Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

PPARG (peroxisome proliferator-activated receptor gamma)

Identity

Other namesPPAR-gamma
NR1C3
PPARG1
PPARG2
HGNC (Hugo) PPARG
LocusID (NCBI) 5468
Location 3p25.2
Location_base_pair Starts at 12329349 and ends at 12475855 bp from pter ( according to hg19-Feb_2009)  [Mapping]
Local_order According to the NCBI map viewer genes flanking PPARG from centromere to telomere are:
TSEN2 3p25.1 tRNA splicing endonuclease 2 homolog (S. cerevisiae)
IQSEC1 3p25.1 IQ motif and Sec7 domain 1
NUP210 3p25.1 nucleoporin 210kDa
TMEM43 3p25.1 transmembrane protein 43
Note The PPAR gamma gene, a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear hormone receptors, is implicated in adipocyte differentiation and function. In order to regulate the transcription of target genes, the PPAR protein needs to form heterodimers with retinoid X receptors (RXRs). Three splice variants of PPAR gamma are known: PPAR gamma1, PPAR gamma2, and PPAR-gamma3. PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis and cancer. Alternatively spliced transcript variants that encode different isoforms have been described.

DNA/RNA

Note The PPAR gamma gene extends over 100kb with 9 exons which gives rise to 3 different PPAR gamma transcripts with differential promoter usage and differential splicing: PPAR gamma 1, 2 and 3. PPAR gamma 1 transcript contains 8 exons which is 97% identical to PPAR gamma 2.
 
  Genomic structure of the 5 primed end of the human PPAR gamma gene. All three subtypes have the exons 1-6. PPAR gamma1 contains in addition the exons A1 and A2 both of which are untranslated, PPAR gamma2 contains exon B, which is translated, and PPAR gamma3 contains only the untranslated exon A2.
Description According to Entrez-Gene, PPAR gamma gene maps to NC_000003 and spans a region of 100 kilo bases. According to Spidey, PPAR gamma 1 has 8 exons, the sizes being 171, 74, 228, 170, 139, 200, 451 and 459 bps. PPAR gamma 2 has 7 exons, the sizes being 173, 228, 170, 139, 200, 451 and 459. PPAR Gamma 3 has 8 exons, the sizes being 198, 74, 228, 170, 139, 200, 451, and 459.
Transcription PPAR gamma 1 mRNA (NM_138712) has a size of 1892 bp, PPAR gamma 2 mRNA (NM_015869) has a size of 1820 bp while PPAR gamma 3 mRNA (NM_138711) has a size of 1919 bp.
The ratio of PPAR gamma2 to PPAR gamma1 transcript has been shown to increase in obese patients in correlation with their body mass indices. A low calorie diet was specifically shown to down-regulate the expression of PPAR gamma2 mRNA in adipose tissue of obese humans. However, this effect was lost subsequently during weight maintenance.
The PPAR gamma3 mRNA is transcribed from a novel promoter localized 5' of exon A2 (see diagram above). PPARgamma3 mRNA expression is said to be restricted to human white adipocytes, as well as in HepG2, Caco-2 and HeLa cell lines.
Pseudogene No pseudogene has been reported for PPAR gamma.

Protein

Note There are 3 different PPAR gamma proteins PPAR gamma 1, 2 and 3 which differ at their 5-prime ends, each under the control of its own promoter. PPAR gamma1 and PPAR gamma3, however, give rise to the same protein, encoded by exons 1 through 6, because neither the A1 nor the A2 exons are translated.
Description The PPAR gamma protein consists of 505 amino acids and has a molecular weight of 57.6 kDa. According to the NCBI conserved domain search, it contains two C4 type zinc finger domains. In nearly all cases, this is the DNA binding domain of a nuclear hormone receptor. In addition it contains a ligand binding domain. This all-helical domain is involved in binding the hormone to these receptors.
 
