for the first FANCL-associated FA patient that had exon 11 deletion and insertion of 177-nt sequence (Meetei et al., 2003) .

Implicated in

Entity Fanconi Anemia
Disease Biallelic mutations in FANCL, or any of the other 21 FA pathway proteins is implicated in Fanconi Anemia (FA), a rare genetic condition that results in progressive bone marrow failure (pancytopenia), congenital malformations in 75% of patients (short stature, urogenital defects, café au lait spots, skeletal malformations), and cancer pre-disposition (primarily acute myeloid leukaemia, and certain solid tumours) (Alter, 2014). Mutations that result in loss-of-function of both FANCL alleles may correlate with more severe phenotypes (Vetro et al., 2015). Hydrocephalus-VACTERL (vertebral, anal, cardiac, tracheo-esophageal fistula, renal, and limb anomalies) syndrome has been reported in two FANCL-linked FA patients that died shortly after birth (Vetro et al., 2015).
Prognosis: The prognosis for FA is poor as there is no cure, and the average lifespan is 20-30 years. If no congenital abnormalities are apparent at birth, patients are often diagnosed with FA when they present with aplastic anemia ages 8-10 (>700 fold risk) (Alter, 2014). Bone marrow transplants are often conducted to correct the haematological issues associated with FA, however due to faulty DNA repair FA patients retain high cancer risk particularly leukaemia, and head and neck squamous cell carcinomas (approximately 500 fold risk) (Shimamura & Alter, 2010).
Diagnosis: Diagnostics for FA is done with a chromosomal breakage test; when treated with interstand crosslinking agents such as mitomycin C (MMC) or diepoxybutane (DEB) FA cells exhibit high number chromosomal breakages, and abnormalities as compared to normal cells.


