Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

RND3 (Rho family GTPase 3)

Written2013-01Xia Hongwei, Zhang Yucheng, Bi Feng
The Laboratory of Signal Transduction, Molecular Targeting Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China

(Note : for Links provided by Atlas : click)

Identity

Alias_namesARHE
ras homolog gene family
Alias_symbol (synonym)RhoE
Rho8
Other aliasmemB
HGNC (Hugo) RND3
LocusID (NCBI) 390
Atlas_Id 46247
Location 2q23.3  [Link to chromosome band 2q23]
Location_base_pair Starts at 150468193 and ends at 150487695 bp from pter ( according to hg19-Feb_2009)  [Mapping RND3.png]
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
RND3 (2q23.3) / HSPA8 (11q24.1)RND3 (2q23.3) / LRCH3 (3q29)RND3 (2q23.3) / RND3 (2q23.3)
RND3 (2q23.3) / TMEM87B (2q13)

DNA/RNA

Description According to Entrez-Gene, RND3 gene maps to NC_000002.11 in the region between 151324709 and 151344180. According to Spidey (mRNA to genomic sequence alignment tool, http://www.ncbi.nlm.nih.gov/spidey), RND3 has 6 exons, the sizes being 100, 190, 88, 110, 135, 2047.

Protein

Description RND3 encodes a 26 kDa, 229 amino acids small GTPase protein that belongs to the Rho family of Ras GTPases superfamily. RND3 is a novel and unusual member of the Rho family because its activity is not controlled by two different reactions: the GDP/GTP exchange and the GTP-hydrolysis. So it is unable to hydrolyze GTP and is resistant towards GAP activity. They possess extended chains at both termini and four amino acids are responsible for RND3 GTPase deficiency: Ser32, Gln33, Ser79 and Ser81. And mutations of these codons in ras genes (Gly12, Gly13, Ala59 and Gln61) are responsible for Ras-mediated malignant transformation. The structure also implicated that it may also make the GTP-bound conformation of switch II stabe and could prevent conformational changes required during hydrolysis.
Expression RND3 expression is highly regulated in response to multiple different stimulies and conditions.
At transcriptionally, RND3 could be directly regulated by many transcriptional factors, including P53, HIF-1a, Foxd3, NF-KB, etc. RND3 mRNA and protein levels was up-regulated upon DNA damage-inducing stimuli including chemotherapeutic agents and ultraviolet (UV) irradiation. The response to genetoxic agents is mediated by p53, which binds specifically to the RND3 promoter and regulates RND3 expression while UV-induced RND3 up-regulation in keratinocytes does not depend on p53 status. So there must be other DNA damage-induced transcription factors to stimulate RND3 transcription. For example, NF-kB could induce RND3 expression in prostate cancer cells. Hypoxia-inducible factor (HIF)-1 can increase RND3 protein levels, thereby promotes epithelial to mesenchymal transition in gastric cancer cells under hypoxic conditions. The induced RND3 expression represents a pivotal cellular adaptive response to hypoxia with implications in gastric cancer cell EMT and invasion. In addition, mutant B-Raf promotes migration and invasion through inducing RND3 expression in melanoma cells. FOXD3 was proved to be recruited to the RND3 promoter and downregulated RND3 expression at the mRNA and protein levels, thus downregulates migration and invasion in melanoma cells. The mTOR pathway is responsible for the increased expression of RND3 in subependymal giant cell astrocytomas and rare brain tumours where the mTOR inhibitors TSC1 or TSC2 are mutated. The TGF-b pathway is also involved in the RND3 expression since the TGF-b family member MIC-1/GDF15 could reduce the RND3 expression in prostate cancer cells.
At post-transcriptionally, RND3 mRNA could also be a target of the miRNAs. Mir-200b directly downregulated the expression of RND3 at the mRNA and protein levels, promoted expression of the downstream protein cyclin D1 and increased S-phase entry in HeLa cells. There is also study showing that RND3 mRNA may be a target of the miR-200c in breast cancer cells. MiR-17 targets RND3 tumor suppressor gene, promotes cell proliferation, tumor growth, cell cycle progression in colorectal carcinoma.
Localisation Located in the membranes, Golgi.
Function RND3 is an atypical member of the Rho family, and the study about this molecule is relatively fewer than other members of the Rho family. However the recent study shows that RND3 could regulate a diverse set of biological activities including actin organization, cell motility, cell-cycle progression, apoptosis and development.

