Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

FKBP8 (FK506 binding protein 8, 38kDa)

Written2012-01Amaravadhi Harikishore, Goutam Chakraborty, Souvik Chattophadhaya, Ho Sup Yoon
Division of Structural Biology, Biochemistry, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore

(Note : for Links provided by Atlas : click)


Alias (NCBI)FKBP38
HGNC Alias symbFKBP38
HGNC Alias nameFK506-binding protein 8 (38kD)
HGNC Previous nameFK506-binding protein 8 (38kD)
 FK506 binding protein 8, 38kDa
 FK506 binding protein 8
LocusID (NCBI) 23770
Atlas_Id 40579
Location 19p13.11  [Link to chromosome band 19p13]
Location_base_pair Starts at 18531763 and ends at 18543573 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping FKBP8.png]
  Figure 1: Schematic diagram of FKBP8 location on chromosome 19. Chromosome 19 is represented with the banding pattern. FKBP8 is located at 19p13.1 and ranges from 18642563 to 18654886 bp on reverse strand. The region surrounding FKBP8 gene is enlarged. Genes are represented by arrows in the direction of transcription. Distances shown are in kilobases.
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
ASXL2 (2p23.3)::FKBP8 (19p13.11)DAZAP1 (19p13.3)::FKBP8 (19p13.11)ELL (19p13.11)::FKBP8 (19p13.11)
FKBP8 (19p13.11)::DAND5 (19p13.13)FKBP8 (19p13.11)::DAND5 (19p13.2)FKBP8 (19p13.11)::FKBP8 (19p13.11)
FKBP8 (19p13.11)::HAUS8 (19p13.11)FKBP8 (19p13.11)::LIG4 (13q33.3)FKBP8 (19p13.11)::MEGF8 (19q13.2)
FKBP8 (19p13.11)::NATD1 (17p11.2)FKBP8 (19p13.11)::PRSS23 (11q14.2)FKBP8 (19p13.11)::SLC1A6 (19p13.12)
HLA-B (6p21.33)::FKBP8 (19p13.11)NDUFB1 (14q32.12)::FKBP8 (19p13.11)OAZ1 (19p13.3)::FKBP8 (19p13.11)
PGPEP1 (19p13.11)::FKBP8 (19p13.11)TTC21B (2q24.3)::FKBP8 (19p13.11)


  Figure 2: Schematic diagram of FKBP8 pseudogene location. Pseudo gene (100420423) is mapped on chromosome 1q32.1. It extends in the intronic region between phosphatase 1 regulatory subunit 12B exons (10 and 11). Pseudo gene ranges from 202407524-202408693 bp from pter.
Description FKBP8 gene is located on chromosome 19 at 19p13.1. FKBP8 gene ranges from 18642563 to 18654886 on reverse strand with a total length of 12323 bp (Thierry-Mieg and Thierry-Mieg 2006).
FKBP8 gene contains 22 distinct introns (18gt-ag, 4gc-ag) (Thierry-Mieg and Thierry-Mieg 2006).
Transcription Transcription of FKBP8 gene produces 18 different mRNAs. Most of these forms are produced by alternatively splicing, while one is an unspliced form (Thierry-Mieg and Thierry-Mieg 2006).


Note Protein name: FKBP8, FKBP38, Peptidyl-prolyl cis-trans isomerase.
  Figure 3: FKBP8 structural organization.
Description FKBP8 is a non-canonical FKBP family member, which shows Ca+2-calmodulin dependent peptidylprolylisomerase (PPIase) activity. Unlike other FKBP family members, FKBP8 binds to FK506 only upon activation by Ca+2-saturated calmodulin. FKBP8 contains a glutamate rich domain (ERD), FKBP domain, tetratricopeptide repeat region (TPR domain) interspersed by a consensus leucine-zipper (LZ) repeat region followed by calmodulin and a transmembrane domain (Figure 3). FKBP8 through its multiple domains interact with other leucine-zipper or coiled-coil proteins and forms multimers (Lam et al., 1995). Ca+2-saturated calmodulin positively regulates the PPIase activity of FKBP8 (Edlich et al., 2005). Both C-terminal regions of calmodulin and FKBP8 interact with each other; the N-terminal regions of both proteins also interact with each other, while calcium interacts with negatively charged aspartate residues in β4-α1 loop (L147-I153 residues). These interactions could modulate the enzymatic activity of FKBP8 (Edlich et al., 2007; Maestre-Martinez et al., 2011). Interaction of FKBP8 with its substrate proteins such as Bcl-2 and Hsp90 is primarily dependent on formation of Ca+2-calmodulin/FKBP8 complex.