  The various domains of PPAR gamma protein with their specific functions. Post transcriptional modifications indicating functional changes have been depicted.
Expression In general, the highest expression of PPAR gamma can be found in the adipose tissue, colonic epithelia, macrophages, and endothelium, followed by the kidney, liver, and small intestine; whereas PPAR gamma can barely be detected in the muscle.
Of the splice variants, PPAR gamma1 and gamma2 are expressed in adipose tissue. PPAR gamma1 expression levels were lower than gamma2 in the liver and heart, whereas both gamma1 and gamma2 were expressed in skeletal muscle at low levels.
The expression of PPAR gamma3 mRNA is restricted to adipose tissue and differentiated CaCo2 cells.
Localisation Localized in the nucleus.
Function Protein-protein interactions PPARs function as heterodimers with retinoid receptor (RXR). The PPAR­RXR heterodimer function along with co-activators such as NCOA6, NCOA7 or PPARBP, leading to increases in transcription of target genes. PPAR gamma1 or PPAR gamma 2 in a heterodimer with RXR is capable of forming complexes with oligonucleotides containing peroxisome proliferator response elements (PPREs) usually 5'-AACT AGGNCA A AGGTCA-3' in the promoter regions of the target genes. PPAR gamma1 and PPAR gamma2 can also form complexes with RXRB and RXRG. Ligands of PPAR gamma PPAR gamma1 and PPAR gamma2 have ligand-dependent and -independent activation domains. Due to the presence of an additional 28 amino acids at the amino terminus, PPAR gamma2 has a ligand-independent activation domain that is several folds more effective than that of PPAR gamma1. However, in the presence of ligands that can be lipid derivatives, eicosanoids, xenobiotics etc, triggers a conformational change in the protein that results in the recruitment of transcriptional co-activators. In the absence of a ligand, PPAR gamma is bound to transcriptional co-repressors containing nuclear receptor corepressor ( N-CoR ) and can actively silence the transcription of target genes. Phosphorylation of serine 112 at the N terminus of PPAR gamma2 results in a reduction of its transcriptional activity. This phosphorylation further promotes the sumoylation of lysine 107 which then further reduces its transcriptional activity.
The prostaglandin J2 (PGJ2) metabolite l5-deoxy-Delta12,14-PGJ2 binds directly to PPAR gamma and can promotes the differentiation of C3HlOT1/2 fibroblasts to adipocytes. Its principal function came to light when it was found that the anti-diabetic drug thiazolidinediones (TZD) was a PPAR gamma ligand. The TZD series of drugs via their agonist activity on PPAR gamma promotes the uptake of circulating fatty acids into adipocytes. The glucose lowering effects of TZDs are due to increased disposal of glucose into adipose tissues along with increased expression of insulin sensitizing factors (such as adiponectin) and decreased expression of proteins that promote insulin resistance.
PPAR gamma also has an anti-inflammatory role by inhibiting the production of inflammatory cytokines, and other proteins such as TNF-alpha, MMP9 and iNOS from macrophages in the presence of ligands such as TZD. Inhibition of pro-inflammatory transcription factors such as NF-kB, AP-1 and STAT by PPAR gamma is said to be through limited availability of shared co-factors as well as direct protein-protein interactions.
Homology Canis familiaris PPARG peroxisome proliferator-activated receptor gamma
Pan troglodytes PPARG peroxisome proliferator-activated receptor gamma
Rattus norvegicus Pparg peroxisome proliferator-activated receptor gamma
Mus musculus Pparg peroxisome proliferator-activated receptor gamma

Mutations

Note Several mutations in the PPAR gamma protein have been reported along with their association with diseased states.
1. P115Q results in severe obesity
2. 1-BP DEL, 472A, Q286P, K319TER and R288H mutations have been reported in somatic colon cancer
3. P467L, V290M mutations have been reported in partial familial lipodystrophy type 3
4. 3-BP DEL/1-BP INS, NT553, shown in digenic insulin resistance.

Implicated in

Entity Metabolic syndrome
Note Metabolic syndrome is a very common condition that is associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. In obese and diabetic rodents thiazolidinediones (TZDs), known to be a potent PPAR gamma ligand, are mostly used to alleviate elevated plasma glucose levels and they are known to be efficacious therapeutic agents for the treatment of noninsulin-dependent diabetes mellitus (NIDDM). TZD derivatives can also increase the insulin sensitivity of target tissues in animal models of NIDDM. The antidiabetic effects of TZDs are thought to be mediated by means of transactivation of PPAR gamma 1 and 2.
A commonly found polymorphism of PPAR gamma, P12A, is associated with decreased risk of type 2 diabetes.
An alternative activation of macrophages has been implicated in the atheroprotective effects of PPAR gamma. PPAR gamma is critical for the formation of a subpopulation of "alternatively activated" macrophages which exert their anti-inflammatory properties via paracrine effects on "classically activated" (M1) macrophages within the atherosclerotic lesion. In addition, oxidized low density lipoproteins (LDL), but not normal LDL, reduce the expression of proinflammatory cytokines in LPS stimulated macrophages presumably through their effect on PPAR gamma.
  
Entity Familial Partial Lipodystrophy Type 3
Note In a study including patients with hyperinsulinemia and early-onset hypertension, patients have been shown to have dominant-negative mutations in PPAR gamma proteins. The dominant negative effect is characterized with a proline to leucine (P467L) mutation in the PPAR gamma protein. Patients with these mutations showed symptoms of severe peripheral and hepatic insulin resistance, partial lipodystrophy and abnormal functioning of adipose tissue.
  
