Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

FKBP5 (FK506 binding protein 5)

Identity

Other namesAIG6
FKBP51
FKBP54
P54
PPIase
Ptg-10
HGNC (Hugo) FKBP5
LocusID (NCBI) 2289
Location 6p21.31
Location_base_pair Starts at 35541362 and ends at 35696360 bp from pter ( according to hg19-Feb_2009)  [Mapping]

DNA/RNA

 
  Figure 1. (A) Schematic diagram of FKBP5 location on chromosome 6. FKBP5 localizes to chromosome 6p21.31, which is represented graphically. FKBP5 gene spans over 154 kbp from 35541362 to 35696360 on reverse strand. The region surrounding FKBP5 gene is enlarged. (B) Schematic representation of FKBP5 mRNA structure, with indicated ATG translation start site in exon 2.
Description FKBP5 gene is located on short arm of chromosome 6 (6p21.31). FKBP5 gene ranges from 35541362 to 35696360 on reverse strand with a total length of 154999 bp including 10 coding exons.
Transcription This gene has been found to have multiple polyadenylation sites. Transcription of FKBP5 gene produces 4 different transcript variants due to alternative splicing (RefSeq, Mar 2009). NM_004117 is the transcript most widely referred to, and its mRNA is 3803 bp long.

Protein

Note Protein name: FK506 binding protein 51, FKBP51, Peptidyl-prolyl cis-trans isomerase (PPIase). It is encoded by the FKBP5 gene (Nair et al., 1997).
 
  Figure 2. Functional domains of FKBP51. FKBP1 consists of 457 amino acids with three functional domains, as shown. FKBP51 binding proteins are indicated and listed by domain they interact with.
Description FKBP51 is a member of immunophilin family, proteins characterized by their ability to bind immunosuppresive drugs. Additionally, immunophilins are peptidylprolyl isomerases (PPIase) that catalyze the cis-trans conversion of peptidylprolyl bonds, a reaction important for protein folding (Fischer et al., 1984). Sinars et al. (Sinars et al., 2003) initially showed the structure of FKBP51 and the orientation of its domains. The N-terminal domain, FK1, is an active rotamase domain (peptidyl-prolyl isomerase; PPIase) which is required to bind immunosuppressive drugs, such as FK506 (tacrolimus). In addition, it is responsible for binding to the kinase Akt (Pei et al., 2009). The FK2 domain, needed for interaction with some binding partners (Figure 2), does not show measurable PPIase activity. The TRP domain consists of three highly degenerate 34 amino acid repeats TPR repeats, and is responsible for multiple protein-protein interactions (figure 2), for example with Hsp90 (Cheung-Flynn et al., 2003), progesterone receptor (PR) (Barent et al., 1998), PH domain and leucine rich repeat protein phosphatase (PHLPP) (Pei et al., 2009).
Expression FKBP5 is ubiquitously expressed with different levels of distribution in various tissues. Tissue examples include amygdala, kidney, heart, hippocampus, liver skeletal muscle, peripheral blood, placenta, thymus, testis, uterus, and others, with lower levels of expression in pancreas, spleen, and stomach (Baughman et al., 1997). Up to date it has been established that FKBP5 expression is regulated by glucocorticoids, progestins, and androgens (Hubler et al., 2003; Hubler and Scammell, 2004; Makkonen et al., 2009; Paakinaho et al., 2010).
Localisation FKBP5 localizes to cytoplasm and nucleus.
Function FKBP5 plays multiple important roles in cellular process. Since it has peptidyl-prolyl isomerase (PPIase) activity, it regulates protein folding (Galat, 1993; Fruman et al., 1994). In addition, FKBP5 can associate with chaperones, thus playing a role in cell trafficking (Schiene-Fischer and Yu, 2001). Also, it influences steroid receptor signaling (Denny et al., 2000; Barent et al., 1998; Ni et al., 2010), NFκB pathway (Bouwmeester et al., 2004), as well as Akt pathway (Pei et al., 2009). Moreover, FKBP5 plays a role in regulating drug responses (Jiang et al., 2008; Li et al., 2008; Hou and Wang, 2012; Binder et al., 2004).

