Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

Abstract

Abstract CD95 (also known as Fas) is a death receptor that belongs to the TNF-receptor superfamily. Expressed at the cell surface as a homotrimer, this receptor implements both apoptotic and non-apoptotic signalling pathways. While the apoptotic signalling pathway is involved in tumor surveillance, peripheral tolerance and immune homeostasis (Strasser et al., 2009), its non-apoptotic cues seem to promote oncogenesis (Chen et al., 2010; Hoogwater et al., 2010; Kleber et al., 2010; Malleter et al., 2013; Steller et al., 2011).

FAS (Fas cell surface death receptor)

Identity

Other namesALPS1A
APO-1
APT1
CD95
FAS1
FASTM
TNFRSF6
HGNC (Hugo) FAS
LocusID (NCBI) 355
Atlas_Id 207
Location 10q23.31
Location_base_pair Starts at 90750288 and ends at 90775542 bp from pter ( according to hg19-Feb_2009)  [Mapping]
 
  Gene localisation: CD95 gene spans approximately 25 kb on human chromosome 10.
Note Based on published GeneBank sequences, this gene has seven potential transcription start sites located at 88 969 796, 88 990 531, 88 990 657 and 90 750 288 bp from pter.

DNA/RNA

Note Gene annotation is APT1.
 
  According to Ensembl, CD95 gene is composed of 9 exons encoding 3 variants.
Description CD95 gene is composed of 9 exons.
Transcription According to Ensembl, the gene has 18 transcripts (splice variants). Among them, three transcripts encode for proteins (represented in the diagram). Variant 1 encodes for the longest protein of 335 aa. Variant 2 encodes for a CD95 protein lacking transmembrane region (exon 6) and thus corresponding to a soluble receptor. Variant 3 contains a distinct and shorter c-terminus compare to variant 1 and encodes for a protein of 220 aa.
Pseudogene No known pseudogenes.

Protein

Note Type I transmembrane protein.
 
  CD95 is a 335 amino acids type 1 transmembrane glycoprotein. Signal peptide corresponds to amino acid 1 to 16 (Itoh et al., 1991). The PLAD (pre-ligand assembly domain) and the CRDs (cysteine-rich domain) are encoded by exon 2 to 5. Exon 6 encompasses the transmembrane domain (TM), and the CD95 intracellular region consists in exons 7 to 9. The FAS DD is encoded by exon 9.
Description CD95 displays two different numberings. While some researchers start to count from the first translated amino acid after methionine (335 aa), others start at the first amino acid after signal peptide (319 aa) (Itoh et al., 1991). CD95 contains three cysteine-rich domains (CRDs). CRD2 and the upper part of CRD3 interact with CD95L (Schneider et al., 1997). CD95 is expressed at the plasma membrane as a pre-associated homotrimer (Siegel et al., 2000) because of homotypic interactions occurring between its pre-ligand assembly domains (PLAD) (amino acids 43 to 66 (Edmond et al., 2014), count starts after signal peptide). The intracellular region of CD95 encompasses an 87-amino-acid-long stretch designated the death domain (DD) whose structure consists of six amphipathic α-helices arranged anti-parallel to one another (Huang et al., 1997). The 15 last amino acids of CD95 exert an inhibitory action on the CD95-mediated apoptotic signal due to the recruitment of the phosphatase FAP1 (Yanagisawa et al., 1997).
 