Expression FKBP8 is widely expressed with varying levels of distribution in different tissues. FKBP8 is highly expressed in the brain tissues; moderately in heart, lung, skeletal muscle, pancreas, while it is expressed marginally in placenta and liver tissues (Bulgakov et al., 2004; Kang et al., 2005a).
Localisation FKBP8 anchors mitochondrial and ER membranes with its trans-membrane domain and is exposed to the cytosol.
Function FKBP8 plays important roles in cellular process involving protein folding and trafficking, apoptosis, proteasomal degradation, neural tube patterning, viral replication, metastasis, invasion and neurodegenerative processes (see below for details).
Homology FKBP8 gene is well conserved across species ranging from primates to non-primates including invertebrates.


Somatic Two types of somatic mutations - A222G mis-sense mutation and V118V silent mutations have been characterized in ovarian carcinoma cell lines (Bamford et al., 2004; Forbes et al., 2010).

Implicated in

Entity Cell size regulation
Note FKBP8 plays an important role in tuberous sclerosis (TSC) mediated autosomal disorders. Human TSC1 and TSC2 genes regulate the cell size reduction while the dominant TSC2 mutant increases the cell size. Microarray studies revealed that ectopic overexpression of TSC1 or TSC2 (the wild type) induced high levels of FKBP8 while overexpression of TSC1 mutant 127 or TSC2ΔRL were unable to trigger increase in FKBP8 levels. Selective inhibition of FKBP8 by specific antisense oligonucleotide treatment showed the loss of TSC gene ability to control cell size (Figure 4A) (Rosner et al., 2003).
Entity mTOR signaling
Note The mammalian target of rapamycin (mTOR) signaling is implicated in multiple processes such as cancer, mitochondrial biogenesis, hypoxia signaling, and cell cycle progression. FKBP8 functions as an endogenous inhibitor of mTOR by inhibiting mTORC1 activity both in vitro and in vivo (Bai et al., 2007; Wang et al., 2008; Uhlenbrock et al., 2009) (Figure 4B).
FKBP8 has been shown to inhibit mTOR activity in the presence of insulin only under an amino acid-deprived state. However, in the presence of excess amino acids, FKBP8 fails to inhibit mTOR. An excess of amino acids serves to stimulate the FAT domain of mTOR via a Rag-dependent mechanism and thereby antagonizes FKBP8-mediated mTOR inhibition (Dunlop et al., 2009). Furthermore, protein complexes like the GTP-bound Rheb/RhebL1 complex and signaling molecules such as excess amino acids and phosphatidic acid can modulate this FKBP8-mTOR interaction (Figure 4C) (Yoon et al., 2011).
Figure 4: Importance of FKBP8 in cell size regulation and mTOR signaling. (A) FKBP8 together with PI3K maintains the integrity of TSC-mediated regulation of cell size. (B) FKBP8 functions as an endogenous mTORC1 inhibitor. (C) Excess amino acids, phosphatidic acid and GTP bound Rheb/RhebL1 protein complex(-es) antagonize FKBP8-mediated mTOR inhibition.
Entity Apoptosis
Note FKBP8 plays pivotal roles in modulating apoptosis by protecting Bcl-2 from caspase dependant degradation. FKBP8 by interacting with the flexible loop domain of Bcl-2 stabilizes Bcl-2 levels and prevents apoptosis (Kang et al., 2008). Thus FKBP8 enhances cell survival, promotes tumorigenesis and contributes to chemoresistance (Kang et al., 2005b; Kang et al., 2008; Choi et al., 2010; Choi and Yoon, 2011). On the other hand, Presenilins (PS1/PS2) and Hsp90 antagonize the chaperone effects of FKBP8. Presenilins blocks FKBP8-Bcl-2 interactions in a γ-secretase independent manner and thereby increase the susceptibility to apoptosis by promoting Bcl-2 degradation (Wang et al., 2005). Hsp90 negatively regulates FKBP8/Ca+2-calmodulin complex by preventing its interaction with Bcl-2 and controls programmed cell death of neuroblastoma cells (Erdmann et al., 2007) (Figure 5A).