Mutations

Note Next Generation resequencing of FKBP5 gene was performed using 96 Caucasian American samples and identified 657 single nucleotide polymorphisms (SNPs) (Ellsworth et al., 2013b). In addition, Next Generation resequencing was also performed using 60 samples from pancreatic cancer patients and identified 404 SNPs (Ellsworth et al., 2013a). All of these polymorphisms are germinal SNPs.
Somatic It has been reported that four confirmed somatic mutations in various cancer tissues has been identified (V37V: silent (ovary) M97I: missense (breast) (Cancer Genome Atlas Research Network, 2011), Y113Y: silent (pancreas) (Biankin et al., 2012), S309L: missense (endometrium, lung, large intestine) (Liu et al., 2012).

Implicated in

Entity Cancer and response to chemotherapy
Note FKBP51 is an important protein involved in the regulation of many key signaling cascades in the cell, such as Akt (Pei et al., 2009), NFκB (Bouwmeester et al., 2004), and androgen receptor pathways (Ni et al., 2010). All of these signalling pathways are implicated in tumorigenesis and response to drug treatment. It has been suggested that the contribution of FKBP5 in tumorgenesis and antineoplastic therapy is tissue-specific. Depending on the cellular context, FKBP5 can either promote or inhibit tumor progression and chemoresistance.
  
Entity Pancreatic cancer
Note The Akt pathway is one of the most important signaling pathways, playing a role in regulation of many cellular processes, including cell proliferation, growth, and other processes that crucial for cell survival (Manning and Cantley, 2007). Akt is a serine/threonine kinase that in order to become fully activated needs its residues: Ser473 and Thr308 to be phosphorylated. This is facilitated by phosphoinositide 3-kinase (PIP3), as well as PDK1, and mTOR complex 2 (Alessi et al., 1996; Engelman et al., 2006; Sarbassov et al., 2005). Conversely, phosphatases, such as PP2 holoenzymes and PHLPP de-phosphorylate Akt, halting its activity (Brognard et al., 2007; Carracedo and Pandolfi, 2008; Gao et al., 2005; Padmanabhan et al., 2009). The balance in phosphorylation levels of Akt determines its pathway activity, therefore affecting all the downstream cellular events. If Akt pathway becomes highly up-regulated, it potentially could lead to tumor development, progression and eventually to chemotherapy resistance (Pei et al., 2010). Genome-wide association studies of cytidine analogues identified FKBP5 low expression levels to be associated with resistance to many chemotherapeutic drugs (Li et al., 2008; Pei et al., 2009). Functional studies of FKBP5 demonstrated that FKBP51 acts as a scaffolding protein increasing interaction between Akt's phosphatase - PHLPP and Akt, thus decreasing the phosphorylation of Akt-Ser473 (Pei et al., 2009). It was shown, that in pancreatic and breast cancer cells FKBP5 expression levels are decreased, while the phosphorylation of Akt-Ser473 is increased, which could lead to chemoresistance. Also, it suggested that FKBP5 might function as a tumor suppressor gene through the down-regulation of Akt activation (Pei et al., 2009, Hou and Wang, 2012).
 
Figure 3. Importance of FKBP5 in regulating activity of Akt pathway. FKBP5 acts as a scaffolding protein, enhancing the interaction of PHLPP and Akt, therefore promoting de-phosphorylation of Akt's Serine residue 473. That in turn eventually leads to inactivation of Akt pathway. FKBP5 expression and interaction with PHLPP is especially important upon chemotherapy treatment, because it inactivation of Akt leads to chemotoxic stress and directs cells towards apoptosis, rather than survival pathway.
  