Role in actin organization
Many studies on the functions of RND3 have been carried out in several cultured cell lines, most of these studies have shown that RND3 could regulate the actin cytoskeleton by inducing loss of stress fibres and cell rounding.
Previous studies have shown that RND3 interacts with p190 RhoGAP and might increase the intrinsic GAP activity of p190 RhoGAP for RhoA, thereby reducing RhoA-GTP levels. Recent reports have shown that a KERRA (Lys-Glu-Arg-Arg-Ala) sequence in their N-terminus of RND3 could mediate the lipid raft targeting of p190 RhoGAP correlated with its activation. RND3 could also negatively regulates Syx (a RhoA-GEF) through interacting with Syx Raf1-like ubiquitin-related domain thus act as an antagonists of RhoA signaling.
RhoA directly stimulates stress fibres through activation of the serine/threonine kinases ROCK1 and ROCK2. RND3 could interact with the amino-terminal region of ROCK1 comprising the kinase domain, so RND3 competited with other ROCK1 substrates, such as myosin light chain phosphatase, and hence prevent stress fibre formation.

Role in cell cycle regulation
Many studies have been indicated that RND3 could inhibit cell proliferation and these data show that RND3 is able to block cell-cycle progression at different phases.
Most studies about cell-cycle shown that RND3 could block cell-cycle progression at the G1 phase. The mechanism may be that RND3 could decrease the level of cyclin D1, reduce Rb phosphorylation and transcription of E2F-regulated genes. RND3 blocks the phosphorylation of the translational repressor 4E-BP1 in response to extracellular stimuli and also inhibits the expression and transcriptional activity of the eIF4E target c-Myc. Recent studies show that elevation of RND3 expression markedly increased the expression level of PTEN and p27 and decreased pAkt level, thus inhibit cell-cycle progression.
RND3 could also block cell-cycle progression at the G2/M phase. The study in a prostate cancer cell line shows that forced RND3 overexpression inhibits the expression of CDC2 and cyclin B1 which are essential for G2/M transition and induction of G2/M arrest.

Role in cell apoptosis and survival
The fuction of RND3 is complex, RND3 can modulate cell survival and apoptosis. RND3 can induce apoptosis in prostate cancer, esophageal squamous cell carcinoma and glioblastoma cell lines. However, in some cancer cell lines, high levels of RND3 can decrease apoptosis and ShRNA mediated RND3 depletion resulted in an increase in apoptosis in response to genotoxic agents or UVB. RND3 could increase survival in osteosarcoma cells through down-regulate the activity of ROCK1 which itself can mediate membrane blebbing and apoptosis in these cells. RND3 may promote the multidrug resistance phenotype of gastric cancer cells by decreasing the expression of pro-apoptotic protein Bax at post-transcriptional level.

Role in development
RND3 plays an important role in the normal development, RND3 null mice (RND3 gt/gt) show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests, they are smaller at birth, display growth retardation and early postnatal death. There is a delay of neuromuscular maturation, a reduction in the number of spinal motor neurons, a decrease in the number and the total length of the neurites in the RND3 gt/gt mice.
Over-expression of RND3 induces neurite-like formation through inhibition of the RhoA/ROCK-I signalling and also involves in NGF-induced neurite extension.

Implicated in

Note
  
Entity Lung tumors
Oncogenesis RND3 expression was dramatically increased in the cytoplasm of lung cancer cells compared with undetectable expression of RND3 in the adjacent nontumoral cells. The cancer-related survival of RND3-negative patients are longer than that of RND3-positive ones. RND3 overexpression may serve as an independent marker for cancer-related survival in patients with non-small cell lung cancer. Overexpression of RND3 was also significantly associated with the patients' smoking history and DNA copy number changes.
  