Figure 5: FKBP8 influences the stability of substrate proteins. (A) FKBP8 protects Bcl-2 by targeting it to mitochondria and preventing its caspase mediated degradation. (B) FKBP8 promotes proteasomal degradation of PHD2 and thereby enhances stability and transcriptional activity of HIF-1a. Growth factors like BMP-2 counteract this FKBP8-mediated proteasomal degradation of PHD2 thereby decreasing HIF-1a levels and committing the differentiation of glioma cells. (C) FKBP8 regulates proteasomal degradation by interacting with the 26S proteasome.
Entity Proteasomal degradation
Note FKBP8 influences proteasomal degradation by directly interacting with almost all the subunits of 26S proteasome via its TPR domain (Nakagawa et al., 2007) (Figure 5C). FKBP8 could probably serve to modulate proteasomal degradation of its substrate proteins like phosphatase of regenerating liver 3 (PRL-3) and prolylhydroxylase-2. FKBP8 interacts with PRL-3 and modulates the stability of PRL-3 by promoting the degradation of PRL-3 via proteasomal pathway and thus suppresses PRL-3 mediated p53 activity and cell proliferation (Choi et al., 2011).
FKBP8 with its glutamate region domain (ERD) specifically binds to prolyl-4-hydroxylase domain containing protein PHD-2. The membrane anchor targets FKBP8-PHD-2 complex to mitochondrial and ER membranes and promotes its proteasomal degradation and maintains in vivo levels of PHD-2 (Barth et al., 2009). FKBP8 mediated modulation of PHD-2-HIF-1a interaction plays key roles in regulating hypoxia responses. Depletion of FKBP8 prolongs PHD-2 stability; elevates its hydroxylation activity, leading to degradation and reduction of HIF-1a transcriptional activity (Figure 5B) (Barth et al., 2007).
Given that hypoxia plays a key role in the development of gliomas like glioblastoma multiforme (GBM), its modulation may present an alternative approach in the therapeutic intervention of gliomas. For example, growth factors like BMP-2 has been recently been used for GBM treatment. BMP-2, by lowering HIF-1a levels (via FKBP8 inhibition) and activating mTOR signaling, alters the activity of succinic dehydrogenase. This, in turn, prevents the proliferation of glioma cells and commits the cells to differentiation (Figure 5B) (Pistollato et al., 2009).
Entity Negative regulator of Shh signaling and development of neural tubes
Note Sonic Hedgehog (Shh) signaling regulates neural patterning of central nervous system by altering the genes that mediate dorso-lateral and ventral fates (Briscoe and Ericson, 2001). FKBP8 gene knock out studies have revealed that it functions as a negative regulator of Shh signaling. Hedgehog signal transduction occurs mainly by modulating the activities of GLI2 transcriptional factors. FKBP8 primarily acts in a cell autonomous fashion and modulates hedgehog pathway independent of upstream activator smoothened but dependent on kinesin-2 motor subunit kif3a (which mediates in intra flagellar transport (IFT) and cilia assembly) (Figure 6). FKBP8 depletion modifies the neural progenitors-BMP signaling causing non-autonomous effects on neural patterning (Bulgakov et al., 2004; Cho et al., 2008).
Figure 6: FKBP8 antagonizes Shh signaling independent of ligand (Shh) binding to Patched. FKBP8 binds to GLI2 transcription factors and in conjunction with Kif3a inhibits the hedgehog secretions by preventing proteolytic processing of GLI2 transcription factor.
Entity Development and neuroprotective roles
Note FKBP8 plays a critical role in the development of various organs. FKBP8(-/-) mice shows several developmental defects that includes improper eye development, spina bifida, skeletal defects, defective dorsal root ganglion and disorganized neural epithelium. The extension of nerve fibers in spinal cord is also abnormal in FKBP8 null embryos. Shirane et al. have shown that abnormal nerve extension in FKBP8(-/-) mice is mediated by the hyperphosphorylation of Protrudin. Thus, it is likely that FKBP8 plays an important role in regulating protrudin-dependent neurite extension (Shirane et al., 2008; Saita et al., 2009).