Entity Acute lymphoblastic leukemia, glioma, melanoma
Note FKBP5 plays a pivotal role in regulating NF-κB pathway (Bouwmeester et al., 2004). Specifically, FKBP51 interacts with several members of the NF-κB pathway including inhibitors of NF-κB kinase: IKKα, IKKε, TAK1 and MEKK1. It was shown, that FKBP51 enzymatic activity is required for IKK activation, which suggested that FKBP5 plays an important role in this pathway. Avellino et al. demonstrated, that the addition of rapamycin, a known inhibitor of FKBP51 enzymatic (PPIase) activity, to anthracycline treatment of blasts from chronic childhood acute lymphoblastic leukemia (ALL) patients would sensitize these cells to anthracyclines (Avellino et al., 2005). These experiments suggested that the combination treatment of rapamycin and doxorubicin inhibits the activation of the NF-κB pathway, which leads to an increase in apoptosis, and, in turn, an increase in sensitivity to chemotherapy (Avellino et al., 2005). Since NF-κB pathway activation leads to anti-apoptotic signals, therefore, in this case, FKBP5 plays a role in chemoresistance to drugs such as anthracyclines. In addition, in glioma cells, FKBP5 expression contributes to glioma cells growth and sensitivity to rapamycin through regulation of the NF-κB pathway (Jiang et al., 2008). FKBP5 was also described to influence radioresistance in melanoma cells (Romano et al., 2010). Specifically, it was found that in melanoma samples FKBP51 controlled radioresistance through the activation of NF-κB pathway, and by silencing expression of FKBP5 in tumors in vitro and in vivo, it contributed to an increase in apoptosis after irradiation.
 
Figure 4. FKBP5 enzymatic activity regulates NF-κB pathway activation. Peptidylprolyl isomerase enzymatic activity of FKBP5 is required for IKKa activation and further phosphorylation of NFκB, which promotes cell survival and chemoresistance. Rapamycin can specifically inhibit FKBP5 enzymatic activity, which leads to decrease in NFκB pathway activation and increase in apoptosis upon chemotherapy treatment.
  
Entity Prostate cancer
Note FKBP5 influences androgen receptor signaling in prostate cancer. Androgen receptor (AR) is a transcription factor, regulating expression of multiple genes, including FKBP5 (Makkonen et al., 2009). Additionally, FKBP5 is a part of a positive feedback loop that not only is having its expression regulated by AR and androgen binding, but it also facilitates androgen-dependent transcription. Ni et al. (Ni et al., 2010) reported that FKBP5 forms a superchaperone complex with ATP-bound Hsp90 and p23 that increases binding of androgen to its receptor. This allows for androgen-dependent gene transcription activation and promotes cell growth, which is especially important during prostate cancer progression to the androgen-independent state during disease progression and tumor growth (Ni et al., 2010).
 
Figure 5. Prostate cancer cell growth promotion under low-androgen conditions. Formation of ATP-bound Hsp90-FKBP5-p23 superchaperone complex allows for increased androgen and androgen receptor binding which promotes cell growth.
  
Entity Depression, post-traumatic stress disorder
Note It has been established that one of the major functions of FKBP51 is to co-chaperone with HSP family members steroid receptors: glucocorticoid (GR) (Denny et al., 2000), progesterone (PR) (Barent et al., 1998), and androgen (AR) (Ni et al., 2010). In addition, FKBP5 intronic regions contain hormone response elements (HRE) that upon GR, PR, or AR activation bind their respective hormones. That, in turn, induces the FKBP5 gene transcription (Hubler et al., 2003; Hubler and Scammell, 2004; Makkonen et al., 2009; Paakinaho et al., 2010) leading to increases in the amount of FKBP51 protein in the cell. FKBP5 modulates steroid hormones binding affinity; therefore it affects their signaling pathways. For example FKBP51 plays an important role in regulating the activity of the glucocorticoid receptor (Davies et al., 2005). When FKBP51 is bound to the GR-complex, the receptor has lower affinity for glucocorticoids, which causes an increase of glucocorticoids in the intercellular environment. On the other hand, once glucocorticoid is bound, FKBP51 dissociate from the complex and is exchanged with FKBP52. That allows for the translocation of GR into the nucleus and interaction with DNA. Once, in the nucleus GR acts as a transcription factor and by binding to glucocorticoid receptor response elements (GRE) of FKBP5 increases its transcription. That leads to increased concentrations of FKBP51 that contribute to higher GR resistance, completing a negative feedback loop on GR sensitivity (Binder, 2009). Since GR plays a role in regulating a stress response, if FKBP5 expression is altered, it could potentially contribute to development of mood disorders, such as depression or post-traumatic stress disorder (Binder, 2009; Binder et al., 2008; Binder et al., 2004).
 