  
Entity Prostate cancer
Oncogenesis RND3 mRNA and protein expression were significantly reduced in malignant tissue compared to benign samples. Forced RND3 overexpression in a prostate cancer cell line inhibits the expression of CDC2 and cyclin B1, which induce G2/M arrest, and also increases apoptotic cell death. Genetic profiling of human prostate cancer cell lines shows that RND3 may serve as a potential new molecular marker for assessing the metastatic potential of PCa.
  
  
Entity Mammary epithelial tumor
Oncogenesis The expression level of RND3 in cancerous tissues was decreased or absent compared with adjacent normal tissues and RND3 could also serve as a negative marker in the development and progression of breast carcinoma. Exogenously expressed RND3/RND3 induces the formation of highly sealed tight junctions, co-localizes with actin at the cell periphery and induces beta-catenin and ZO-1 to sites of cell-cell contact in mammary epithelial tumor cells.
  
  
Entity Human glioblastoma
Oncogenesis Overexpression of RND3 disrupts actin cytoskeleton organization, inhibits cell proliferation and induces apoptosis in U87 glioblastoma cell line. RND3 reduces Rb phosphorylation, cyclin D1 expression and also inhibits ERK activation following serum stimulation of quiescent U87 cells.
  
  
Entity Esophageal squamous cell carcinoma
Oncogenesis The mRNA and protein expression levels of RND3 was significantly downregulated in ESCC (esophageal squamous cell carcinoma) tissues and cell lines, RND3 expression was tightly correlated with differentiation degree, clinical staging, and lymph node metastasis of the patients with ESCC, but there is no significant association between RND3 expression and gender or age of the patients with ESCC. Foced downregulation of RND3 expression in ESCC cells promoted cell proliferation, cell cycle progression, as well as cell invasion in vitro, and inhibited cell apoptosis, while upregulation of RND3 expression in ESCC cells inhibited cell proliferation, arrested cell cycle at G0/G1 phase, reduced cell invasion, and promoted cell apoptosis. RND3 may play an important role in the development and progression of ESCC.
  
  
Entity Melanoma
Oncogenesis Many studies have revealed that RND3 overexpressed in melanoma cells. B-Raf-mediated up-regulation of RND3 appears to participate in the promoting melanoma cell invasion by reorganizating the actin cytoskeleton and focal adhesions. Upregulation of FOXD3 expression inhibits the migration, invasion, and spheroid outgrowth of mutant B-RAF melanoma cells through downregulating RND3 expression at the transcriptional level.
  
  
Entity Mesenchymal tumor
Oncogenesis Reduced expression of RND3 increases invasiveness and metastatic potential in mesenchymal tumor cells while ectopic RND3 expression reduced their invasive ability in vitro and their metastatic potential in vivo.
  
  
Entity Pancreatic cancer
Oncogenesis A pancreatic cancer-specific expression profiling shows that RND3 is overexpressed in pancreatic cancer cells.
  
  
Entity Liver cancer
Oncogenesis Hepatocellular carcinoma (HCC) is the most common type of liver cancer. According to previous study, RND3 was down-regulated in HCC cell lines, as compared to nontumor liver cells. What's more, the patients with low expression of RND3 had a shorter survival than those with high expression. Therefore, RND3 expression could act as a significant prognostic predictor for HCC patients. The SiRNA-mediated down-regulation of Rnd3 expression induced a loss of E-cadherin and epithelial-mesenchymal transition through the up-regulation of the zinc finger E-box binding homeobox protein, ZEB2, and the down-regulation of miR-200b and miR-200c.
  
  
Entity Gastric cancer
Oncogenesis RND3 expression is down-regulated in gastric cancer cells and its expression is regulated by histone deacetylation, but not DNA methylation at the epigenetic levels in gastric cancer cells. However, RND3 expression is up-regulated in gastric cancer cells under hypoxic conditions. And HIF-1a could up-regulate RND3 expression through binding a hypoxia-responsive element (HRE) on the RND3 promoter at the transcriptional level. Besides, RND3 is overexpressed in the SGC7901 cell line and enhanced the resistance of SGC7901 cells to several kinds of antitumor drugs by decreasing the expression of Bax at post-transcriptional level.
  