Presenting signs of retinoblastoma
Abramson DH, Frank CM, Susman M, Whalen MP, Dunkel IJ, Boyd NW 3rd
J Pediatr 1998 Mar;132(3 Pt 1):505-8
PMID 9544909
Spectrum of gross deletions and insertions in the RB1 gene in patients with retinoblastoma and association with phenotypic expression
Albrecht P, Ansperger-Rescher B, Schüler A, Zeschnigk M, Gallie B, Lohmann DR
Hum Mutat 2005 Nov;26(5):437-45
PMID 16127685
De novo t(2;13)(p24
Blanquet V, Turleau C, Créau-Goldberg N, Cochet C, de Grouchy J
3;q14 2) and retinoblastoma
PMID 3502693
Incidence of retinoblastoma in the USA: 1975-2004
Broaddus E, Topham A, Singh AD
Br J Ophthalmol 2009 Jan;93(1):21-3
PMID 18621794
Retinoblastoma and mental retardation microdeletion syndrome: clinical characterization and molecular dissection using array CGH
Caselli R, Speciale C, Pescucci C, Uliana V, Sampieri K, Bruttini M, Longo I, De Francesco S, Pramparo T, Zuffardi O, Frezzotti R, Acquaviva A, Hadjistilianou T, Renieri A, Mari F
J Hum Genet 2007;52(6):535-42
PMID 17502991
Expression of recessive alleles by chromosomal mechanisms in retinoblastoma
Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL
Nature 1983 Oct 27-Nov 2;305(5937):779-84
PMID 6633649
Retinoblastoma in a patient with a 13qXp translocation
Cross HE, Hansen RC, Morrow G 3rd, Davis JR
Am J Ophthalmol 1977 Oct;84(4):548-54
PMID 910860
The survival gene MED4 explains low penetrance retinoblastoma in patients with large RB1 deletion
Dehainault C, Garancher A, Castéra L, Cassoux N, Aerts I, Doz F, Desjardins L, Lumbroso L, Montes de Oca R, Almouzni G, Stoppa-Lyonnet D, Pouponnot C, Gauthier-Villars M, Houdayer C
Hum Mol Genet 2014 Oct 1;23(19):5243-50
PMID 24858910
Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F, Gallie BL
Nat Rev Dis Primers 2015 Aug 27;1:15021
PMID 27189421
Interstitial deletion of 13q and a 13;X chromosome translocation results in partial trisomy 13 and bilateral retinoblastoma
Dries D, Baca K, Truss L, Dobin S
Ophthalmic Genet 2003 Sep;24(3):175-80
PMID 12868036
RB1: a prototype tumor suppressor and an enigma
Dyson NJ
Genes Dev 2016 Jul 1;30(13):1492-502
PMID 27401552
A Parent-of-Origin Effect Impacts the Phenotype in Low Penetrance Retinoblastoma Families Segregating the c
Eloy P, Dehainault C, Sefta M, Aerts I, Doz F, Cassoux N, Lumbroso le Rouic L, Stoppa-Lyonnet D, Radvanyi F, Millot GA, Gauthier-Villars M, Houdayer C
1981C>T/p Arg661Trp Mutation of RB1
PMID 26925970
A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma
Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP
Nature 1986 Oct 16-22;323(6089):643-6
PMID 2877398
Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma
Greger V, Debus N, Lohmann D, Höpping W, Passarge E, Horsthemke B
Hum Genet 1994 Nov;94(5):491-6
PMID 7959682
Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity in retinoblastomas
Hagstrom SA, Dryja TP
Proc Natl Acad Sci U S A 1999 Mar 16;96(6):2952-7
PMID 10077618
A novel translocation t(11;13) (q21;q14
Huddleston S, McNall-Knapp RY, Siatkowski M, Odom C, Brennan R, Wilson MW
2) in a child with suprasellar primitive neuroectodermal tumor and retinoblastoma Ophthalmic Genet