Figure 6. Negative feedback loop on GR sensitivity. When HSP90-GR is bound to the FKBP51, it has a lower affinity for GR ligand (glucocorticoids). However, once glucocorticoids bind to the complex, FKBP51 dissociates from the complex and FKBP52 binds instead. That allows for the GR translocation into the nucleus and exertion of its action as a transcription factor. GR also acts on FKBP5 via its glucocorticoid response elements (GREs), increasing its transcription, which leads to an increase in amount of FKBP51 protein in the cell. That, in turn, decreases the GR affinity for its ligand, completing this negative feedback loop on GR sensitivity.
  

External links

Nomenclature
HGNC (Hugo)FKBP5   3721
Cards
AtlasFKBP5ID40578ch6p21
Entrez_Gene (NCBI)FKBP5  2289  FK506 binding protein 5
GeneCards (Weizmann)FKBP5
Ensembl (Hinxton)ENSG00000096060 [Gene_View]  chr6:35541362-35696360 [Contig_View]  FKBP5 [Vega]
ICGC DataPortalENSG00000096060
cBioPortalFKBP5
AceView (NCBI)FKBP5
Genatlas (Paris)FKBP5
WikiGenes2289
SOURCE (Princeton)NM_001145775 NM_001145776 NM_001145777 NM_004117
Genomic and cartography
GoldenPath (UCSC)FKBP5  -  6p21.31   chr6:35541362-35696360 -  6p21.31   [Description]    (hg19-Feb_2009)
EnsemblFKBP5 - 6p21.31 [CytoView]
Mapping of homologs : NCBIFKBP5 [Mapview]
OMIM602623   608516   
Gene and transcription
Genbank (Entrez)AB209893 AF194172 AK222807 AK302704 AK303356
RefSeq transcript (Entrez)NM_001145775 NM_001145776 NM_001145777 NM_004117
RefSeq genomic (Entrez)AC_000138 NC_000006 NC_018917 NG_012645 NT_007592 NW_001838980 NW_004929326
Consensus coding sequences : CCDS (NCBI)FKBP5
Cluster EST : UnigeneHs.407190 [ NCBI ]
CGAP (NCI)Hs.407190
Alternative Splicing : Fast-db (Paris)GSHG0026553
Alternative Splicing GalleryENSG00000096060
Gene ExpressionFKBP5 [ NCBI-GEO ]     FKBP5 [ SEEK ]   FKBP5 [ MEM ]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ13451 (Uniprot)
NextProtQ13451  [Medical]
With graphics : InterProQ13451
Splice isoforms : SwissVarQ13451 (Swissvar)
Catalytic activity : Enzyme5.2.1.8 [ Enzyme-Expasy ]   5.2.1.85.2.1.8 [ IntEnz-EBI ]   5.2.1.8 [ BRENDA ]   5.2.1.8 [ KEGG ]   
Domaine pattern : Prosite (Expaxy)FKBP_PPIASE (PS50059)    TPR (PS50005)    TPR_REGION (PS50293)   
Domains : Interpro (EBI)Elongated_TPR_rpt_dom [organisation]   PPIase_FKBP [organisation]   PPIase_FKBP_dom [organisation]   TPR-contain_dom [organisation]   TPR-like_helical [organisation]   TPR_1 [organisation]   TPR_repeat [organisation]  
Related proteins : CluSTrQ13451
Domain families : Pfam (Sanger)FKBP_C (PF00254)    TPR_1 (PF00515)   
Domain families : Pfam (NCBI)pfam00254    pfam00515   
DMDM Disease mutations2289
Blocks (Seattle)Q13451
PDB (SRS)1KT0    3O5D    3O5E    3O5F    3O5G    3O5I    3O5J    3O5K    3O5L    3O5M    3O5O    3O5P    3O5Q    3O5R    4DRH    4DRI    4DRK    4DRM    4DRN    4DRO    4DRP    4DRQ    4JFI    4JFJ    4JFK    4JFL    4JFM   