Entity Breast Cancer
Note In human primary and metastatic breast cancers it has been shown that there are significant levels of PPAR gamma expression. Cell culture studies have indicated that in the presence of the PPAR gamma ligand TZD, cells have undergone differentiation, lost the malignant phenotype and showed a decrease in the proliferation rate. This was associated with the accumulation of lipids and subsequent change in the expression profile.
  
Entity Prostate Cancer
Note PPAR gamma expression has been shown in human prostate adenocarcinomas and corresponding cell lines and specific ligands have been found to decrease the proliferation in these cancer cells by indusing PPAR gamma activation. From these data, it has been concluded that PPAR gamma might have a therapeutic potential in prostate cancer by acting as a biological modifier.
  
Entity Colorectal Cancer
Note Mouse colon treated with PPAR gamma ligands was shown to increase the expression level of beta-catenin protein, In addition, protein-protein interaction was observed between beta-catenin and PPARgamma in cultured cell lines and colonic epithelium in mice. Thus, ligand-activated PPARgamma interacts with beta-catenin, thereby retaining it in the cytosol and reducing beta-catenin/T cell factor transcriptional activity that is required for aberrant crypt foci (ACF) formation. Short-term exposure to dietary PPAR gamma ligands such as linoleic acid and conjugated linoleic acid has been shown to inhibit colon cancer metastasis.
  
Entity Lung cancer
Note PPAR gamma ligands have been shown to decrease the proliferation of non small cell lung cancer (NSCLC) cell lines and xenograft models. Forced overexpression of PPAR gamma in a NSCLC cell line model inhibited the expression of COX-2 protein and promoter activity, resulting in decreased prostaglandin E2 production. The increased activity of the PTEN homologue caused a decrease in the level of phosphor-AKT and the resulting inhibition of NF-kB was implicated in the inhibition of COX-2 expression.
  
Entity T-Cell Leukaemia
Note In T-cell leukaemia, the PPAR gamma ligand Prostaglandin D(2) (PGD(2)) which is highly produced in mast cells, platelets, and alveolar macrophages, has antiproliferative effects. On the other hand these prostaglandins have no effect in normal human T cells. Similar actions were observed in the presence of ciglitazone and troglitazone. All of these ligands are thought to be antiapoptotic and exerting their function in a PPAR gamma dependent manner.
  
Entity Pituitary Tumours
Note PPAR gamma ligands have been shown to induce G0/G1 cell-cycle arrest and apoptosis and suppressed ACTH secretion in human and murine corticotroph tumour cells . In adrenocorticotrophic hormone (ACTH)-secreting pituitary tumours, there is high morbidity associated with excessive glucocorticoid production. The PPAR gamma ligand, rosiglitazone, prevented tumour formation of subcutaneously injected At20 cells secreting ACTH murine corticotroph cells.
  

Other Solid tumors implicated (Data extracted from papers in the Atlas)