PMID 22924820
Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma
Imperatore V, Pinto AM, Gelli E, Trevisson E, Morbidoni V, Frullanti E, Hadjistilianou T, De Francesco S, Toti P, Gusson E, Roversi G, Accogli A, Capra V, Mencarelli MA, Renieri A, Ariani F
Eur J Hum Genet 2018 Jul;26(7):1026-1037
PMID 29662154
Fanconi Anemia: Guidelines for Diagnosis and Management.
Inc F ni
Fanconi Anemia Research Fund (2014)
Translocation (X;13)(p11
Kajii T, Tsukahara M, Fukushima Y, Hata A, Matsuo K, Kuroki Y
21;q12 3) in a girl with incontinentia pigmenti and bilateral retinoblastoma
PMID 3879432
Retinoblastoma and retinoma occurring in a child with a translocation and deletion of the long arm of chromosome 13
Keith CG, Webb GC
Arch Ophthalmol 1985 Jul;103(7):941-4
PMID 4015485
Characterization of deletions at the retinoblastoma locus in patients with bilateral retinoblastoma
Kloss K, Währisch P, Greger V, Messmer E, Fritze H, Höpping W, Passarge E, Horsthemke B
Am J Med Genet 1991 May 1;39(2):196-200
PMID 2063924
RB1 gene mutations in peripheral blood DNA of patients with isolated unilateral retinoblastoma
Klutz M, Horsthemke B, Lohmann DR
Am J Hum Genet 1999 Feb;64(2):667-8
PMID 9973307
Mutation and cancer: statistical study of retinoblastoma
Knudson AG Jr
Proc Natl Acad Sci U S A 1971 Apr;68(4):820-3
PMID 5279523
Retinoblastoma in a patient with an X;13 translocation and facial abnormalities consistent with 13q-syndrome
Laquis SJ, Rodriguez-Galindo C, Wilson MW, Fleming JC, Haik BG
Am J Ophthalmol 2002 Feb;133(2):285-7
PMID 11812445
Constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma
Lohmann DR, Gerick M, Brandt B, Oelschläger U, Lorenz B, Passarge E, Horsthemke B
Am J Hum Genet 1997 Aug;61(2):282-94
PMID 9311732
Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma
Ohtani-Fujita N, Dryja TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, Watanabe Y, Hayashi K, Maeda K, Kinoshita S, Matsumura T, Ohnishi Y, Hotta Y, Takahashi R, Kato MV, Ishizaki K, Sasaki MS, Horsthemke B, Minoda K, Sakai T
Cancer Genet Cytogenet 1997 Oct 1;98(1):43-9
PMID 9309117
Selective ophthalmic artery infusion of chemotherapy for advanced intraocular retinoblastoma: initial experience with 17 tumors
Peterson EC, Elhammady MS, Quintero-Wolfe S, Murray TG, Aziz-Sultan MA
J Neurosurg 2011 Jun;114(6):1603-8
PMID 21294621
Characterization by FISH of a t(5;13) in a patient with bilateral retinoblastoma
Triviño E, Guitart M, Egozcue J, Coll MD
Cancer Genet Cytogenet 1997 Jul 1;96(1):23-5
PMID 9209465
Superselective ophthalmic artery infusion of melphalan for intraocular retinoblastoma: preliminary results from 140 treatments
Venturi C, Bracco S, Cerase A, Cioni S, Galluzzi P, Gennari P, Vallone IM, Tinturini R, Vittori C, De Francesco S, Caini M, D'Ambrosio A, Toti P, Renieri A, Hadjistilianou T
Acta Ophthalmol 2013 Jun;91(4):335-42
PMID 22268993
Genetics of retinoblastoma
Vogel F
Hum Genet 1979 Nov 1;52(1):1-54
PMID 393614
Mechanisms of loss of heterozygosity in retinoblastoma
Zhu X, Dunn JM, Goddard AD, Squire JA, Becker A, Phillips RA, Gallie BL
Cytogenet Cell Genet 1992;59(4):248-52
PMID 1544317