Entity Neurodegenerative disorders
Note Recent studies have highlighted the role of FKBP8 in modulating neurodegenerative 'amyloidoses' disorders like Parkinson's disease. Stable overexpression of FKBP8 has been shown to enhance the aggregation of α-synuclein and cell death in neuronal cell culture model suggesting its probable role in Parkinson disease (Deleersnijder et al., 2011; Chattopadhaya et al., 2011). Selective inhibition of FKBP8 by specific inhibitor N-(N', N'-dimethylcarboxamidomethyl) cycloheximide (DM-CHX) has shown promise in achieving neuronal protection in a rat model of transient focal cerebral ischemia. DM-CHX not only protected neurons from ischemic challenge but also induced neural stem cell proliferation and neuronal differentiation suggesting potential role of FKBP8 in neuronal cells (Edlich et al., 2006).
Entity Chaperonic role in biogenesis of membrane proteins
Note FKBP8 plays key roles in modulating the biogenesis of membrane proteins such as HERG, CFTR. FKBP8 functions as a co-chaperone assisting maturation and trafficking of human ether-a-go-go-related gene (HERG), a voltage dependent potassium channel. Mutations in HERG, for example F805C, causes long QT syndrome which is characterized by a prolonged QT interval and increased susceptibility to cardiac arrhythmia. FKBP8 knock down shows reduction in HERG trafficking, while its overexpression rescues the mutant F805C HERG trafficking (Walker et al., 2007).
Similarly, mutations such as ΔF508 in cystic fibrosis transmembrane conductance regulator (CFTR, a chloride ion channel) alters the biogenesis, trafficking or stability of CFTR and disrupts the functioning of chloride ion channel. FKBP8 plays a rate limiting role as a co-chaperone on maturation and biogenesis of CFTR. FKBP8 by maintaining steady state levels of HSP90 regulates the biogenesis, maturation, trafficking and post-translational folding of both wild type and ΔF508 CFTR proteins (Wang et al., 2006b; Banasavadi-Siddegowda et al., 2011).
Entity Invasion and adhesion - cancer cell progression
Note Gene expression analysis on B16-F10 cells treated with rapamycin or FKBP8 overexpression highlighted the role of FKBP8 gene during tumor cell invasion. FKBP8 overexpression prevents tumor cell invasion by up-regulation of anti-invasive Syndecan (Sdc1) levels and suppression of pro-invasive MMP9 (Fong et al., 2003).
Entity Viral replication
Note Both in vitro and in vivo studies have shown that FKBP8 binds to HCV NS5. FKBP8 through its TPR domain binds tightly to BH-domain (Bcl-2- homology domain) of HCV NS5. Immunoprecipitation studies showed that FKBP8 forms a heteromeric complex with NS5 and Hsp90. Furthermore, fluorescence and electron microscopy have revealed that FKBP8 partially colocalizes with NS5 into web like cytoplasmic structures, which are probable sites of viral replication and might play an important role in HCV replication (Okamoto et al., 2006; Wang et al., 2006a; Okamoto et al., 2008).


Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38.
Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y.
Science. 2007 Nov 9;318(5852):977-80.
PMID 17991864
The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website.
Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R.
Br J Cancer. 2004 Jul 19;91(2):355-8.
PMID 15188009
FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum.
Banasavadi-Siddegowda YK, Mai J, Fan Y, Bhattacharya S, Giovannucci DR, Sanchez ER, Fischer G, Wang X.
J Biol Chem. 2011 Dec 16;286(50):43071-80. Epub 2011 Oct 26.
PMID 22030396
Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38.
Barth S, Edlich F, Berchner-Pfannschmidt U, Gneuss S, Jahreis G, Hasgall PA, Fandrey J, Wenger RH, Camenisch G.
J Biol Chem. 2009 Aug 21;284(34):23046-58. Epub 2009 Jun 22.
PMID 19546213
The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability.