  The molecular weight of CD95 varies between 40 to 50 kDa due to different post-translational modifications: glycosylation (Shatnyeva et al., 2011; Keppler et al., 1999), nitrosylation (Leon-Bollotte et al., 2011), S-glutathionylation (Anathy et al., 2009) and palmitoylation (Chakrabandhu et al., 2007; Feig et al., 2007).
Expression CD95 is ubiquitously expressed in human body.
Localisation CD95 is mainly found at cell surface. CD95 is retained internalized in cells through a FAP-1-driven mechanism, while its translocation to the cell surface relies on dynamin-2 (Ivanov et al., 2003; Ivanov et al., 2006).
Function CD95 contributes to immune homeostasis, elimination of transformed and infected cells, and plays a pivotal role in peripheral tolerance. CD95/CD95L pair is also responsible for preventing inflammation in certain tissues designated immune privileged sites, such as eyes and testis. More recently, CD95 has been shown to promote carcinogenesis ((Chen et al., 2010; Hoogwater et al., 2010; Kleber et al., 2010; Malleter et al., 2013; O' Reilly et al., 2009).
Upon binding of membrane-bound CD95L to CD95, CD95-DD recruits the adaptor molecule Fas-associated death domain protein (FADD) and caspase-8, leading to caspase activation and apoptosis (Kischkel et al., 1995). The complex CD95/FADD/Caspase-8 is called death-inducing signalling complex (DISC) (Kischkel et al., 1995). DISC formation is regulated by several molecular mechanisms including c-FLIP (FLICE-like-inhibitory-protein) (Irmler et al., 1997), FAP-1 (Fas associated phosphatase 1) (Sato et al., 1995) and PED-PEA15 (Condorelli et al., 1999).
Cells can be divided in two groups with regard to the magnitude of DISC formation, and the role played by the mitochondrion in this pathway (Scaffidi et al., 1998). In type I cells, DISC formation occurs rapidly and efficiently, resulting in the release of a large amount of activated caspase-8 in the cytosol. Whereas, type II cells have difficulties forming this complex, and the amount of active caspase-8 is insufficient to directly activate the effector caspase-3 and caspase-7 (Scaffidi et al., 1998). The low level of activated caspase-8 in type II cells is sufficient to cleave BID, a BH3-only protein, which links the death receptor to the apoptotic activity of mitochondria. Indeed, caspase-8-driven BID truncation generates tBID, which translocates to mitochondria, and triggers the release of pro-apoptotic factors (Yin, 2000; Yin et al., 1999). Type II cells are addicted to this latter signal because they contain higher levels of the caspase-3 inhibitor XIAP than type I cells (Jost et al., 2009). To summarize, DISC formation and IAP amount are two cellular markers that allow a clear discrimination between type I and type II cells.
CD95 engagement also induces non-apoptotic signalling pathways promoting cell motility, invasiveness (Hoogwater et al., 2010; Kleber et al., 2010; Malleter et al., 2013; Steller et al., 2011; Barnhart et al., 2004), inflammation (O' Reilly et al., 2009; Audo et al., 2014; Letellier et al., 2010; Tauzin et al., 2011) and organ regeneration (Desbarats et al., 2003; Desbarats and Newell, 2000). Indeed, CD95 can implement NFκB (O' Reilly et al., 2009; Barnhart et al., 2004; Wajant et al., 1998), phosphatidylinositol 3-kinase (PI3K) (Kleber et al., 2008;Tauzin et al., 2011) or MAPK signaling pathways (Hoogwater et al., 2010; Desbarats et al., 2003). CD95 has also been reported to play a pivotal role in T cell activation (Akimzhanov et al., 2010; Alderson et al., 1993).
Of note, while interaction of transmembrane CD95L with CD95 triggers cell death, its metalloprotease-cleaved counterpart (cl-CD95L) does not form DISC, but induces the formation of an atypical complex designated motility-inducing signalling complex (MISC)5.
Homology The CD95-mediated apoptotic system is conserved among all mammals. The most primitive invertebrate TNF/TNFR pair has been reported in the fruit fly Drosophila melangastor (Kauppila et al., 2003; Moreno et al., 2002; Collette et al., 2003). However, a more recent study highlighted that TNFSF and TNFRSF members are conserved in more ancient invertebrates such as Cnidaria (Quistad et al., 2014). Moreover, comparison of coral TNFSF/TNFRSF members with proteins from Homo sapiens reveals high genetic and structural conservation.

Mutations

Note Most of the mutations are gathered in exons 8 and 9 encoding the CD95 intracellular region. Malignant tumor cells and ALPS type Ia cells harboring a heterozygous mutation inside the CD95-DD, exhibit resistance to the CD95-mediated apoptotic signal, but remain able to elicit non-apoptotic signal such NFkB, MAPK, and PI3K (Legembre et al., 2004). Tree "hot-spots" of mutation (arginine in position 234, aspartic acid in position 244 and valine in position 251) have been identified and implicated in the interaction of CD95/FADD (Tauzin et al., 2012).
Other mutations are reported on different website: COSMIC and LOVD.
  Extensive analysis of the loss-of-function CD95 mutations. Mutations reported in Tables 1 and 2 (see below) have been placed in the amino-acid sequence of CD95.
Germinal CD95 germinal mutations have been reported in ALPS type Ia.
Somatic CD95 somatic mutations have been reported in several cancers.

Implicated in

Entity Hodgkin's lymphoma
Note Hodgkin's lymphoma is a cancer of the immune system characterised by the presence of mononucleated Hodgkin's cells and multinucleated Reed-Sternberg cell. This disease can be caused by somatic mutation of CD95 (Tables 1 and 2). The symptoms are enlargement of lymph nodes, spleen or other immune tissue. Also non hodgkin's lymphoma (NHL) show somatic mutations of CD95 (Tables 1 and 2): thyroid lymphoma, mucosa associated lymphoid tissue-type lymphomas, follicle center lymphomas, mycosis fungoide (cutaneous T cell lymphoma), nasal NK/T cell lymphoma, anaplastic large lymphoma, B-chronic lymphocytic lymphoma, and diffuse large B cells lymphomas. 8% of patients with NHL exhibits autoimmune phenomena (Grønbaek et al., 1995).
 
Table1. Germinal mutations in the APT1 gene.
 
Oncogenesis Table 2. Somatic mutations in the APT1 gene. * Amino acid numbers have been modified according to the regular amino acid annotation. ** Threonine 256 depicted in this study corresponded in fact to amino acid 254.
  
Entity Various cancers
Note Somatic mutations of CD95 have been also identified in various cancers (Table 2): multiple myelomas, T cell leukemia, cutaneous malignant melanoma, squamous cell carcinoma, bladder carcinoma, prostatic cancer, gastric cancer, testicular germ cell tumor, and non small cell lung cancer.
  
Entity Autoimmune lymphoproliferative syndrome type Ia
Note ALPS is characterised by chronic lymphadenopathy and splenomegaly, expanded populations of double-negative α/β T lymphocytes (CD3+, CD4-, CD8-). ALPS patients often develop autoimmunity. These patients exhibit germinal mutations in CD95 gene with no or rare "loss of heterozygosity" (Table 1). The ALPS patients show an increased risk to develop Hodgkin and non-Hodgkin lymphomas (Straus et al., 2001).
  
Entity Systemic lupus erythematous
Note Systemic lupus erythematous is a prototypic systemic autoimmune disorder characterized by autoantibody production, immune complex formation and cell-mediated reactivity against self. CD95/CD95L have been implicated in this disease.
  

Breakpoints

Note No translocation within the APT-1 gene have been identified.