This paper should be referenced as such :
Sylvie van Twest, Andrew Deans
FANCL (FA complementation group L)
Atlas Genet Cytogenet Oncol Haematol. 2020;24(05):189-193.
Free journal version : [ pdf ]   [ DOI ]

Other Leukemias implicated (Data extracted from papers in the Atlas) [ 1 ]
  Therapy-Related Hematopoietic Neoplasia

Other Cancer prone implicated (Data extracted from papers in the Atlas) [ 2 ]
  Fanconi anemia Familial Myeloproliferative Disorders

External links


HGNC (Hugo)FANCL   20748
LRG (Locus Reference Genomic)LRG_501
Atlas Explorer : (Salamanque)FANCL
Entrez_Gene (NCBI)FANCL    FA complementation group L
AliasesFAAP43; PHF9; POG
GeneCards (Weizmann)FANCL
Ensembl hg19 (Hinxton)ENSG00000115392 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000115392 [Gene_View]  ENSG00000115392 [Sequence]  chr2:58159247-58241325 [Contig_View]  FANCL [Vega]
ICGC DataPortalENSG00000115392
Genatlas (Paris)FANCL
Genetics Home Reference (NIH)FANCL
Genomic and cartography
GoldenPath hg38 (UCSC)FANCL  -     chr2:58159247-58241325 -  2p16.1   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)FANCL  -     2p16.1   [Description]    (hg19-Feb_2009)
GoldenPathFANCL - 2p16.1 [CytoView hg19]  FANCL - 2p16.1 [CytoView hg38]
Genome Data Viewer NCBIFANCL [Mapview hg19]  
OMIM608111   614083   
Gene and transcription
Genbank (Entrez)AK001197 AK225147 AK297736 AK309671 AL036481
RefSeq transcript (Entrez)NM_001114636 NM_001374615 NM_018062
Consensus coding sequences : CCDS (NCBI)FANCL
Gene Expression Viewer (FireBrowse)FANCL [ Firebrowse - Broad ]
GenevisibleExpression of FANCL in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)55120
GTEX Portal (Tissue expression)FANCL
Human Protein AtlasENSG00000115392-FANCL [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ9NW38   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ9NW38  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ9NW38
Domains : Interpro (EBI)Fancl    FANCL_C    FANCL_d2    FANCL_d3    FancL_N    FancL_WD-rpt_cont_dom    UBQ-conjugating_enzyme/RWD    Znf_RING/FYVE/PHD   
Domain families : Pfam (Sanger)FANCL_C (PF11793)    FANCL_d1 (PF09765)    FANCL_d2 (PF18890)    FANCL_d3 (PF18891)   
Domain families : Pfam (NCBI)pfam11793    pfam09765    pfam18890    pfam18891   
Conserved Domain (NCBI)FANCL
PDB Europe3ZQS    4CCG   
PDB (PDBSum)3ZQS    4CCG   
PDB (IMB)3ZQS    4CCG   
Structural Biology KnowledgeBase3ZQS    4CCG   
SCOP (Structural Classification of Proteins)3ZQS    4CCG   
CATH (Classification of proteins structures)3ZQS    4CCG   
AlphaFold pdb e-kbQ9NW38   
Human Protein Atlas [tissue]ENSG00000115392-FANCL [tissue]
Protein Interaction databases
IntAct (EBI)Q9NW38
Ontologies - Pathways
Ontology : AmiGOchromatin  ubiquitin-protein transferase activity  ubiquitin-protein transferase activity  protein binding  nucleus  nuclear envelope  nucleoplasm  cytoplasm  DNA repair  DNA repair  protein monoubiquitination  protein monoubiquitination  cellular response to DNA damage stimulus  gamete generation  nuclear body  ubiquitin protein ligase binding  regulation of cell population proliferation  intracellular membrane-bounded organelle  Fanconi anaemia nuclear complex  metal ion binding  ubiquitin protein ligase activity  ubiquitin protein ligase activity  
Ontology : EGO-EBIchromatin  ubiquitin-protein transferase activity  ubiquitin-protein transferase activity  protein binding  nucleus  nuclear envelope  nucleoplasm  cytoplasm  DNA repair  DNA repair  protein monoubiquitination  protein monoubiquitination  cellular response to DNA damage stimulus  gamete generation  nuclear body  ubiquitin protein ligase binding  regulation of cell population proliferation  intracellular membrane-bounded organelle  Fanconi anaemia nuclear complex  metal ion binding  ubiquitin protein ligase activity  ubiquitin protein ligase activity  
REACTOMEQ9NW38 [protein]
REACTOME PathwaysR-HSA-6783310 [pathway]   
Atlas of Cancer Signalling NetworkFANCL
Wikipedia pathwaysFANCL
Orthology - Evolution
GeneTree (enSembl)ENSG00000115392
Phylogenetic Trees/Animal Genes : TreeFamFANCL
Homologs : HomoloGeneFANCL
Homology/Alignments : Family Browser (UCSC)FANCL
Gene fusions - Rearrangements
Fusion : QuiverFANCL
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerFANCL [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)FANCL
Exome Variant ServerFANCL
GNOMAD BrowserENSG00000115392
Varsome BrowserFANCL
ACMGFANCL variants
Genomic Variants (DGV)FANCL [DGVbeta]
DECIPHERFANCL [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisFANCL 
ICGC Data PortalFANCL 
TCGA Data PortalFANCL 
Broad Tumor PortalFANCL
OASIS PortalFANCL [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICFANCL  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DFANCL
Mutations and Diseases : HGMDFANCL
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
DgiDB (Drug Gene Interaction Database)FANCL
DoCM (Curated mutations)FANCL
CIViC (Clinical Interpretations of Variants in Cancer)FANCL
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
OMIM608111    614083   
Genetic Testing Registry FANCL
NextProtQ9NW38 [Medical]
Target ValidationFANCL
Huge Navigator FANCL [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTDFANCL
Pharm GKB GenePA134887656
Clinical trialFANCL
DataMed IndexFANCL
PubMed89 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Thu Jan 20 14:07:11 CET 2022

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us