Barth S, Nesper J, Hasgall PA, Wirthner R, Nytko KJ, Edlich F, Katschinski DM, Stiehl DP, Wenger RH, Camenisch G.
Mol Cell Biol. 2007 May;27(10):3758-68. Epub 2007 Mar 12.
PMID 17353276
Specification of neuronal fates in the ventral neural tube.
Briscoe J, Ericson J.
Curr Opin Neurobiol. 2001 Feb;11(1):43-9. (REVIEW)
PMID 11179871
FKBP8 is a negative regulator of mouse sonic hedgehog signaling in neural tissues.
Bulgakov OV, Eggenschwiler JT, Hong DH, Anderson KV, Li T.
Development. 2004 May;131(9):2149-59.
PMID 15105374
Role of FK506 binding proteins in neurodegenerative disorders.
Chattopadhaya S, Harikishore A, Yoon HS.
Curr Med Chem. 2011 Dec 1;18(35):5380-97.
PMID 22087831
FKBP8 cell-autonomously controls neural tube patterning through a Gli2- and Kif3a-dependent mechanism.
Cho A, Ko HW, Eggenschwiler JT.
Dev Biol. 2008 Sep 1;321(1):27-39. Epub 2008 Jun 11.
PMID 18590716
FKBP38 protects Bcl-2 from caspase-dependent degradation.
Choi BH, Feng L, Yoon HS.
J Biol Chem. 2010 Mar 26;285(13):9770-9. Epub 2010 Feb 5.
PMID 20139069
FKBP38-Bcl-2 interaction: a novel link to chemoresistance.
Choi BH, Yoon HS.
Curr Opin Pharmacol. 2011 Aug;11(4):354-9. Epub 2011 May 14. (REVIEW)
PMID 21571591
The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability.
Choi MS, Min SH, Jung H, Lee JD, Lee TH, Lee HK, Yoo OJ.
Biochem Biophys Res Commun. 2011 Mar 11;406(2):305-9. Epub 2011 Feb 12.
PMID 21320469
Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent enhancer of alpha-synuclein aggregation.
Deleersnijder A, Van Rompuy AS, Desender L, Pottel H, Buee L, Debyser Z, Baekelandt V, Gerard M.
J Biol Chem. 2011 Jul 29;286(30):26687-701. Epub 2011 Jun 7.
PMID 21652707
Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition.
Dunlop EA, Dodd KM, Seymour LA, Tee AR.
Cell Signal. 2009 Jul;21(7):1073-84. Epub 2009 Mar 9.
PMID 19272448
A novel calmodulin-Ca2+ target recognition activates the Bcl-2 regulator FKBP38.
Edlich F, Maestre-Martinez M, Jarczowski F, Weiwad M, Moutty MC, Malesevic M, Jahreis G, Fischer G, Lucke C.
J Biol Chem. 2007 Dec 14;282(50):36496-504. Epub 2007 Oct 17.
PMID 17942410
The specific FKBP38 inhibitor N-(N',N'-dimethylcarboxamidomethyl)cycloheximide has potent neuroprotective and neurotrophic properties in brain ischemia.
Edlich F, Weiwad M, Wildemann D, Jarczowski F, Kilka S, Moutty MC, Jahreis G, Lucke C, Schmidt W, Striggow F, Fischer G.
J Biol Chem. 2006 May 26;281(21):14961-70. Epub 2006 Mar 17.
PMID 16547004
Hsp90-mediated inhibition of FKBP38 regulates apoptosis in neuroblastoma cells.
Erdmann F, Jarczowski F, Weiwad M, Fischer G, Edlich F.
FEBS Lett. 2007 Dec 11;581(29):5709-14. Epub 2007 Nov 26.
PMID 18036348
Functional identification of distinct sets of antitumor activities mediated by the FKBP gene family.
Fong S, Mounkes L, Liu Y, Maibaum M, Alonzo E, Desprez PY, Thor AD, Kashani-Sabet M, Debs RJ.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14253-8. Epub 2003 Nov 11.
PMID 14612567
COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer.
Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, Kok CY, Jia M, Ewing R, Menzies A, Teague JW, Stratton MR, Futreal PA.
Nucleic Acids Res. 2010 Jan;38(Database issue):D652-7. Epub 2009 Nov 11.