External links

Nomenclature
HGNC (Hugo)FAS   11920
Cards
AtlasFASID207ch10q23
Entrez_Gene (NCBI)FAS  355  Fas cell surface death receptor
GeneCards (Weizmann)FAS
Ensembl hg19 (Hinxton)ENSG00000026103 [Gene_View]  chr10:90750288-90775542 [Contig_View]  FAS [Vega]
Ensembl hg38 (Hinxton)ENSG00000026103 [Gene_View]  chr10:90750288-90775542 [Contig_View]  FAS [Vega]
ICGC DataPortalENSG00000026103
TCGA cBioPortalFAS
AceView (NCBI)FAS
Genatlas (Paris)FAS
WikiGenes355
SOURCE (Princeton)FAS
Genomic and cartography
GoldenPath hg19 (UCSC)FAS  -     chr10:90750288-90775542 +  10q24.1   [Description]    (hg19-Feb_2009)
GoldenPath hg38 (UCSC)FAS  -     10q24.1   [Description]    (hg38-Dec_2013)
EnsemblFAS - 10q24.1 [CytoView hg19]  FAS - 10q24.1 [CytoView hg38]
Mapping of homologs : NCBIFAS [Mapview hg19]  FAS [Mapview hg38]
OMIM134637   601859   
Gene and transcription
Genbank (Entrez)AB209361 AK026195 AK290978 AK311164 AK311424
RefSeq transcript (Entrez)NM_000043 NM_152871 NM_152872 NM_152873 NM_152874 NM_152875 NM_152876 NM_152877
RefSeq genomic (Entrez)NC_000010 NC_018921 NG_009089 NT_030059 NW_004929376
Consensus coding sequences : CCDS (NCBI)FAS
Cluster EST : UnigeneHs.667309 [ NCBI ]
CGAP (NCI)Hs.667309
Alternative Splicing : Fast-db (Paris)GSHG0033148
Alternative Splicing GalleryENSG00000026103
Gene ExpressionFAS [ NCBI-GEO ]     FAS [ SEEK ]   FAS [ MEM ]
SOURCE (Princeton)Expression in : [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP25445 (Uniprot)
NextProtP25445  [Medical]  [Publications]
With graphics : InterProP25445
Splice isoforms : SwissVarP25445 (Swissvar)
Domaine pattern : Prosite (Expaxy)DEATH_DOMAIN (PS50017)    TNFR_NGFR_1 (PS00652)    TNFR_NGFR_2 (PS50050)   
Domains : Interpro (EBI)DEATH-like_dom    Death_domain    Fas_rcpt    TNFR/NGFR_Cys_rich_reg   
Related proteins : CluSTrP25445
Domain families : Pfam (Sanger)Death (PF00531)    TNFR_c6 (PF00020)   
Domain families : Pfam (NCBI)pfam00531    pfam00020   
Domain families : Smart (EMBL)DEATH (SM00005)  TNFR (SM00208)  
DMDM Disease mutations355
Blocks (Seattle)P25445
PDB (SRS)1BZI    1DDF    3EWT    3EZQ    3THM    3TJE   
PDB (PDBSum)1BZI    1DDF    3EWT    3EZQ    3THM    3TJE   
PDB (IMB)1BZI    1DDF    3EWT    3EZQ    3THM    3TJE   
PDB (RSDB)1BZI    1DDF    3EWT    3EZQ    3THM    3TJE   
Human Protein AtlasENSG00000026103
Peptide AtlasP25445
HPRD00609
IPIIPI00744894   IPI00216357   IPI00216358   IPI00216359   IPI00170811   IPI00291314   IPI00375340   IPI00235003   IPI00966251   
Protein Interaction databases
DIP (DOE-UCLA)P25445
IntAct (EBI)P25445
FunCoupENSG00000026103
BioGRIDFAS
IntegromeDBFAS
STRING (EMBL)FAS
Ontologies - Pathways
QuickGOP25445
Ontology : AmiGOimmunoglobulin production  renal system process  signal transducer activity  receptor activity  transmembrane signaling receptor activity  protein binding  nucleus  cytoplasm  cytosol  plasma membrane  plasma membrane  plasma membrane  protein complex assembly  apoptotic process  apoptotic process  activation of cysteine-type endopeptidase activity involved in apoptotic process  activation-induced cell death of T cells  inflammatory cell apoptotic process  transformed cell apoptotic process  signal transduction  cell surface receptor signaling pathway  circadian rhythm  extrinsic apoptotic signaling pathway via death domain receptors  response to toxic substance  external side of plasma membrane  cell surface  regulation of necrotic cell death  programmed cell death  integral component of membrane  B cell mediated immunity  kinase binding  death-inducing signaling complex  CD95 death-inducing signaling complex  positive regulation of protein homooligomerization  identical protein binding  regulation of apoptotic process  positive regulation of apoptotic process  positive regulation of apoptotic process  negative regulation of apoptotic process  negative regulation of cysteine-type endopeptidase activity involved in apoptotic process  negative thymic T cell selection  membrane raft  regulation of lymphocyte differentiation  regulation of myeloid cell differentiation  spleen development  negative regulation of B cell activation  protein homooligomerization  response to glucocorticoid  extracellular exosome  necroptotic process  cellular response to mechanical stimulus  cellular response to lithium ion  cellular response to hyperoxia  motor neuron apoptotic process  apoptotic signaling pathway  extrinsic apoptotic signaling pathway  extrinsic apoptotic signaling pathway  extrinsic apoptotic signaling pathway in absence of ligand  hepatocyte apoptotic process  activation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway  programmed necrotic cell death  necroptotic signaling pathway  regulation of extrinsic apoptotic signaling pathway via death domain receptors  positive regulation of extrinsic apoptotic signaling pathway in absence of ligand  