Solid Tumors AmeloblastomID5945 MedulloblastomaID5065

External links

Nomenclature
HGNC (Hugo)PPARG   9236
Cards
AtlasPPARGID383ch3p25
Entrez_Gene (NCBI)PPARG  5468  peroxisome proliferator-activated receptor gamma
GeneCards (Weizmann)PPARG
Ensembl (Hinxton)ENSG00000132170 [Gene_View]  chr3:12329349-12475855 [Contig_View]  PPARG [Vega]
ICGC DataPortalENSG00000132170
cBioPortalPPARG
AceView (NCBI)PPARG
Genatlas (Paris)PPARG
WikiGenes5468
SOURCE (Princeton)NM_005037 NM_015869 NM_138711 NM_138712
Genomic and cartography
GoldenPath (UCSC)PPARG  -  3p25.2   chr3:12329349-12475855 +  3p25   [Description]    (hg19-Feb_2009)
EnsemblPPARG - 3p25 [CytoView]
Mapping of homologs : NCBIPPARG [Mapview]
OMIM125853   601487   601665   604367   609338   
Gene and transcription
Genbank (Entrez)AB097931 AB107271 AB307692 AB451337 AB451486
RefSeq transcript (Entrez)NM_005037 NM_015869 NM_138711 NM_138712
RefSeq genomic (Entrez)AC_000135 NC_000003 NC_018914 NG_011749 NT_022517 NW_001838877 NW_004929309
Consensus coding sequences : CCDS (NCBI)PPARG
Cluster EST : UnigeneHs.162646 [ NCBI ]
CGAP (NCI)Hs.162646
Alternative Splicing : Fast-db (Paris)GSHG0020592
Alternative Splicing GalleryENSG00000132170
Gene ExpressionPPARG [ NCBI-GEO ]     PPARG [ SEEK ]   PPARG [ MEM ]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP37231 (Uniprot)
NextProtP37231  [Medical]
With graphics : InterProP37231
Splice isoforms : SwissVarP37231 (Swissvar)
Domaine pattern : Prosite (Expaxy)NUCLEAR_REC_DBD_1 (PS00031)    NUCLEAR_REC_DBD_2 (PS51030)   
Domains : Interpro (EBI)1Cnucl_rcpt [organisation]   1Cnucl_rcpt_G [organisation]   Nucl_hormone_rcpt_ligand-bd [organisation]   Nucl_hrmn_rcpt_lig-bd_core [organisation]   PPARgamma_N [organisation]   Str_hrmn_rcpt [organisation]   Znf_hrmn_rcpt [organisation]   Znf_NHR/GATA [organisation]  
Related proteins : CluSTrP37231
Domain families : Pfam (Sanger)Hormone_recep (PF00104)    PPARgamma_N (PF12577)    zf-C4 (PF00105)   
Domain families : Pfam (NCBI)pfam00104    pfam12577    pfam00105   
Domain families : Smart (EMBL)HOLI (SM00430)  ZnF_C4 (SM00399)  
DMDM Disease mutations5468
Blocks (Seattle)P37231
PDB (SRS)1FM6    1FM9    1I7I    1K74    1KNU    1NYX    1PRG    1RDT    1WM0    1ZEO    1ZGY    2ATH    2F4B    2FVJ    2G0G    2G0H    2GTK    2HFP    2HWQ    2HWR    2I4J    2I4P    2I4Z    2OM9    2P4Y    2POB    2PRG    2Q59    2Q5P    2Q5S    2Q61    2Q6R    2Q6S    2Q8S    2QMV    2VSR    2VST    2VV0    2VV1    2VV2    2VV3    2VV4    2XKW    2YFE    2ZK0    2ZK1    2ZK2    2ZK3    2ZK4    2ZK5    2ZK6    2ZNO    2ZVT    3ADS    3ADT    3ADU    3ADV    3ADW    3ADX    3AN3    3AN4    3B0Q    3B0R    3B1M    3B3K    3BC5    3CDP    3CDS    3CS8    3CWD    3D6D    3DZU    3DZY    3E00    3ET0    3ET3    3FEJ    3FUR    3G9E    3GBK    3H0A    3HO0    3HOD    3IA6    3K8S    3KMG    3LMP    3NOA    3OSI    3OSW    3PBA    3PO9    3PRG    3QT0    3R5N    3R8A    3R8I    3S9S    3SZ1    3T03    3TY0    3U9Q    3V9T    3V9V    3V9Y    3VJH    3VJI    3VN2    3VSO    3VSP    4A4V    4A4W    4E4K    4E4Q    4EM9    4EMA    4F9M    4FGY    4HEE    4JAZ    4JL4    4PRG   
PDB (PDBSum)1FM6    1FM9    1I7I    1K74    1KNU    1NYX    1PRG    1RDT    1WM0    1ZEO    1ZGY    2ATH    2F4B    2FVJ    2G0G    2G0H    2GTK    2HFP    2HWQ    2HWR    2I4J    2I4P    2I4Z    2OM9    2P4Y    2POB    2PRG    2Q59    2Q5P    2Q5S    2Q61    2Q6R    2Q6S    2Q8S    2QMV    2VSR    2VST    2VV0    2VV1    2VV2    2VV3    2VV4    2XKW    2YFE    2ZK0    2ZK1    2ZK2    2ZK3    2ZK4    2ZK5    2ZK6    2ZNO    2ZVT    3ADS    3ADT    3ADU    3ADV    3ADW    3ADX    3AN3    3AN4    3B0Q    3B0R    3B1M    3B3K    3BC5    3CDP    3CDS    3CS8    3CWD    3D6D    3DZU    3DZY    3E00    3ET0    3ET3    3FEJ    3FUR    3G9E    3GBK    3H0A    3HO0    3HOD    3IA6    3K8S    3KMG    3LMP    3NOA    3OSI    3OSW    3PBA    3PO9    3PRG    3QT0    3R5N    3R8A    3R8I    3S9S    3SZ1    3T03    3TY0    3U9Q    3V9T    3V9V    3V9Y    3VJH    3VJI    3VN2    3VSO    3VSP    4A4V    4A4W    4E4K    4E4Q    4EM9    4EMA    4F9M    4FGY    4HEE    4JAZ    4JL4    4PRG   
PDB (IMB)1FM6    1FM9    1I7I    1K74    1KNU    1NYX    1PRG    1RDT    1WM0    1ZEO    1ZGY    2ATH    2F4B    2FVJ    2G0G    2G0H    2GTK    2HFP    2HWQ    2HWR    2I4J    2I4P    2I4Z    2OM9    2P4Y    2POB    2PRG    2Q59    2Q5P    2Q5S    2Q61    2Q6R    2Q6S    2Q8S    2QMV    2VSR    2VST    2VV0    2VV1    2VV2    2VV3    2VV4    2XKW    2YFE    2ZK0    2ZK1    2ZK2    2ZK3    2ZK4    2ZK5    2ZK6    2ZNO    2ZVT    3ADS    3ADT    3ADU    3ADV    3ADW    3ADX    3AN3    3AN4    3B0Q    3B0R    3B1M    3B3K    3BC5    3CDP    3CDS    3CS8    3CWD    3D6D    3DZU    3DZY    3E00    3ET0    3ET3    3FEJ    3FUR    3G9E    3GBK    3H0A    3HO0    3HOD    3IA6    3K8S    3KMG    3LMP    3NOA    3OSI    3OSW    3PBA    3PO9    3PRG    3QT0    3R5N    3R8A    3R8I    3S9S    3SZ1    3T03    3TY0    3U9Q    3V9T    3V9V    3V9Y    3VJH    3VJI    3VN2    3VSO    3VSP    4A4V    4A4W    4E4K    4E4Q    4EM9    4EMA    4F9M    4FGY    4HEE    4JAZ    4JL4    4PRG   
PDB (RSDB)1FM6    1FM9    1I7I    1K74    1KNU    1NYX    1PRG    1RDT    1WM0    1ZEO    1ZGY    2ATH    2F4B    2FVJ    2G0G    2G0H    2GTK    2HFP    2HWQ    2HWR    2I4J    2I4P    2I4Z    2OM9    2P4Y    2POB    2PRG    2Q59    2Q5P    2Q5S    2Q61    2Q6R    2Q6S    2Q8S    2QMV    2VSR    2VST    2VV0    2VV1    2VV2    2VV3    2VV4    2XKW    2YFE    2ZK0    2ZK1    2ZK2    2ZK3    2ZK4    2ZK5    2ZK6    2ZNO    2ZVT    3ADS    3ADT    3ADU    3ADV    3ADW    3ADX    3AN3    3AN4    3B0Q    3B0R    3B1M    3B3K    3BC5    3CDP    3CDS    3CS8    3CWD    3D6D    3DZU    3DZY    3E00    3ET0    3ET3    3FEJ    3FUR    3G9E    3GBK    3H0A    3HO0    3HOD    3IA6    3K8S    3KMG    3LMP    3NOA    3OSI    3OSW    3PBA    3PO9    3PRG    3QT0    3R5N    3R8A    3R8I    3S9S    3SZ1    3T03    3TY0    3U9Q    3V9T    3V9V    3V9Y    3VJH    3VJI    3VN2    3VSO    3VSP    4A4V    4A4W    4E4K    4E4Q    4EM9    4EMA    4F9M    4FGY    4HEE    4JAZ    4JL4    4PRG   
Human Protein AtlasENSG00000132170 [gene] [tissue] [antibody] [cell] [cancer]
Peptide AtlasP37231
HPRD03288
IPIIPI00853091   IPI00020897   IPI00852773   IPI00791321   IPI00853034   IPI00853274   IPI00926009   IPI00925290   IPI00924841   
Protein Interaction databases
DIP (DOE-UCLA)P37231
IntAct (EBI)P37231
FunCoupENSG00000132170
BioGRIDPPARG
InParanoidP37231
Interologous Interaction database P37231
IntegromeDBPPARG
STRING (EMBL)PPARG
Ontologies - Pathways