PMID 19906727
Molecular characterization of FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic protein Bcl-2.
Kang CB, Feng L, Chia J, Yoon HS.
Biochem Biophys Res Commun. 2005a Nov 11;337(1):30-8.
PMID 16176796
FKBP family proteins: immunophilins with versatile biological functions.
Kang CB, Hong Y, Dhe-Paganon S, Yoon HS.
Neurosignals. 2008;16(4):318-25. Epub 2008 Jul 18. (REVIEW)
PMID 18635947
The flexible loop of Bcl-2 is required for molecular interaction with immunosuppressant FK-506 binding protein 38 (FKBP38).
Kang CB, Tai J, Chia J, Yoon HS.
FEBS Lett. 2005b Feb 28;579(6):1469-76.
PMID 15733859
Isolation of a cDNA encoding a novel human FK506-binding protein homolog containing leucine zipper and tetratricopeptide repeat motifs.
Lam E, Martin M, Wiederrecht G.
Gene. 1995 Jul 28;160(2):297-302.
PMID 7543869
A charge-sensitive loop in the FKBP38 catalytic domain modulates Bcl-2 binding.
Maestre-Martinez M, Haupt K, Edlich F, Neumann P, Parthier C, Stubbs MT, Fischer G, Lucke C.
J Mol Recognit. 2011 Jan-Feb;24(1):23-34.
PMID 20140889
Anchoring of the 26S proteasome to the organellar membrane by FKBP38.
Nakagawa T, Shirane M, Iemura S, Natsume T, Nakayama KI.
Genes Cells. 2007 Jun;12(6):709-19.
PMID 17573772
Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90.
Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y.
EMBO J. 2006 Oct 18;25(20):5015-25. Epub 2006 Oct 5.
PMID 17024179
A single-amino-acid mutation in hepatitis C virus NS5A disrupting FKBP8 interaction impairs viral replication.
Okamoto T, Omori H, Kaname Y, Abe T, Nishimura Y, Suzuki T, Miyamura T, Yoshimori T, Moriishi K, Matsuura Y.
J Virol. 2008 Apr;82(7):3480-9. Epub 2008 Jan 23.
PMID 18216108
Molecular mechanisms of HIF-1alpha modulation induced by oxygen tension and BMP2 in glioblastoma derived cells.
Pistollato F, Rampazzo E, Abbadi S, Della Puppa A, Scienza R, D'Avella D, Denaro L, Te Kronnie G, Panchision DM, Basso G.
PLoS One. 2009 Jul 9;4(7):e6206.
PMID 19587783
Cell size regulation by the human TSC tumor suppressor proteins depends on PI3K and FKBP38.
Rosner M, Hofer K, Kubista M, Hengstschlager M.
Oncogene. 2003 Jul 31;22(31):4786-98.
PMID 12894220
Promotion of neurite extension by protrudin requires its interaction with vesicle-associated membrane protein-associated protein.
Saita S, Shirane M, Natume T, Iemura S, Nakayama KI.
J Biol Chem. 2009 May 15;284(20):13766-77. Epub 2009 Mar 16.
PMID 19289470
Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse.
Shirane M, Ogawa M, Motoyama J, Nakayama KI.
Genes Cells. 2008 Jun;13(6):635-51. Epub 2008 May 4.
PMID 18459960
AceView: a comprehensive cDNA-supported gene and transcripts annotation.
Thierry-Mieg D, Thierry-Mieg J.
Genome Biol. 2006;7 Suppl 1:S12.1-14. Epub 2006 Aug 7.
PMID 16925834
Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway.
Uhlenbrock K, Weiwad M, Wetzker R, Fischer G, Wittinghofer A, Rubio I.
FEBS Lett. 2009 Mar 18;583(6):965-70. Epub 2009 Feb 15.
PMID 19222999
Co-chaperone FKBP38 promotes HERG trafficking.
Walker VE, Atanasiu R, Lam H, Shrier A.
J Biol Chem. 2007 Aug 10;282(32):23509-16. Epub 2007 Jun 14.
PMID 17569659
Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2.
Wang HQ, Nakaya Y, Du Z, Yamane T, Shirane M, Kudo T, Takeda M, Takebayashi K, Noda Y, Nakayama KI, Nishimura M.