PDB (PDBSum)1KT0    3O5D    3O5E    3O5F    3O5G    3O5I    3O5J    3O5K    3O5L    3O5M    3O5O    3O5P    3O5Q    3O5R    4DRH    4DRI    4DRK    4DRM    4DRN    4DRO    4DRP    4DRQ    4JFI    4JFJ    4JFK    4JFL    4JFM   
PDB (IMB)1KT0    3O5D    3O5E    3O5F    3O5G    3O5I    3O5J    3O5K    3O5L    3O5M    3O5O    3O5P    3O5Q    3O5R    4DRH    4DRI    4DRK    4DRM    4DRN    4DRO    4DRP    4DRQ    4JFI    4JFJ    4JFK    4JFL    4JFM   
PDB (RSDB)1KT0    3O5D    3O5E    3O5F    3O5G    3O5I    3O5J    3O5K    3O5L    3O5M    3O5O    3O5P    3O5Q    3O5R    4DRH    4DRI    4DRK    4DRM    4DRN    4DRO    4DRP    4DRQ    4JFI    4JFJ    4JFK    4JFL    4JFM   
Human Protein AtlasENSG00000096060 [gene] [tissue] [antibody] [cell] [cancer]
Peptide AtlasQ13451
HPRD04019
IPIIPI00218775   IPI01010266   IPI01015705   IPI01015323   IPI00443474   IPI00556067   
Protein Interaction databases
DIP (DOE-UCLA)Q13451
IntAct (EBI)Q13451
FunCoupENSG00000096060
BioGRIDFKBP5
InParanoidQ13451
Interologous Interaction database Q13451
IntegromeDBFKBP5
STRING (EMBL)FKBP5
Ontologies - Pathways
Ontology : AmiGOprotein peptidyl-prolyl isomerization  protein peptidyl-prolyl isomerization  peptidyl-prolyl cis-trans isomerase activity  FK506 binding  nucleus  nucleolus  endoplasmic reticulum membrane  protein folding  membrane  heat shock protein binding  chaperone-mediated protein folding  extracellular vesicular exosome  
Ontology : EGO-EBIprotein peptidyl-prolyl isomerization  protein peptidyl-prolyl isomerization  peptidyl-prolyl cis-trans isomerase activity  FK506 binding  nucleus  nucleolus  endoplasmic reticulum membrane  protein folding  membrane  heat shock protein binding  chaperone-mediated protein folding  extracellular vesicular exosome  
Pathways : KEGGEstrogen signaling pathway   
Protein Interaction DatabaseFKBP5
Wikipedia pathwaysFKBP5
Gene fusion - rearrangments
Polymorphisms : SNP, mutations, diseases
SNP Single Nucleotide Polymorphism (NCBI)FKBP5
snp3D : Map Gene to Disease2289
SNP (GeneSNP Utah)FKBP5
SNP : HGBaseFKBP5
Genetic variants : HAPMAPFKBP5
Exome VariantFKBP5
1000_GenomesFKBP5 
ICGC programENSG00000096060 
Somatic Mutations in Cancer : COSMICFKBP5 
CONAN: Copy Number AnalysisFKBP5 
Mutations and Diseases : HGMDFKBP5
Genomic VariantsFKBP5  FKBP5 [DGVbeta]
dbVarFKBP5
ClinVarFKBP5
Pred. of missensesPolyPhen-2  SIFT(SG)  SIFT(JCVI)  Align-GVGD  MutAssessor  Mutanalyser  
Pred. splicesGeneSplicer  Human Splicing Finder  MaxEntScan  
Diseases
OMIM602623    608516   
MedgenFKBP5
GENETestsFKBP5
Disease Genetic AssociationFKBP5
Huge Navigator FKBP5 [HugePedia]  FKBP5 [HugeCancerGEM]
General knowledge
Homologs : HomoloGeneFKBP5
Homology/Alignments : Family Browser (UCSC)FKBP5
Phylogenetic Trees/Animal Genes : TreeFamFKBP5
Chemical/Protein Interactions : CTD2289
Chemical/Pharm GKB GenePA28162
Clinical trialFKBP5
Cancer Resource (Charite)ENSG00000096060
Other databases
Probes
Litterature
PubMed138 Pubmed reference(s) in Entrez
CoreMineFKBP5
iHOPFKBP5
OncoSearchFKBP5