Ontology : EGO-EBIimmunoglobulin production  renal system process  signal transducer activity  receptor activity  transmembrane signaling receptor activity  protein binding  nucleus  cytoplasm  cytosol  plasma membrane  plasma membrane  plasma membrane  protein complex assembly  apoptotic process  apoptotic process  activation of cysteine-type endopeptidase activity involved in apoptotic process  activation-induced cell death of T cells  inflammatory cell apoptotic process  transformed cell apoptotic process  signal transduction  cell surface receptor signaling pathway  circadian rhythm  extrinsic apoptotic signaling pathway via death domain receptors  response to toxic substance  external side of plasma membrane  cell surface  regulation of necrotic cell death  programmed cell death  integral component of membrane  B cell mediated immunity  kinase binding  death-inducing signaling complex  CD95 death-inducing signaling complex  positive regulation of protein homooligomerization  identical protein binding  regulation of apoptotic process  positive regulation of apoptotic process  positive regulation of apoptotic process  negative regulation of apoptotic process  negative regulation of cysteine-type endopeptidase activity involved in apoptotic process  negative thymic T cell selection  membrane raft  regulation of lymphocyte differentiation  regulation of myeloid cell differentiation  spleen development  negative regulation of B cell activation  protein homooligomerization  response to glucocorticoid  extracellular exosome  necroptotic process  cellular response to mechanical stimulus  cellular response to lithium ion  cellular response to hyperoxia  motor neuron apoptotic process  apoptotic signaling pathway  extrinsic apoptotic signaling pathway  extrinsic apoptotic signaling pathway  extrinsic apoptotic signaling pathway in absence of ligand  hepatocyte apoptotic process  activation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway  programmed necrotic cell death  necroptotic signaling pathway  regulation of extrinsic apoptotic signaling pathway via death domain receptors  positive regulation of extrinsic apoptotic signaling pathway in absence of ligand  
Pathways : BIOCARTAStress Induction of HSP Regulation [Genes]    IL-2 Receptor Beta Chain in T cell Activation [Genes]    Bystander B Cell Activation [Genes]    FAS signaling pathway ( CD95 ) [Genes]    Keratinocyte Differentiation [Genes]    CTL mediated immune response against target cells [Genes]    Regulation of transcriptional activity by PML [Genes]    Antigen Dependent B Cell Activation [Genes]    HIV-I Nef: negative effector of Fas and TNF [Genes]    HIV Induced T Cell Apoptosis [Genes]   
Pathways : KEGGMAPK signaling pathway    Cytokine-cytokine receptor interaction    p53 signaling pathway    Apoptosis    Natural killer cell mediated cytotoxicity    TNF signaling pathway    Non-alcoholic fatty liver disease (NAFLD)    Type I diabetes mellitus    Alzheimer's disease    Chagas disease (American trypanosomiasis)    African trypanosomiasis    Hepatitis B    Measles    Influenza A    Herpes simplex infection    Pathways in cancer    Proteoglycans in cancer    Autoimmune thyroid disease    Allograft rejection    Graft-versus-host disease   
REACTOMEP25445 [protein]
REACTOME PathwaysREACT_578 Apoptosis [pathway]
Protein Interaction DatabaseFAS
DoCM (Curated mutations)FAS
Wikipedia pathwaysFAS
Gene fusion - Rearrangements
Gene fusion: TCGA
Polymorphisms : SNP, variants
NCBI Variation ViewerFAS [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)FAS
dbVarFAS
ClinVarFAS
1000_GenomesFAS 
Exome Variant ServerFAS
SNP (GeneSNP Utah)FAS
SNP : HGBaseFAS
Genetic variants : HAPMAPFAS
Genomic Variants (DGV)FAS [DGVbeta]
Mutations
ICGC Data PortalFAS 
TCGA Data PortalFAS 
Tumor PortalFAS
Cancer Gene: CensusFAS 
Somatic Mutations in Cancer : COSMICFAS 
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
LOVD (Leiden Open Variation Database)**PUBLIC** CCHMC Molecular Genetics Laboratory Mutation Database
LOVD (Leiden Open Variation Database)LOVD at NCBI
Impact of mutations[PolyPhen2] [SIFT Human Coding SNP] [Buck Institute : MutDB] [Mutation Assessor] 
Diseases
DECIPHER (Syndromes)10:90750288-90775542
CONAN: Copy Number AnalysisFAS 
Mutations and Diseases : HGMDFAS
OMIM134637    601859   
MedgenFAS
NextProtP25445 [Medical]
GENETestsFAS
Disease Genetic AssociationFAS
Huge Navigator FAS [HugePedia]  FAS [HugeCancerGEM]
snp3D : Map Gene to Disease355
DGIdb (Drug Gene Interaction db)FAS
BioCentury BCIQFAS
General knowledge
Homologs : HomoloGeneFAS
Homology/Alignments : Family Browser (UCSC)FAS
Phylogenetic Trees/Animal Genes : TreeFamFAS
Chemical/Protein Interactions : CTD355
Chemical/Pharm GKB GenePA36613
Clinical trialFAS
Cancer Resource (Charite)ENSG00000026103
Other databases
Probes
Litterature
PubMed499 Pubmed reference(s) in Entrez
CoreMineFAS
GoPubMedFAS
iHOPFAS