  
Entity Colorectal cancer
Oncogenesis RND3 is downregulated in colorectal carcinoma (CRC) and RND3 expression was significantly lower in CRC tissues than in normal tissues and adenomas. Forced expression of RND3 can decrease the size of colorectal tumor and reduce the CD44 expression and further study shows that RND3 could inhibite the transcriptional activity of cd44 promoter. MiR-17 also plays an important role in CRC carcinogenesis by targeting RND3, thus promotes cell proliferation, tumour growth and cell cycle progression. However, recent study show RND3 could also promote invasion and metastasis in human colorectal cancer and it could also serve as an independent prognostic marker in addition to the tumor, node, metastasis staging system. So the function of RND3 is complex.
  

Bibliography

Growth-suppressive effect of non-steroidal anti-inflammatory drugs on 11 colon-cancer cell lines and fluorescence differential display of genes whose expression is influenced by sulindac.
Akashi H, Han HJ, Iizaka M, Nakamura Y.
Int J Cancer. 2000 Dec 15;88(6):873-80.
PMID 11093808
 
Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases.
Aspenstrom P, Ruusala A, Pacholsky D.
Exp Cell Res. 2007 Oct 15;313(17):3673-9. Epub 2007 Jul 28. (REVIEW)
PMID 17850788
 
RhoE is spatiotemporally regulated in the postnatal mouse CNS.
Ballester-Lurbe B, Poch E, Mocholi E, Guasch RM, Perez-Roger I, Terrado J.
Neuroscience. 2009 Oct 6;163(2):586-93. doi: 10.1016/j.neuroscience.2009.06.062. Epub 2009 Jul 7.
PMID 19589369
 
Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis.
Bektic J, Pfeil K, Berger AP, Ramoner R, Pelzer A, Schafer G, Kofler K, Bartsch G, Klocker H.
Prostate. 2005 Sep 1;64(4):332-40.
PMID 15754346
 
Identification of genes involved in estrogenic action in the human prostate using microarray analysis.
Bektic J, Wrulich OA, Dobler G, Kofler K, Ueberall F, Culig Z, Bartsch G, Klocker H.
Genomics. 2004 Jan;83(1):34-44.
PMID 14667807
 
Reduced expression of the ROCK inhibitor Rnd3 is associated with increased invasiveness and metastatic potential in mesenchymal tumor cells.
Belgiovine C, Frapolli R, Bonezzi K, Chiodi I, Favero F, Mello-Grand M, Dei Tos AP, Giulotto E, Taraboletti G, D'Incalci M, Mondello C.
PLoS One. 2010 Nov 30;5(11):e14154. doi: 10.1371/journal.pone.0014154.
PMID 21209796
 
Rho GTPases of the RhoBTB subfamily and tumorigenesis.
Berthold J, Schenkova K, Rivero F.
Acta Pharmacol Sin. 2008 Mar;29(3):285-95. doi: 10.1111/j.1745-7254.2008.00773.x. (REVIEW)
PMID 18298893
 
The protective role of a small GTPase RhoE against UVB-induced DNA damage in keratinocytes.
Boswell SA, Ongusaha PP, Nghiem P, Lee SW.
J Biol Chem. 2007 Feb 16;282(7):4850-8. Epub 2006 Dec 14.
PMID 17170105
 
Evolution of the Rho family of ras-like GTPases in eukaryotes.
Boureux A, Vignal E, Faure S, Fort P.
Mol Biol Evol. 2007 Jan;24(1):203-16. Epub 2006 Oct 11.
PMID 17035353
 
The role of microRNAs in metastasis and epithelial-mesenchymal transition.
Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ.
Cell Mol Life Sci. 2009 May;66(10):1682-99. doi: 10.1007/s00018-009-8750-1. (REVIEW)
PMID 19153653
 
Modulation of RhoA-Rho kinase-mediated Ca2+ sensitization of rabbit myometrium during pregnancy - role of Rnd3.
Cario-Toumaniantz C, Reillaudoux G, Sauzeau V, Heutte F, Vaillant N, Finet M, Chardin P, Loirand G, Pacaud P.
J Physiol. 2003 Oct 15;552(Pt 2):403-13.
PMID 14561824
 
Function and regulation of Rnd proteins.
Chardin P.
Nat Rev Mol Cell Biol. 2006 Jan;7(1):54-62. (REVIEW)
PMID 16493413
 