Bibliography

[Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides].
Fischer G, Bang H, Mech C.
Biomed Biochim Acta. 1984;43(10):1101-11.
PMID 6395866
 
Peptidylproline cis-trans-isomerases: immunophilins.
Galat A.
Eur J Biochem. 1993 Sep 15;216(3):689-707. (REVIEW)
PMID 8404888
 
Immunophilins in protein folding and immunosuppression.
Fruman DA, Burakoff SJ, Bierer BE.
FASEB J. 1994 Apr 1;8(6):391-400. (REVIEW)
PMID 7513288
 
Mechanism of activation of protein kinase B by insulin and IGF-1.
Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA.
EMBO J. 1996 Dec 2;15(23):6541-51.
PMID 8978681
 
Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor.
Nair SC, Rimerman RA, Toran EJ, Chen S, Prapapanich V, Butts RN, Smith DF.
Mol Cell Biol. 1997 Feb;17(2):594-603.
PMID 9001212
 
Tissue distribution and abundance of human FKBP51, and FK506-binding protein that can mediate calcineurin inhibition.
Baughman G, Wiederrecht GJ, Chang F, Martin MM, Bourgeois S.
Biochem Biophys Res Commun. 1997 Mar 17;232(2):437-43.
PMID 9125197
 
Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes.
Barent RL, Nair SC, Carr DC, Ruan Y, Rimerman RA, Fulton J, Zhang Y, Smith DF.
Mol Endocrinol. 1998 Mar;12(3):342-54.
PMID 9514152
 
Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding.
Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG.
Endocrinology. 2000 Nov;141(11):4107-13.
PMID 11089542
 
Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases.
Schiene-Fischer C, Yu C.
FEBS Lett. 2001 Apr 20;495(1-2):1-6. (REVIEW)
PMID 11322937
 
C-terminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to Hsp90.
Cheung-Flynn J, Roberts PJ, Riggs DL, Smith DF.
J Biol Chem. 2003 May 9;278(19):17388-94. Epub 2003 Feb 27.
PMID 12611898
 
The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness.
Hubler TR, Denny WB, Valentine DL, Cheung-Flynn J, Smith DF, Scammell JG.
Endocrinology. 2003 Jun;144(6):2380-7.
PMID 12746298
 
Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes.
Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J.
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):868-73. Epub 2003 Jan 21.
PMID 12538866
 
Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment.
Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Kunzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Kohnlein O, Dabitz H, Bruckl T, Muller N, Pfister H, Lieb R, Mueller JC, Lohmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B.
Nat Genet. 2004 Dec;36(12):1319-25. Epub 2004 Nov 21.
PMID 15565110
 
A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway.
Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G.
Nat Cell Biol. 2004 Feb;6(2):97-105. Epub 2004 Jan 25.
PMID 14743216
 
Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids.
Hubler TR, Scammell JG.
Cell Stress Chaperones. 2004 Autumn;9(3):243-52.
PMID 15544162
 
Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells.
Avellino R, Romano S, Parasole R, Bisogni R, Lamberti A, Poggi V, Venuta S, Romano MF.
Blood. 2005 Aug 15;106(4):1400-6. Epub 2005 May 5.
PMID 15878982
 
Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506.
Davies TH, Ning YM, Sanchez ER.
Biochemistry. 2005 Feb 15;44(6):2030-8.
PMID 15697228
 
PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth.
Gao T, Furnari F, Newton AC.
Mol Cell. 2005 Apr 1;18(1):13-24.
PMID 15808505
 
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM.
Science. 2005 Feb 18;307(5712):1098-101.
PMID 15718470
 
The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism.
Engelman JA, Luo J, Cantley LC.
Nat Rev Genet. 2006 Aug;7(8):606-19. (REVIEW)
PMID 16847462
 
PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms.
Brognard J, Sierecki E, Gao T, Newton AC.
Mol Cell. 2007 Mar 23;25(6):917-31.
PMID 17386267
 