Bibliography

The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis.
Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S.
Cell. 1991 Jul 26;66(2):233-43.
PMID 1713127
 
Fas transduces activation signals in normal human T lymphocytes.
Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH.
J Exp Med. 1993 Dec 1;178(6):2231-5.
PMID 7504062
 
Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome.
Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM.
Cell. 1995 Jun 16;81(6):935-46.
PMID 7540117
 
Autoimmune phenomena in non-Hodgkin's lymphoma.
Gronbaek K, D'Amore F, Schmidt K.
Leuk Lymphoma. 1995 Jul;18(3-4):311-6.
PMID 8535198
 
Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor.
Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME.
EMBO J. 1995 Nov 15;14(22):5579-88.
PMID 8521815
 
Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity.
Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, de Villartay JP.
Science. 1995 Jun 2;268(5215):1347-9.
PMID 7539157
 
FAP-1: a protein tyrosine phosphatase that associates with Fas.
Sato T, Irie S, Kitada S, Reed JC.
Science. 1995 Apr 21;268(5209):411-5.
PMID 7536343
 
Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity.
Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB.
N Engl J Med. 1996 Nov 28;335(22):1643-9.
PMID 8929361
 
NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain.
Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW
Nature. 1996 Dec 19-26;384(6610):638-41.
PMID 8967952
 
Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis.
Bettinardi A, Brugnoni D, Quiros-Roldan E, Malagoli A, La Grutta S, Correra A, Notarangelo LD.
Blood. 1997 Feb 1;89(3):902-9.
PMID 9028321
 
Inhibition of death receptor signals by cellular FLIP.
Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J.
Nature. 1997 Jul 10;388(6638):190-5.
PMID 9217161
 
Mutations in the Fas antigen in patients with multiple myeloma.
Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS.
Blood. 1997 Dec 1;90(11):4266-70.
PMID 9373236
 
Fas/Apo1 mutations and autoimmune lymphoproliferative syndrome in a patient with type 2 autoimmune hepatitis.
Pensati L, Costanzo A, Ianni A, Accapezzato D, Iorio R, Natoli G, Nisini R, Almerighi C, Balsano C, Vajro P, Vegnente A, Levrero M.
Gastroenterology. 1997 Oct;113(4):1384-9.
PMID 9322534
 
Characterization of Fas (Apo-1, CD95)-Fas ligand interaction.
Schneider P, Bodmer JL, Holler N, Mattmann C, Scuderi P, Terskikh A, Peitsch MC, Tschopp J.
J Biol Chem. 1997 Jul 25;272(30):18827-33.
PMID 9228058
 
The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis.
Yanagisawa J, Takahashi M, Kanki H, Yano-Yanagisawa H, Tazunoki T, Sawa E, Nishitoba T, Kamishohara M, Kobayashi E, Kataoka S, Sato T.
J Biol Chem. 1997 Mar 28;272(13):8539-45.
PMID 9079683
 
Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity.
Gronbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE, Zeuthen J, Hou-Jensen K, Guldberg P.
Blood. 1998 Nov 1;92(9):3018-24.
PMID 9787134
 
The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs lymphocyte apoptosis.
Infante AJ, Britton HA, DeNapoli T, Middelton LA, Lenardo MJ, Jackson CE, Wang J, Fleisher T, Straus SE, Puck JM.
J Pediatr. 1998 Nov;133(5):629-33.
PMID 9821419
 
Two CD95 (APO-1/Fas) signaling pathways.
Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME.
EMBO J. 1998 Mar 16;17(6):1675-87.
PMID 9501089
 
Dominant-negative FADD inhibits TNFR60-, Fas/Apo1- and TRAIL-R/Apo2-mediated cell death but not gene induction.
Wajant H, Johannes FJ, Haas E, Siemienski K, Schwenzer R, Schubert G, Weiss T, Grell M, Scheurich P.
Curr Biol. 1998 Jan 15;8(2):113-6.
PMID 9427646
 
PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis.
Condorelli G, Vigliotta G, Cafieri A, Trencia A, Andalo P, Oriente F, Miele C, Caruso M, Formisano P, Beguinot F.
Oncogene. 1999 Aug 5;18(31):4409-15.
PMID 10442631
 
Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance.
Jackson CE, Fischer RE, Hsu AP, Anderson SM, Choi Y, Wang J, Dale JK, Fleisher TA, Middelton LA, Sneller MC, Lenardo MJ, Straus SE, Puck JM.
Am J Hum Genet. 1999 Apr;64(4):1002-14.
PMID 10090885
 
Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus.
Keppler OT, Peter ME, Hinderlich S, Moldenhauer G, Stehling P, Schmitz I, Schwartz-Albiez R, Reutter W, Pawlita M.
Glycobiology. 1999 Jun;9(6):557-69.
PMID 10336988
 
Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder.
Lee SH, Shin MS, Park WS, Kim SY, Dong SM, Pi JH, Lee HK, Kim HS, Jang JJ, Kim CS, Kim SH, Lee JY, Yoo NJ.
Cancer Res. 1999 Jul 1;59(13):3068-72.
PMID 10397246
 
Fas gene mutation in the progression of adult T cell leukemia.
Maeda T, Yamada Y, Moriuchi R, Sugahara K, Tsuruda K, Joh T, Atogami S, Tsukasaki K, Tomonaga M, Kamihira S.
J Exp Med. 1999 Apr 5;189(7):1063-71.
PMID 10190897
 