Epigenetic modification of RhoE expression in gastric cancer cells.
Chen J, Zhou H, Li Q, Qiu M, Li Z, Tang Q, Liu M, Zhu Y, Huang J, Lang N, Liu Z, Deng Y, Zhang S, Bi F.
Oncol Rep. 2011 Jan;25(1):173-80.
PMID 21109974
 
Anoikis: a necessary death program for anchorage-dependent cells.
Chiarugi P, Giannoni E.
Biochem Pharmacol. 2008 Dec 1;76(11):1352-64. doi: 10.1016/j.bcp.2008.07.023. Epub 2008 Jul 25. (REVIEW)
PMID 18708031
 
In vivo activation of ROCK1 by insulin is impaired in skeletal muscle of humans with type 2 diabetes.
Chun KH, Choi KD, Lee DH, Jung Y, Henry RR, Ciaraldi TP, Kim YB.
Am J Physiol Endocrinol Metab. 2011 Mar;300(3):E536-42. doi: 10.1152/ajpendo.00538.2010. Epub 2010 Dec 28.
PMID 21189360
 
Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I.
Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF.
Nat Cell Biol. 2001 Apr;3(4):339-45.
PMID 11283606
 
RhoE is regulated by cyclic AMP and promotes fusion of human BeWo choriocarcinoma cells.
Collett GP, Goh XF, Linton EA, Redman CW, Sargent IL.
PLoS One. 2012;7(1):e30453. doi: 10.1371/journal.pone.0030453. Epub 2012 Jan 17.
PMID 22272352
 
The amino acid sensitive TOR pathway from yeast to mammals.
Dann SG, Thomas G.
FEBS Lett. 2006 May 22;580(12):2821-9. Epub 2006 May 2. (REVIEW)
PMID 16684541
 
RhoGDI: multiple functions in the regulation of Rho family GTPase activities.
Dovas A, Couchman JR.
Biochem J. 2005 Aug 15;390(Pt 1):1-9. (REVIEW)
PMID 16083425
 
RhoE controls myoblast alignment prior fusion through RhoA and ROCK.
Fortier M, Comunale F, Kucharczak J, Blangy A, Charrasse S, Gauthier-Rouviere C.
Cell Death Differ. 2008 Aug;15(8):1221-31. doi: 10.1038/cdd.2008.34. Epub 2008 Mar 28.
PMID 18369372
 
Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation.
Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J, Settleman J.
Mol Cell Biol. 1996 Jun;16(6):2689-99.
PMID 8649376
 
Plasticity of cell migration: a multiscale tuning model.
Friedl P, Wolf K.
J Cell Biol. 2010 Jan 11;188(1):11-9. doi: 10.1083/jcb.200909003. Epub 2009 Dec 1. (REVIEW)
PMID 19951899
 
Rapostlin is a novel effector of Rnd2 GTPase inducing neurite branching.
Fujita H, Katoh H, Ishikawa Y, Mori K, Negishi M.
J Biol Chem. 2002 Nov 22;277(47):45428-34. Epub 2002 Sep 18.
PMID 12244061
 
Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices.
Gadea G, de Toledo M, Anguille C, Roux P.
J Cell Biol. 2007 Jul 2;178(1):23-30.
PMID 17606864
 
Cell cycle control and beyond: emerging roles for the retinoblastoma gene family.
Genovese C, Trani D, Caputi M, Claudio PP.
Oncogene. 2006 Aug 28;25(38):5201-9. (REVIEW)
PMID 16936738
 
Cytokinesis: GAP gap.
Glotzer M.
Curr Biol. 2009 Feb 24;19(4):R162-5. doi: 10.1016/j.cub.2008.12.028.
PMID 19243691
 
Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation.
Goda T, Takagi C, Ueno N.
Dev Dyn. 2009 Nov;238(11):2867-76. doi: 10.1002/dvdy.22099.
PMID 19795516
 
The RhoA GEF Syx is a target of Rnd3 and regulated via a Raf1-like ubiquitin-related domain.
Goh LL, Manser E.
PLoS One. 2010 Aug 25;5(8):e12409. doi: 10.1371/journal.pone.0012409.
PMID 20811643
 