Hum Mol Genet. 2005 Jul 1;14(13):1889-902. Epub 2005 May 19.
PMID 15905180
Hepatitis C virus non-structural protein NS5A interacts with FKBP38 and inhibits apoptosis in Huh7 hepatoma cells.
Wang J, Tong W, Zhang X, Chen L, Yi Z, Pan T, Hu Y, Xiang L, Yuan Z.
FEBS Lett. 2006a Aug 7;580(18):4392-400. Epub 2006 Jul 17.
PMID 16844119
Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling.
Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ, Bommer UA, Proud CG.
J Biol Chem. 2008 Nov 7;283(45):30482-92. Epub 2008 Aug 1.
PMID 18676370
Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE.
Cell. 2006b Nov 17;127(4):803-15.
PMID 17110338
Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect.
Yoon MS, Sun Y, Arauz E, Jiang Y, Chen J.
J Biol Chem. 2011 Aug 26;286(34):29568-74. Epub 2011 Jul 7.
PMID 21737445


This paper should be referenced as such :
Harikishore, A ; Chakraborty, G ; Chattophadhaya, S ; Yoon, HS
FKBP8 (FK506 binding protein 8, 38kDa)
Atlas Genet Cytogenet Oncol Haematol. 2012;16(6):396-402.
Free journal version : [ pdf ]   [ DOI ]

External links


HGNC (Hugo)FKBP8   3724
Entrez_Gene (NCBI)FKBP8    FKBP prolyl isomerase 8
AliasesFKBP38; FKBPr38
GeneCards (Weizmann)FKBP8
Ensembl hg19 (Hinxton)ENSG00000105701 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000105701 [Gene_View]  ENSG00000105701 [Sequence]  chr19:18531763-18543573 [Contig_View]  FKBP8 [Vega]
ICGC DataPortalENSG00000105701
TCGA cBioPortalFKBP8
Genatlas (Paris)FKBP8
SOURCE (Princeton)FKBP8
Genetics Home Reference (NIH)FKBP8
Genomic and cartography
GoldenPath hg38 (UCSC)FKBP8  -     chr19:18531763-18543573 -  19p13.11   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)FKBP8  -     19p13.11   [Description]    (hg19-Feb_2009)
GoldenPathFKBP8 - 19p13.11 [CytoView hg19]  FKBP8 - 19p13.11 [CytoView hg38]
Genome Data Viewer NCBIFKBP8 [Mapview hg19]  
Gene and transcription
Genbank (Entrez)AK026952 AK300571 AK313363 AL042208 AL555689
RefSeq transcript (Entrez)NM_001308373 NM_012181
Consensus coding sequences : CCDS (NCBI)FKBP8
Gene ExpressionFKBP8 [ NCBI-GEO ]   FKBP8 [ EBI - ARRAY_EXPRESS ]   FKBP8 [ SEEK ]   FKBP8 [ MEM ]
Gene Expression Viewer (FireBrowse)FKBP8 [ Firebrowse - Broad ]
GenevisibleExpression of FKBP8 in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)23770
GTEX Portal (Tissue expression)FKBP8
Human Protein AtlasENSG00000105701-FKBP8 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ14318   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ14318  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ14318
Catalytic activity : Enzyme5.2.1.8 [ Enzyme-Expasy ] [ IntEnz-EBI ] [ BRENDA ] [ KEGG ]   [ MEROPS ]
Domaine pattern : Prosite (Expaxy)FKBP_PPIASE (PS50059)    TPR (PS50005)    TPR_REGION (PS50293)   
Domains : Interpro (EBI)PPIase_FKBP_dom    TPR-contain_dom    TPR-like_helical_dom_sf    TPR_2    TPR_repeat   
Domain families : Pfam (Sanger)FKBP_C (PF00254)    TPR_2 (PF07719)   
Domain families : Pfam (NCBI)pfam00254    pfam07719   
Domain families : Smart (EMBL)TPR (SM00028)  
Conserved Domain (NCBI)FKBP8
PDB (RSDB)2AWG    2D9F    2F2D    2MF9    3EY6    5MGX   
PDB Europe2AWG    2D9F    2F2D    2MF9    3EY6    5MGX   
PDB (PDBSum)2AWG    2D9F    2F2D    2MF9    3EY6    5MGX   
PDB (IMB)2AWG    2D9F    2F2D    2MF9    3EY6    5MGX   
Structural Biology KnowledgeBase2AWG    2D9F    2F2D    2MF9    3EY6    5MGX   
SCOP (Structural Classification of Proteins)2AWG    2D9F    2F2D    2MF9    3EY6    5MGX   