Defective apoptosis due to a point mutation in the death domain of CD95 associated with autoimmune lymphoproliferative syndrome, T-cell lymphoma, and Hodgkin's disease.
Peters AM, Kohfink B, Martin H, Griesinger F, Wormann B, Gahr M, Roesler J.
Exp Hematol. 1999 May;27(5):868-74.
PMID 10340403
 
Lymphoproliferative syndrome with autoimmunity: A possible genetic basis for dominant expression of the clinical manifestations.
Rieux-Laucat F, Blachere S, Danielan S, De Villartay JP, Oleastro M, Solary E, Bader-Meunier B, Arkwright P, Pondare C, Bernaudin F, Chapel H, Nielsen S, Berrah M, Fischer A, Le Deist F.
Blood. 1999 Oct 15;94(8):2575-82.
PMID 10515860
 
Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma.
Shin MS, Park WS, Kim SY, Kim HS, Kang SJ, Song KY, Park JY, Dong SM, Pi JH, Oh RR, Lee JY, Yoo NJ, Lee SH.
Am J Pathol. 1999 Jun;154(6):1785-91.
PMID 10362803
 
The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations.
Vaishnaw AK, Orlinick JR, Chu JL, Krammer PH, Chao MV, Elkon KB.
J Clin Invest. 1999 Feb;103(3):355-63.
PMID 9927496
 
Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis.
Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ.
Nature. 1999 Aug 26;400(6747):886-91.
PMID 10476969
 
Fas engagement accelerates liver regeneration after partial hepatectomy.
Desbarats J, Newell MK.
Nat Med. 2000 Aug;6(8):920-3.
PMID 10932231
 
Somatic mutations of Fas (Apo-1/CD95) gene in cutaneous squamous cell carcinoma arising from a burn scar.
Lee SH, Shin MS, Kim HS, Park WS, Kim SY, Jang JJ, Rhim KJ, Jang J, Lee HK, Park JY, Oh RR, Han SY, Lee JH, Lee JY, Yoo NJ.
J Invest Dermatol. 2000 Jan;114(1):122-6.
PMID 10620127
 
Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells.
Muschen M, Re D, Brauninger A, Wolf J, Hansmann ML, Diehl V, Kuppers R, Rajewsky K.
Cancer Res. 2000 Oct 15;60(20):5640-3.
PMID 11059754
 
Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations.
Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ.
Science. 2000 Jun 30;288(5475):2354-7.
PMID 10875918
 
Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways.
Yin XM.
Cell Res. 2000 Sep;10(3):161-7. (REVIEW)
PMID 11032168
 
Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer.
Park WS, Oh RR, Kim YS, Park JY, Lee SH, Shin MS, Kim SY, Kim PJ, Lee HK, Yoo NY, Lee JY.
J Pathol. 2001 Feb;193(2):162-8.
PMID 11180161
 
Loss of Fas (CD95/APO-1) regulatory function is an important step in early MALT-type lymphoma development.
Seeberger H, Starostik P, Schwarz S, Knorr C, Kalla J, Ott G, Muller-Hermelink HK, Greiner A.
Lab Invest. 2001 Jul;81(7):977-86.
PMID 11454987
 
The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis.
Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rosen-Wolff A, Peters AM, Sneller MC, Hallahan CW, Wang J, Fischer RE, Jackson CM, Lin AY, Baumler C, Siegert E, Marx A, Vaishnaw AK, Grodzicky T, Fleisher TA, Lenardo MJ.
Blood. 2001 Jul 1;98(1):194-200.
PMID 11418480
 
Frequent mutations of Fas gene in thyroid lymphoma.
Takakuwa T, Dong Z, Takayama H, Matsuzuka F, Nagata S, Aozasa K.
Cancer Res. 2001 Feb 15;61(4):1382-5.
PMID 11245438
 
Fas gene mutations in prostatic intraepithelial neoplasia and concurrent carcinoma: analysis of laser capture microdissected specimens.
Takayama H, Takakuwa T, Dong Z, Nonomura N, Okuyama A, Nagata S, Aozasa K.
Lab Invest. 2001 Mar;81(3):283-8.
PMID 11310821
 
Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin.
Dereure O, Levi E, Vonderheid EC, Kadin ME.
J Invest Dermatol. 2002 Jun;118(6):949-56.
PMID 12060388
 
Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily.
Moreno E, Yan M, Basler K.
Curr Biol. 2002 Jul 23;12(14):1263-8.
PMID 12176339
 
Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer.
Shin MS, Kim HS, Lee SH, Lee JW, Song YH, Kim YS, Park WS, Kim SY, Lee SN, Park JY, Lee JH, Xiao W, Jo KH, Wang YP, Lee KY, Park YG, Kim SH, Lee JY, Yoo NJ.
Oncogene. 2002 Jun 13;21(26):4129-36.
PMID 12037669
 
Frequent mutations of Fas gene in nasal NK/T cell lymphoma.
Takakuwa T, Dong Z, Nakatsuka S, Kojya S, Harabuchi Y, Yang WI, Nagata S, Aozasa K.
Oncogene. 2002 Jul 11;21(30):4702-5.
PMID 12096347
 
Frequent Fas gene mutations in testicular germ cell tumors.
Takayama H, Takakuwa T, Tsujimoto Y, Tani Y, Nonomura N, Okuyama A, Nagata S, Aozasa K.
Am J Pathol. 2002 Aug;161(2):635-41.
PMID 12163388
 
Germline FAS gene mutation in a case of ALPS and NLP Hodgkin lymphoma.
van den Berg A, Maggio E, Diepstra A, de Jong D, van Krieken J, Poppema S.
Blood. 2002 Feb 15;99(4):1492-4.
PMID 11830507
 