Rnd3/RhoE Is down-regulated in hepatocellular carcinoma and controls cellular invasion.
Grise F, Sena S, Bidaud-Meynard A, Baud J, Hiriart JB, Makki K, Dugot-Senant N, Staedel C, Bioulac-Sage P, Zucman-Rossi J, Rosenbaum J, Moreau V.
Hepatology. 2012 Jun;55(6):1766-75. doi: 10.1002/hep.25568.
PMID 22234932
 
Protein kinase C-mediated down-regulation of cyclin D1 involves activation of the translational repressor 4E-BP1 via a phosphoinositide 3-kinase/Akt-independent, protein phosphatase 2A-dependent mechanism in intestinal epithelial cells.
Guan L, Song K, Pysz MA, Curry KJ, Hizli AA, Danielpour D, Black AR, Black JD.
J Biol Chem. 2007 May 11;282(19):14213-25. Epub 2007 Mar 13.
PMID 17360714
 
RhoE regulates actin cytoskeleton organization and cell migration.
Guasch RM, Scambler P, Jones GE, Ridley AJ.
Mol Cell Biol. 1998 Aug;18(8):4761-71.
PMID 9671486
 
Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEK-extracellular signal-regulated kinase pathway.
Hansen SH, Zegers MM, Woodrow M, Rodriguez-Viciana P, Chardin P, Mostov KE, McMahon M.
Mol Cell Biol. 2000 Dec;20(24):9364-75.
PMID 11094087
 
Direct interaction of Rnd1 with FRS2 beta regulates Rnd1-induced down-regulation of RhoA activity and is involved in fibroblast growth factor-induced neurite outgrowth in PC12 cells.
Harada A, Katoh H, Negishi M.
J Biol Chem. 2005 May 6;280(18):18418-24. Epub 2005 Feb 28.
PMID 15738000
 
Mammalian Rho GTPases: new insights into their functions from in vivo studies.
Heasman SJ, Ridley AJ.
Nat Rev Mol Cell Biol. 2008 Sep;9(9):690-701. doi: 10.1038/nrm2476. (REVIEW)
PMID 18719708
 
Neurogenin 2 controls cortical neuron migration through regulation of Rnd2.
Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, Guillemot F.
Nature. 2008 Sep 4;455(7209):114-8. doi: 10.1038/nature07198.
PMID 18690213
 
Potential mRNA degradation targets of hsa-miR-200c, identified using informatics and qRT-PCR.
Hurteau GJ, Spivack SD, Brock GJ.
Cell Cycle. 2006 Sep;5(17):1951-6. Epub 2006 Sep 1.
PMID 16929162
 
A role of Rnd1 GTPase in dendritic spine formation in hippocampal neurons.
Ishikawa Y, Katoh H, Negishi M.
J Neurosci. 2003 Dec 3;23(35):11065-72.
PMID 14657163
 
Rho GTPases: biochemistry and biology.
Jaffe AB, Hall A.
Annu Rev Cell Dev Biol. 2005;21:247-69. (REVIEW)
PMID 16212495
 
FOXD3 regulates migration properties and Rnd3 expression in melanoma cells.
Katiyar P, Aplin AE.
Mol Cancer Res. 2011 May;9(5):545-52. doi: 10.1158/1541-7786.MCR-10-0454. Epub 2011 Apr 8.
PMID 21478267
 
Socius is a novel Rnd GTPase-interacting protein involved in disassembly of actin stress fibers.
Katoh H, Harada A, Mori K, Negishi M.
Mol Cell Biol. 2002 May;22(9):2952-64.
PMID 11940653
 
Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions.
Klein RM, Aplin AE.
Cancer Res. 2009 Mar 15;69(6):2224-33. doi: 10.1158/0008-5472.CAN-08-3201. Epub 2009 Feb 24.
PMID 19244113
 
A switch in RND3-RHOA signaling is critical for melanoma cell invasion following mutant-BRAF inhibition.
Klein RM, Higgins PJ.
Mol Cancer. 2011 Sep 14;10:114. doi: 10.1186/1476-4598-10-114.
PMID 21917148
 