CATH (Classification of proteins structures)2AWG    2D9F    2F2D    2MF9    3EY6    5MGX   
AlphaFold pdb e-kbQ14318   
Human Protein Atlas [tissue]ENSG00000105701-FKBP8 [tissue]
Protein Interaction databases
IntAct (EBI)Q14318
Ontologies - Pathways
Ontology : AmiGOprotein peptidyl-prolyl isomerization  cell fate specification  negative regulation of protein phosphorylation  peptidyl-prolyl cis-trans isomerase activity  protein binding  mitochondrion  endoplasmic reticulum  cytosol  protein folding  apoptotic process  smoothened signaling pathway  regulation of gene expression  membrane  dorsal/ventral neural tube patterning  integral component of endoplasmic reticulum membrane  positive regulation of BMP signaling pathway  mitochondrial membrane  protein-containing complex  multicellular organism growth  intracellular signal transduction  identical protein binding  camera-type eye development  negative regulation of apoptotic process  protein folding chaperone  metal ion binding  disordered domain specific binding  
Ontology : EGO-EBIprotein peptidyl-prolyl isomerization  cell fate specification  negative regulation of protein phosphorylation  peptidyl-prolyl cis-trans isomerase activity  protein binding  mitochondrion  endoplasmic reticulum  cytosol  protein folding  apoptotic process  smoothened signaling pathway  regulation of gene expression  membrane  dorsal/ventral neural tube patterning  integral component of endoplasmic reticulum membrane  positive regulation of BMP signaling pathway  mitochondrial membrane  protein-containing complex  multicellular organism growth  intracellular signal transduction  identical protein binding  camera-type eye development  negative regulation of apoptotic process  protein folding chaperone  metal ion binding  disordered domain specific binding  
REACTOMEQ14318 [protein]
REACTOME PathwaysR-HSA-5689880 [pathway]   
NDEx NetworkFKBP8
Atlas of Cancer Signalling NetworkFKBP8
Wikipedia pathwaysFKBP8
Orthology - Evolution
GeneTree (enSembl)ENSG00000105701
Phylogenetic Trees/Animal Genes : TreeFamFKBP8
Homologs : HomoloGeneFKBP8
Homology/Alignments : Family Browser (UCSC)FKBP8
Gene fusions - Rearrangements
Fusion : MitelmanASXL2::FKBP8 [2p23.3/19p13.11]  
Fusion : MitelmanFKBP8::DAND5 [19p13.11/19p13.2]  
Fusion : MitelmanFKBP8::SLC1A6 [19p13.11/19p13.12]  
Fusion : QuiverFKBP8
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerFKBP8 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)FKBP8
Exome Variant ServerFKBP8
GNOMAD BrowserENSG00000105701
Varsome BrowserFKBP8
ACMGFKBP8 variants
Genomic Variants (DGV)FKBP8 [DGVbeta]
DECIPHERFKBP8 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisFKBP8 
ICGC Data PortalFKBP8 
TCGA Data PortalFKBP8 
Broad Tumor PortalFKBP8
OASIS PortalFKBP8 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICFKBP8  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DFKBP8
Mutations and Diseases : HGMDFKBP8
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
DgiDB (Drug Gene Interaction Database)FKBP8
DoCM (Curated mutations)FKBP8
CIViC (Clinical Interpretations of Variants in Cancer)FKBP8
NCG (London)FKBP8
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry FKBP8
NextProtQ14318 [Medical]
Target ValidationFKBP8
Huge Navigator FKBP8 [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTDFKBP8
Pharm GKB GenePA28165
Clinical trialFKBP8
DataMed IndexFKBP8
PubMed122 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Oct 8 21:18:08 CEST 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us