AKT/PKB signaling: navigating downstream.
Manning BD, Cantley LC.
Cell. 2007 Jun 29;129(7):1261-74. (REVIEW)
PMID 17604717
 
Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults.
Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, Tang Y, Gillespie CF, Heim CM, Nemeroff CB, Schwartz AC, Cubells JF, Ressler KJ.
JAMA. 2008 Mar 19;299(11):1291-305. doi: 10.1001/jama.299.11.1291.
PMID 18349090
 
The PTEN-PI3K pathway: of feedbacks and cross-talks.
Carracedo A, Pandolfi PP.
Oncogene. 2008 Sep 18;27(41):5527-41. doi: 10.1038/onc.2008.247.
PMID 18794886
 
FK506 binding protein mediates glioma cell growth and sensitivity to rapamycin treatment by regulating NF-kappaB signaling pathway.
Jiang W, Cazacu S, Xiang C, Zenklusen JC, Fine HA, Berens M, Armstrong B, Brodie C, Mikkelsen T.
Neoplasia. 2008 Mar;10(3):235-43.
PMID 18320068
 
Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression.
Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, Hildebrandt M, Ames M, Schaid D, Wang L.
Cancer Res. 2008 Sep 1;68(17):7050-8. doi: 10.1158/0008-5472.CAN-08-0405.
PMID 18757419
 
The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders.
Binder EB.
Psychoneuroendocrinology. 2009 Dec;34 Suppl 1:S186-95. doi: 10.1016/j.psyneuen.2009.05.021. (REVIEW)
PMID 19560279
 
Long-range activation of FKBP51 transcription by the androgen receptor via distal intronic enhancers.
Makkonen H, Kauhanen M, Paakinaho V, Jaaskelainen T, Palvimo JJ.
Nucleic Acids Res. 2009 Jul;37(12):4135-48. doi: 10.1093/nar/gkp352. Epub 2009 May 11.
PMID 19433513
 
A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation.
Padmanabhan S, Mukhopadhyay A, Narasimhan SD, Tesz G, Czech MP, Tissenbaum HA.
Cell. 2009 Mar 6;136(5):939-51. doi: 10.1016/j.cell.2009.01.025. Epub 2009 Feb 26.
PMID 19249087
 
FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt.
Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z, Wang L.
Cancer Cell. 2009 Sep 8;16(3):259-66. doi: 10.1016/j.ccr.2009.07.016.
PMID 19732725
 
FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells.
Ni L, Yang CS, Gioeli D, Frierson H, Toft DO, Paschal BM.
Mol Cell Biol. 2010 Mar;30(5):1243-53. doi: 10.1128/MCB.01891-08. Epub 2010 Jan 4.
PMID 20048054
 
Glucocorticoid receptor activates poised FKBP51 locus through long-distance interactions.
Paakinaho V, Makkonen H, Jaaskelainen T, Palvimo JJ.
Mol Endocrinol. 2010 Mar;24(3):511-25. doi: 10.1210/me.2009-0443. Epub 2010 Jan 21.
PMID 20093418
 
Emerging role of FKBP51 in AKT kinase/protein kinase B signaling.
Pei H, Lou Z, Wang L.
Cell Cycle. 2010 Jan 1;9(1):6-7. Epub 2010 Jan 9.
PMID 20016266
 
Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells.
Romano S, D'Angelillo A, Pacelli R, Staibano S, De Luna E, Bisogni R, Eskelinen EL, Mascolo M, Cali G, Arra C, Romano MF.
Cell Death Differ. 2010 Jan;17(1):145-57. doi: 10.1038/cdd.2009.115.
PMID 19696786
 
Integrated genomic analyses of ovarian carcinoma.
Cancer Genome Atlas Research Network.
Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.
PMID 21720365
 