Ontology : AmiGOnegative regulation of transcription from RNA polymerase II promoter  negative regulation of transcription from RNA polymerase II promoter  RNA polymerase II regulatory region DNA binding  placenta development  negative regulation of acute inflammatory response  DNA binding  DNA binding  chromatin binding  sequence-specific DNA binding transcription factor activity  sequence-specific DNA binding transcription factor activity  steroid hormone receptor activity  ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity  prostaglandin receptor activity  protein binding  nucleus  nucleoplasm  cytosol  transcription initiation from RNA polymerase II promoter  lipid metabolic process  activation of cysteine-type endopeptidase activity involved in apoptotic process  signal transduction  G-protein coupled receptor signaling pathway  heart development  response to nutrient  drug binding  regulation of blood pressure  zinc ion binding  response to cold  gene expression  negative regulation of macrophage derived foam cell differentiation  negative regulation of macrophage derived foam cell differentiation  negative regulation of receptor biosynthetic process  negative regulation of cholesterol storage  negative regulation of sequestering of triglyceride  long-chain fatty acid transport  fatty acid oxidation  enzyme binding  monocyte differentiation  negative regulation of cell growth  ligand-dependent nuclear receptor transcription coactivator activity  epithelial cell differentiation  response to caffeine  organ regeneration  response to retinoic acid  cellular response to insulin stimulus  response to vitamin A  activating transcription factor binding  response to lipid  peroxisome proliferator activated receptor signaling pathway  response to drug  glucose homeostasis  lipoprotein transport  steroid hormone mediated signaling pathway  sequence-specific DNA binding  response to estrogen  transcription regulatory region DNA binding  transcription regulatory region DNA binding  innate immune response  cell fate commitment  positive regulation of fat cell differentiation  low-density lipoprotein particle receptor biosynthetic process  negative regulation of transcription, DNA-templated  positive regulation of transcription, DNA-templated  positive regulation of transcription from RNA polymerase II promoter  positive regulation of transcription from RNA polymerase II promoter  positive regulation of fatty acid oxidation  retinoid X receptor binding  cell maturation  negative regulation of smooth muscle cell proliferation  positive regulation of oligodendrocyte differentiation  arachidonic acid binding  white fat cell differentiation  white fat cell differentiation  brown fat cell differentiation  positive regulation of sequence-specific DNA binding transcription factor activity  negative regulation of telomerase activity  lipid homeostasis  response to low-density lipoprotein particle  negative regulation of interferon-gamma-mediated signaling pathway  regulation of cholesterol transporter activity  regulation of transcription involved in cell fate commitment  cellular response to lithium ion  
Ontology : EGO-EBInegative regulation of transcription from RNA polymerase II promoter  negative regulation of transcription from RNA polymerase II promoter  RNA polymerase II regulatory region DNA binding  placenta development  negative regulation of acute inflammatory response  DNA binding  DNA binding  chromatin binding  sequence-specific DNA binding transcription factor activity  sequence-specific DNA binding transcription factor activity  steroid hormone receptor activity  ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity  prostaglandin receptor activity  protein binding  nucleus  nucleoplasm  cytosol  transcription initiation from RNA polymerase II promoter  lipid metabolic process  activation of cysteine-type endopeptidase activity involved in apoptotic process  signal transduction  G-protein coupled receptor signaling pathway  heart development  response to nutrient  drug binding  regulation of blood pressure  zinc ion binding  response to cold  gene expression  negative regulation of macrophage derived foam cell differentiation  negative regulation of macrophage derived foam cell differentiation  negative regulation of receptor biosynthetic process  negative regulation of cholesterol storage  negative regulation of sequestering of triglyceride  long-chain fatty acid transport  fatty acid oxidation  enzyme binding  monocyte differentiation  negative regulation of cell growth  ligand-dependent nuclear receptor transcription coactivator activity  epithelial cell differentiation  response to caffeine  organ regeneration  response to retinoic acid  cellular response to insulin stimulus  response to vitamin A  activating transcription factor binding  response to lipid  peroxisome proliferator activated receptor signaling pathway  response to drug  glucose homeostasis  lipoprotein transport  steroid hormone mediated signaling pathway  sequence-specific DNA binding  response to estrogen  transcription regulatory region DNA binding  transcription regulatory region DNA binding  innate immune response  cell fate commitment  positive regulation of fat cell differentiation  low-density lipoprotein particle receptor biosynthetic process  negative regulation of transcription, DNA-templated  positive regulation of transcription, DNA-templated  positive regulation of transcription from RNA polymerase II promoter  positive regulation of transcription from RNA polymerase II promoter  positive regulation of fatty acid oxidation  retinoid X receptor binding  cell maturation  negative regulation of smooth muscle cell proliferation  positive regulation of oligodendrocyte differentiation  arachidonic acid binding  white fat cell differentiation  white fat cell differentiation  brown fat cell differentiation  positive regulation of sequence-specific DNA binding transcription factor activity  negative regulation of telomerase activity  lipid homeostasis  response to low-density lipoprotein particle  negative regulation of interferon-gamma-mediated signaling pathway  regulation of cholesterol transporter activity  regulation of transcription involved in cell fate commitment  cellular response to lithium ion  
Pathways : BIOCARTABasic mechanism of action of PPARa, PPARb(d) and PPARg and effects on gene expression [Genes]    Nuclear Receptors in Lipid Metabolism and Toxicity [Genes]    Visceral Fat Deposits and the Metabolic Syndrome [Genes]    Role of PPAR-gamma Coactivators in Obesity and Thermogenesis [Genes]   
Pathways : KEGGPPAR signaling pathway    Osteoclast differentiation    Huntington's disease    Pathways in cancer    Transcriptional misregulation in cancer    Thyroid cancer   
Protein Interaction DatabasePPARG
Wikipedia pathwaysPPARG
Gene fusion - rearrangments
Rearrangement : COSMICPAX8 [2q13]  -  PPARG [3p25.2]  
  [COSF1215] [COSF1216] [COSF1217] [COSF1218] [COSF1219] [COSF1220] [COSF1223] [COSF1224] [COSF1225] 
 