A co-evolution perspective of the TNFSF and TNFRSF families in the immune system.
Collette Y, Gilles A, Pontarotti P, Olive D.
Trends Immunol. 2003 Jul;24(7):387-94. (REVIEW)
PMID 12860530
 
Fas engagement induces neurite growth through ERK activation and p35 upregulation.
Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK.
Nat Cell Biol. 2003 Feb;5(2):118-25.
PMID 12545171
 
FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface.
Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z.
Mol Cell Biol. 2003 May;23(10):3623-35.
PMID 12724420
 
Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila.
Kauppila S, Maaty WS, Chen P, Tomar RS, Eby MT, Chapo J, Chew S, Rathore N, Zachariah S, Sinha SK, Abrams JM, Chaudhary PM.
Oncogene. 2003 Jul 31;22(31):4860-7.
PMID 12894227
 
CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells.
Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME.
EMBO J. 2004 Aug 4;23(15):3175-85. Epub 2004 Jul 22.
PMID 15272306
 
Autoimmune lymphoproliferative syndrome with somatic Fas mutations.
Holzelova E, Vonarbourg C, Stolzenberg MC, Arkwright PD, Selz F, Prieur AM, Blanche S, Bartunkova J, Vilmer E, Fischer A, Le Deist F, Rieux-Laucat F.
N Engl J Med. 2004 Sep 30;351(14):1409-18.
PMID 15459302
 
Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds.
Legembre P, Barnhart BC, Zheng L, Vijayan S, Straus SE, Puck J, Dale JK, Lenardo M, Peter ME.
EMBO Rep. 2004 Nov;5(11):1084-9.
PMID 15514680
 
FAS (CD95) mutations are rare in gastric MALT lymphoma but occur more frequently in primary gastric diffuse large B-cell lymphoma.
Wohlfart S, Sebinger D, Gruber P, Buch J, Polgar D, Krupitza G, Rosner M, Hengstschlager M, Raderer M, Chott A, Mullauer L.
Am J Pathol. 2004 Mar;164(3):1081-9.
PMID 14982861
 
Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis.
Ivanov VN, Ronai Z, Hei TK.
J Biol Chem. 2006 Jan 20;281(3):1840-52. Epub 2005 Nov 23.
PMID 16306044
 
Palmitoylation is required for efficient Fas cell death signaling.
Chakrabandhu K, Herincs Z, Huault S, Dost B, Peng L, Conchonaud F, Marguet D, He HT, Hueber AO.
EMBO J. 2007 Jan 10;26(1):209-20. Epub 2006 Dec 7.
PMID 17159908
 
Autoimmune lymphoproliferative syndrome (ALPS) in a patient with a new germline Fas gene mutation.
Del-Rey MJ, Manzanares J, Bosque A, Aguilo JI, Gomez-Rial J, Roldan E, Serrano A, Anel A, Paz-Artal E, Allende LM.
Immunobiology. 2007;212(2):73-83. Epub 2007 Jan 19.
PMID 17336828
 
Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling.
Feig C, Tchikov V, Schutze S, Peter ME.
EMBO J. 2007 Jan 10;26(1):221-31. Epub 2006 Dec 7.
PMID 17159907
 
Mutations within the 5' region of FAS/CD95 gene in nodal diffuse large B-cell lymphoma.
Scholl V, Stefanoff CG, Hassan R, Spector N, Renault IZ.
Leuk Lymphoma. 2007 May;48(5):957-63.
PMID 17487740
 
Yes and PI3K bind CD95 to signal invasion of glioblastoma.
Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O, Thiemann M, Mueller W, Sykora J, Kuhn A, Schreglmann N, Letellier E, Zuliani C, Klussmann S, Teodorczyk M, Grone HJ, Ganten TM, Sultmann H, Tuttenberg J, von Deimling A, Regnier-Vigouroux A, Herold-Mende C, Martin-Villalba A.
Cancer Cell. 2008 Mar;13(3):235-48. doi: 10.1016/j.ccr.2008.02.003.
PMID 18328427
 
Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas.
Anathy V, Aesif SW, Guala AS, Havermans M, Reynaert NL, Ho YS, Budd RC, Janssen-Heininger YM.
J Cell Biol. 2009 Jan 26;184(2):241-52. doi: 10.1083/jcb.200807019.
PMID 19171757
 
XIAP discriminates between type I and type II FAS-induced apoptosis.
Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T.
Nature. 2009 Aug 20;460(7258):1035-9. doi: 10.1038/nature08229. Epub 2009 Jul 22.
PMID 19626005
 
Membrane-bound Fas ligand only is essential for Fas-induced apoptosis.
O' Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A.
Nature. 2009 Oct 1;461(7264):659-63. doi: 10.1038/nature08402.
PMID 19794494
 
The many roles of FAS receptor signaling in the immune system.
Strasser A, Jost PJ, Nagata S.
Immunity. 2009 Feb 20;30(2):180-92. doi: 10.1016/j.immuni.2009.01.001. (REVIEW)
PMID 19239902
 
T-cell receptor complex is essential for Fas signal transduction.
Akimzhanov AM, Wang X, Sun J, Boehning D.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15105-10. doi: 10.1073/pnas.1005419107. Epub 2010 Aug 9.
PMID 20696918
 
CD95 promotes tumour growth.
Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME.
Nature. 2010 May 27;465(7297):492-6. doi: 10.1038/nature09075.
PMID 20505730
 
Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome.
Dowdell KC, Niemela JE, Price S, Davis J, Hornung RL, Oliveira JB, Puck JM, Jaffe ES, Pittaluga S, Cohen JI, Fleisher TA, Rao VK.
Blood. 2010 Jun 24;115(25):5164-9. doi: 10.1182/blood-2010-01-263145. Epub 2010 Apr 1.
PMID 20360470
 
Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells.
Hoogwater FJ, Nijkamp MW, Smakman N, Steller EJ, Emmink BL, Westendorp BF, Raats DA, Sprick MR, Schaefer U, Van Houdt WJ, De Bruijn MT, Schackmann RC, Derksen PW, Medema JP, Walczak H, Borel Rinkes IH, Kranenburg O.
Gastroenterology. 2010 Jun;138(7):2357-67. doi: 10.1053/j.gastro.2010.02.046. Epub 2010 Feb 23.
PMID 20188103
 
CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site.
Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, Laudenklos S, Konecki K, Klussmann S, Corsini NS, Kleber S, Drost N, Neumann A, Levi-Strauss M, Brors B, Gretz N, Edler L, Fischer C, Hill O, Thiemann M, Biglari B, Karray S, Martin-Villalba A.
Immunity. 2010 Feb 26;32(2):240-52. doi: 10.1016/j.immuni.2010.01.011. Epub 2010 Feb 11.
PMID 20153221
 
S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells.
Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C, Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF, Bettaieb A.
Gastroenterology. 2011 Jun;140(7):2009-18, 2018.e1-4. doi: 10.1053/j.gastro.2011.02.053. Epub 2011 Feb 24.
PMID 21354149
 
Modulation of the CD95-induced apoptosis: the role of CD95 N-glycosylation.
Shatnyeva OM, Kubarenko AV, Weber CE, Pappa A, Schwartz-Albiez R, Weber AN, Krammer PH, Lavrik IN.
PLoS One. 2011;6(5):e19927. doi: 10.1371/journal.pone.0019927. Epub 2011 May 18.
PMID 21625644
 
How CD95 stimulates invasion.
Steller EJ, Borel Rinkes IH, Kranenburg O.
Cell Cycle. 2011 Nov 15;10(22):3857-62. doi: 10.4161/cc.10.22.18290. Epub 2011 Nov 15. (REVIEW)
PMID 22064519
 
The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway.
Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L, Moreau JF, Hofman P, Vacher P, Legembre P.
PLoS Biol. 2011 Jun;9(6):e1001090. doi: 10.1371/journal.pbio.1001090. Epub 2011 Jun 21.
PMID 21713032
 
FAS mRNA editing in Human Systemic Lupus Erythematosus.
Wu J, Xie F, Qian K, Gibson AW, Edberg JC, Kimberly RP.
Hum Mutat. 2011 Nov;32(11):1268-77. doi: 10.1002/humu.21565. Epub 2011 Aug 11.
PMID 21793106
 
CD95-mediated cell signaling in cancer: mutations and post-translational modulations.
Tauzin S, Debure L, Moreau JF, Legembre P.
Cell Mol Life Sci. 2012 Apr;69(8):1261-77. doi: 10.1007/s00018-011-0866-4. Epub 2011 Nov 1.
PMID 22042271
 
CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer.
Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F, Leveque J, Jezequel P, Campion L, Campone M, Ducret T, MacGrogan G, Debure L, Collette Y, Vacher P, Legembre P.
Cancer Res. 2013 Nov 15;73(22):6711-21. doi: 10.1158/0008-5472.CAN-13-1794. Epub 2013 Sep 26.
PMID 24072745
 
Distinct effects of soluble and membrane-bound fas ligand on fibroblast-like synoviocytes from rheumatoid arthritis patients.
Audo R, Calmon-Hamaty F, Papon L, Combe B, Morel J, Hahne M.
Arthritis Rheumatol. 2014 Dec;66(12):3289-99. doi: 10.1002/art.38806.
PMID 25078097
 
Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility.
Edmond V, Dufour F, Poiroux G, Shoji K, Malleter M, Fouque A, Tauzin S, Rimokh R, Sergent O, Penna A, Dupuy A, Levade T, Theret N, Micheau O, Segui B, Legembre P.
Oncogene. 2014 Mar 17. doi: 10.1038/onc.2014.55. [Epub ahead of print]
PMID 24632610
 
Evolution of TNF-induced apoptosis reveals 550 My of functional conservation.
Quistad SD, Stotland A, Barott KL, Smurthwaite CA, Hilton BJ, Grasis JA, Wolkowicz R, Rohwer FL.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9567-72. doi: 10.1073/pnas.1405912111. Epub 2014 Jun 9.
PMID 24927546
 
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

Contributor(s)

Written11-2014Doriane Sanséau, Patrick Legembre
Universite de Rennes-1, 2 Av. du Professeur Leon Bernard, 35043 Rennes, France, Centre Eugene Marquis, rue Bataille Flandres Dunkerque, 35042 Rennes, France and INSERM U1085, Equipe Labellisee Ligue Contre Le Cancer "Death Receptors and Tumor Escape", 2 Avenue du Professeur Leon Bernard, 35043 Rennes, France

Citation

This paper should be referenced as such :
Sanséau D, Legembre P
FAS (Fas cell surface death receptor);
Atlas Genet Cytogenet Oncol Haematol. in press
On line version : http://AtlasGeneticsOncology.org/Genes/FASID207ch10q23.html

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Sat Jun 27 15:30:05 CEST 2015

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.