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, Chang DK, Cowley MJ, Gardiner BB, Song S, Harliwong I, Idrisoglu S, Nourse C, Nourbakhsh E, Manning S, Wani S, Gongora M, Pajic M, Scarlett CJ, Gill AJ, Pinho AV, Rooman I, Anderson M, Holmes O, Leonard C, Taylor D, Wood S, Xu Q, Nones K, Fink JL, Christ A, Bruxner T, Cloonan N, Kolle G, Newell F, Pinese M, Mead RS, Humphris JL, Kaplan W, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chou A, Chin VT, Chantrill LA, Mawson A, Samra JS, Kench JG, Lovell JA, Daly RJ, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N; Australian Pancreatic Cancer Genome Initiative, Kakkar N, Zhao F, Wu YQ, Wang M, Muzny DM, Fisher WE, Brunicardi FC, Hodges SE, Reid JG, Drummond J, Chang K, Han Y, Lewis LR, Dinh H, Buhay CJ, Beck T, Timms L, Sam M, Begley K, Brown A, Pai D, Panchal A, Buchner N, De Borja R, Denroche RE, Yung CK, Serra S, Onetto N, Mukhopadhyay D, Tsao MS, Shaw PA, Petersen GM, Gallinger S, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Schulick RD, Wolfgang CL, Morgan RA, Lawlor RT, Capelli P, Corbo V, Scardoni M, Tortora G, Tempero MA, Mann KM, Jenkins NA, Perez-Mancera PA, Adams DJ, Largaespada DA, Wessels LF, Rust AG, Stein LD, Tuveson DA, Copeland NG, Musgrove EA, Scarpa A, Eshleman JR, Hudson TJ, Sutherland RL, Wheeler DA, Pearson JV, McPherson JD, Gibbs RA, Grimmond SM.
Nature. 2012 Nov 15;491(7424):399-405. doi: 10.1038/nature11547. Epub 2012 Oct 24.
PMID 23103869
 
FKBP5 as a selection biomarker for gemcitabine and Akt inhibitors in treatment of pancreatic cancer.
Hou J, Wang L.
PLoS One. 2012;7(5):e36252. doi: 10.1371/journal.pone.0036252. Epub 2012 May 9.
PMID 22590527
 
Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events.
Liu J, Lee W, Jiang Z, Chen Z, Jhunjhunwala S, Haverty PM, Gnad F, Guan Y, Gilbert HN, Stinson J, Klijn C, Guillory J, Bhatt D, Vartanian S, Walter K, Chan J, Holcomb T, Dijkgraaf P, Johnson S, Koeman J, Minna JD, Gazdar AF, Stern HM, Hoeflich KP, Wu TD, Settleman J, de Sauvage FJ, Gentleman RC, Neve RM, Stokoe D, Modrusan Z, Seshagiri S, Shames DS, Zhang Z.
Genome Res. 2012 Dec;22(12):2315-27. doi: 10.1101/gr.140988.112. Epub 2012 Oct 2.
PMID 23033341
 
Contribution of FKBP5 genetic variation to gemcitabine treatment and survival in pancreatic adenocarcinoma.
Ellsworth KA, Eckloff BW, Li L, Moon I, Fridley BL, Jenkins GD, Carlson E, Brisbin A, Abo R, Bamlet W, Petersen G, Wieben ED, Wang L.
PLoS One. 2013a Aug 1;8(8):e70216. doi: 10.1371/journal.pone.0070216. Print 2013.
PMID 23936393
 
FKBP5 genetic variation: association with selective serotonin reuptake inhibitor treatment outcomes in major depressive disorder.
Ellsworth KA, Moon I, Eckloff BW, Fridley BL, Jenkins GD, Batzler A, Biernacka JM, Abo R, Brisbin A, Ji Y, Hebbring S, Wieben ED, Mrazek DA, Weinshilboum RM, Wang L.
Pharmacogenet Genomics. 2013b Mar;23(3):156-66. doi: 10.1097/FPC.0b013e32835dc133.
PMID 23324805
 
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

Contributor(s)

Written10-2013Katarzyna Anna Ellsworth, Liewei Wang
Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA

Citation

This paper should be referenced as such :
Ellsworth KA, Wang L
FKBP5 (FK506 binding protein 5);
Atlas Genet Cytogenet Oncol Haematol. October 2013
Free online version   Free pdf version   [Bibliographic record ]
URL : http://AtlasGeneticsOncology.org/Genes/FKBP5ID40578ch6p21.html

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Aug 8 11:06:01 CEST 2014

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.