Rearrangement : TICdbCREB3L2 [7q33]  -  PPARG [12p12.1]
Rearrangement : TICdbPAX8 [2q13]  -  PPARG [2q11.2]
Polymorphisms : SNP, mutations, diseases
SNP Single Nucleotide Polymorphism (NCBI)PPARG
snp3D : Map Gene to Disease5468
SNP (GeneSNP Utah)PPARG
SNP : HGBasePPARG
Genetic variants : HAPMAPPPARG
Exome VariantPPARG
1000_GenomesPPARG 
ICGC programENSG00000132170 
Cancer Gene: CensusPPARG 
Somatic Mutations in Cancer : COSMICPPARG 
CONAN: Copy Number AnalysisPPARG 
Mutations and Diseases : HGMDPPARG
Mutations and Diseases : intOGenPPARG
Genomic VariantsPPARG  PPARG [DGVbeta]
dbVarPPARG
ClinVarPPARG
Pred. of missensesPolyPhen-2  SIFT(SG)  SIFT(JCVI)  Align-GVGD  MutAssessor  Mutanalyser  
Pred. splicesGeneSplicer  Human Splicing Finder  MaxEntScan  
Diseases
OMIM125853    601487    601665    604367    609338   
MedgenPPARG
GENETestsPPARG
Disease Genetic AssociationPPARG
Huge Navigator PPARG [HugePedia]  PPARG [HugeCancerGEM]
General knowledge
Homologs : HomoloGenePPARG
Homology/Alignments : Family Browser (UCSC)PPARG
Phylogenetic Trees/Animal Genes : TreeFamPPARG
Chemical/Protein Interactions : CTD5468
Chemical/Pharm GKB GenePA281
Clinical trialPPARG
Cancer Resource (Charite)ENSG00000132170
Other databases
Probes
Litterature
PubMed499 Pubmed reference(s) in Entrez
CoreMinePPARG
iHOPPPARG
OncoSearchPPARG

Bibliography

Inhibition of lipopolysaccharide-induced interleukin-1 beta mRNA expression in mouse macrophages by oxidized low density lipoprotein.
Fong LG, Fong TA, Cooper AD.
J Lipid Res. 1991 Dec; 32(12): 1899-1910.
PMID 1816321
 
A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation.
Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM.
Cell. 1995 Dec 1; 83(5): 813-819.
PMID 8521498
 
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma).
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA.
J. Biol. Chem. 1995; 270: 12953-12956.
PMID 7768881
 
Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma-1 and gamma-2.
Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, Berger J.
Biochem. Biophys. 1996; Res. Commun. 224: 431-437.
PMID 8702406
 
Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma.
Hu E, Kim JB, Sarraf P, Spiegelman BM.
Science. 1996; 274(5295): 2100-2103.
PMID 8953045
 
Regulation of PPAR gamma gene expression by nutrition and obesity in rodents.
Vidal-Puig A, Jimenez-Linan M, Lowell BB, Hamann A, Hu E, Spiegelman B, Flier JS, Moller DE.
J Clin Invest. 1996 J; 97(11): 2553-2561.
PMID 8647948
 
The organization, promoter analysis, and expression of the human PPARgamma gene.
Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J.
J Biol Chem. 1997; 272(30): 18779-18789.
PMID 9228052
 
Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids.
Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF, Flier JS.
J Clin Invest. 1997; 99(10): 2416-2422.
PMID 9153284
 
Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR-gamma) gene in diabetic Caucasians: identification of a pro12ala PPAR-gamma-2 missense mutation.
Yen C-J, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, Burns DK, Roth J, Shuldiner AR.
Biochem. Biophys. Res. Commun. 1997; 241: 270-274.
PMID 9425261
 
PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter.
Fajas L, Fruchart JC, Auwerx J.
FEBS Lett. 1998; 438(1-2): 55-60.
PMID 9821958
 
Terminal differentiation of human breast cancer through PPAR-gamma.
Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM.
Molec. Cell. 1998; 1: 465-470.
PMID 9660931
 
Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer.
Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, Oh W, Demetri G, Figg WD, Zhou XP, Eng C, Spiegelman BM, Kantoff PW.
Proc. Nat. Acad. Sci. 2000; 97: 10990-10995.
PMID 10984506
 
A unique PPAR-gamma ligand with potent insulin-sensitizing yet weak adipogenic activity.
Rocchi S, Picard F, Vamecq J, Gelman L, Potier N, Zeyer D, Dubuquoy L, Bac P, Champy MF, Plunket KD, Leesnitzer LM, Blanchard SG, Desreumaux P, Moras D, Renaud JP, Auwerx J.
Molec. Cell 2001; 8: 737-747.
PMID 11684010
 
Prostaglandin D2, its metabolite 15-d-PGJ2, and peroxisome proliferator activated receptor-gamma agonists induce apoptosis in transformed, but not normal, human T lineage cells.
Harris SG, Phipps RP.
Immunology 2002; 105: 23-34.
PMID 11849312
 
Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas.
Heaney AP, Fernando M, Yong WH, Melmed S.
Nature Med. 2002; 8: 1281-1287.
PMID 12379847
 
PPARs: transcriptional effectors of fatty acids and their derivatives.
Hihi AK, Michalik L, Wahli W.
Cell Mol Life Sci. 2002; 59(5): 790-8. (Review)
PMID 12088279
 
Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma.
Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VKK, O'Rahilly S.
Diabetes 2003; 52: 910-917.
PMID 12663460
 
Peroxisome-proliferator-activated receptors and cancers: complex stories.
Michalik L, Desvergne B, Wahli W.
Nat Rev Cancer. 2004;4(1): 61-70. (Review)
PMID 14708026
 
The many faces of PPARgamma.
Lehrke M, Lazar MA.
Cell. 2005; 123(6): 993-999. (Review)
PMID 16360030
 
PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties.
Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G.
Cell Metab. 2007; 6(2): 137-143.
PMID 17681149
 
Modulation of PPAR activity via phosphorylation.
Burns KA, Vanden Heuvel JP.
Biochim Biophys Acta. 2007; 1771(8): 952-960. (Review)
PMID 17560826
 
Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus.
Jay MA, Ren J.
Curr Diabetes Rev. 2007; 3(1): 33-39. (Review)
PMID 18220654
 
The role of the Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma in diabetes risk.
Tonjes A, Stumvoll M.
Curr Opin Clin Nutr Metab Care. 2007; 10(4): 410-414. (Review)
PMID 17563457
 
Transcription coactivators for peroxisome proliferator-activated receptors.
Yu S, Reddy JK.
Biochim Biophys Acta. 2007; 1771(8): 936-951.
PMID 17306620
 
Antitumorigenic effects of peroxisome proliferator-activated receptor-gamma in non-small-cell lung cancer cells are mediated by suppression of cyclooxygenase-2 via inhibition of nuclear factor-kappaB.
Bren-Mattison Y, Meyer AM, Van Putten V, Li H, Kuhn K, Stearman R, Weiser-Evans M, Winn RA, Heasley LE, Nemenoff RA.
Mol Pharmacol. 2008; 73(3): 709-717.
PMID 18055759
 
Peroxisome proliferator-activated receptor gamma (PPARgamma) suppresses colonic epithelial cell turnover and colon carcinogenesis through inhibition of the beta-catenin/T cell factor (TCF) pathway.
Fujisawa T, Nakajima A, Fujisawa N, Takahashi H, Ikeda I, Tomimoto A, Yonemitsu K, Nakajima N, Kudo C, Wada K, Kubota N, Terauchi Y, Kadowaki T, Nakagama H, Blumberg RS.
J Pharmacol Sci. 2008; 106(4): 627-638.
PMID 18391483
 
Narrowing in on cardiovascular disease: the atheroprotective role of peroxisome proliferator-activated receptor gamma.
Gerry JM, Pascual G.
Trends Cardiovasc Med. 2008; 18(2): 39-44. (Review)
PMID 18308193
 
The Roles of Dietary PPARgamma Ligands for Metastasis in Colorectal Cancer.
Kuniyasu H.
PPAR Res. 2008; 2008: 529720.
PMID 18551182
 
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

Contributor(s)

Written07-2008Erhan Astarci, Sreeparna Banerjee
Department of Biological Sciences, Middle East Technical University, Ankara 06531 Turkey

Citation

This paper should be referenced as such :
Astarci, E ; Banerjee, S
PPARG (peroxisome proliferator-activated receptor gamma)
Atlas Genet Cytogenet Oncol Haematol. 2009;13(6):417-421.
Free online version   Free pdf version   [Bibliographic record ]
URL : http://AtlasGeneticsOncology.org/Genes/PPARGID383ch3p25.html

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Sat Oct 4 13:05:25 CEST 2014

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.