B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization.
Klein RM, Spofford LS, Abel EV, Ortiz A, Aplin AE.
Mol Biol Cell. 2008 Feb;19(2):498-508. Epub 2007 Nov 28.
PMID 18045987
 
Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure.
Komander D, Garg R, Wan PT, Ridley AJ, Barford D.
EMBO J. 2008 Dec 3;27(23):3175-85. doi: 10.1038/emboj.2008.226. Epub 2008 Oct 23.
PMID 18946488
 
Expression of RND proteins in human myometrium.
Lartey J, Gampel A, Pawade J, Mellor H, Bernal AL.
Biol Reprod. 2006 Sep;75(3):452-61. Epub 2006 Mar 22.
PMID 16554414
 
Rnd-ing up RhoA activity to link neurogenesis with steps in neuronal migration.
Li J, Anton ES.
Dev Cell. 2011 Apr 19;20(4):409-10. doi: 10.1016/j.devcel.2011.04.001.
PMID 21497751
 
RhoE enhances multidrug resistance of gastric cancer cells by suppressing Bax.
Li K, Lu Y, Liang J, Luo G, Ren G, Wang X, Fan D.
Biochem Biophys Res Commun. 2009 Feb 6;379(2):212-6. doi: 10.1016/j.bbrc.2008.12.044. Epub 2008 Dec 25.
PMID 19101510
 
Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10.
Li YH, Ghavampur S, Bondallaz P, Will L, Grenningloh G, Puschel AW.
J Biol Chem. 2009 Jan 2;284(1):363-71. doi: 10.1074/jbc.M808126200. Epub 2008 Nov 7.
PMID 18996843
 
RhoE Is required for keratinocyte differentiation and stratification.
Liebig T, Erasmus J, Kalaji R, Davies D, Loirand G, Ridley A, Braga VM.
Mol Biol Cell. 2009 Jan;20(1):452-63. doi: 10.1091/mbc.E07-11-1197. Epub 2008 Oct 15.
PMID 18923151
 
Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells.
Liu T, Bauskin AR, Zaunders J, Brown DA, Pankhurst S, Russell PJ, Breit SN.
Cancer Res. 2003 Aug 15;63(16):5034-40.
PMID 12941831
 
The Rho-related protein Rnd1 inhibits Ca2+ sensitization of rat smooth muscle.
Loirand G, Cario-Toumaniantz C, Chardin P, Pacaud P.
J Physiol. 1999 May 1;516 ( Pt 3):825-34.
PMID 10200428
 
Down-regulation of RhoE is associated with progression and poor prognosis in hepatocellular carcinoma.
Luo H, Dong Z, Zou J, Zeng Q, Wu D, Liu L.
J Surg Oncol. 2012 Jun 1;105(7):699-704. doi: 10.1002/jso.23019. Epub 2011 Dec 28.
PMID 22213123
 
Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma.
Luo H, Zou J, Dong Z, Zeng Q, Wu D, Liu L.
Biochem J. 2012 Mar 1;442(2):311-21. doi: 10.1042/BJ20111517.
PMID 22132820
 
Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation.
Madigan JP, Bodemann BO, Brady DC, Dewar BJ, Keller PJ, Leitges M, Philips MR, Ridley AJ, Der CJ, Cox AD.
Biochem J. 2009 Oct 23;424(1):153-61. doi: 10.1042/BJ20082377.
PMID 19723022
 
Rnd family genes are differentially regulated by 3,4-methylenedioxymethamphetamine and cocaine acute treatment in mice brain.
Marie-Claire C, Salzmann J, David A, Courtin C, Canestrelli C, Noble F.
Brain Res. 2007 Feb 23;1134(1):12-7. Epub 2006 Dec 28.
PMID 17196187
 
RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice.
Mocholi E, Ballester-Lurbe B, Arque G, Poch E, Peris B, Guerri C, Dierssen M, Guasch RM, Terrado J, Perez-Roger I.
PLoS One. 2011 Apr 28;6(4):e19236. doi: 10.1371/journal.pone.0019236.
PMID 21552537
 
Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP.
Mori K, Amano M, Takefuji M, Kato K, Morita Y, Nishioka T, Matsuura Y, Murohara T, Kaibuchi K.
J Biol Chem. 2009 Feb 20;284(8):5067-76. doi: 10.1074/jbc.M806853200. Epub 2008 Dec 22.
PMID 19103606
 
Microarray analysis reveals potential target genes of NF-kappaB2/p52 in LNCaP prostate cancer cells.
Nadiminty N, Dutt S, Tepper C, Gao AC.
Prostate. 2010 Feb 15;70(3):276-87. doi: 10.1002/pros.21062.
PMID 19827050
 
Rho family GTPase Rnd2 interacts and co-localizes with MgcRacGAP in male germ cells.
Naud N, Toure A, Liu J, Pineau C, Morin L, Dorseuil O, Escalier D, Chardin P, Gacon G.
Biochem J. 2003 May 15;372(Pt 1):105-12.
PMID 12590651
 
A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion.
Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P.
J Cell Biol. 1998 Apr 6;141(1):187-97.
PMID 9531558
 
TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis.
Ogata S, Morokuma J, Hayata T, Kolle G, Niehrs C, Ueno N, Cho KW.
Genes Dev. 2007 Jul 15;21(14):1817-31.
PMID 17639085
 
The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras.
Oinuma I, Ishikawa Y, Katoh H, Negishi M.
Science. 2004 Aug 6;305(5685):862-5.
PMID 15297673
 
Rnd1 and Rnd3 targeting to lipid raft is required for p190 RhoGAP activation.
Oinuma I, Kawada K, Tsukagoshi K, Negishi M.
Mol Biol Cell. 2012 Apr;23(8):1593-604. doi: 10.1091/mbc.E11-11-0900. Epub 2012 Feb 22.
PMID 22357615
 
RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress.
Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, Kim YB, Aaronson SA, Lee SW.
Curr Biol. 2006 Dec 19;16(24):2466-72.
PMID 17174923
 
Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling.
Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M, Guillemot F.
Neuron. 2011 Mar 24;69(6):1069-84. doi: 10.1016/j.neuron.2011.02.018.
PMID 21435554
 
Neuronal polarization is impaired in mice lacking RhoE expression.
Peris B, Gonzalez-Granero S, Ballester-Lurbe B, Garcia-Verdugo JM, Perez-Roger I, Guerri C, Terrado J, Guasch RM.
J Neurochem. 2012 Jun;121(6):903-14. doi: 10.1111/j.1471-4159.2012.07733.x. Epub 2012 Apr 13.
PMID 22428561
 
PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE.
Pinner S, Sahai E.
Nat Cell Biol. 2008 Feb;10(2):127-37. doi: 10.1038/ncb1675. Epub 2008 Jan 20.
PMID 18204440
 
RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line.
Poch E, Minambres R, Mocholi E, Ivorra C, Perez-Arago A, Guerri C, Perez-Roger I, Guasch RM.
Exp Cell Res. 2007 Feb 15;313(4):719-31. Epub 2006 Nov 18.
PMID 17182035
 
GTPases in semaphorin signaling.
Puschel AW.
Adv Exp Med Biol. 2007;600:12-23. (REVIEW)
PMID 17607943
 
RhoE function is regulated by ROCK I-mediated phosphorylation.
Riento K, Totty N, Villalonga P, Garg R, Guasch R, Ridley AJ.
EMBO J. 2005 Mar 23;24(6):1170-80. Epub 2005 Mar 3.
PMID 15775972
 
Function and regulation of RhoE.
Riento K, Villalonga P, Garg R, Ridley A.
Biochem Soc Trans. 2005 Aug;33(Pt 4):649-51. (REVIEW)
PMID 16042565
 
Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression.
Riou P, Villalonga P, Ridley AJ.
Bioessays. 2010 Nov;32(11):986-92. doi: 10.1002/bies.201000060. Epub 2010 Sep 10.
PMID 20836090
 
Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification.
Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, Currin RO, Cox AD, Wilson O, Kirschmeier P, Der CJ.
J Biol Chem. 2008 Sep 12;283(37):25150-63. doi: 10.1074/jbc.M800882200. Epub 2008 Jul 9.
PMID 18614539
 
Rnd3/RhoE induces tight junction formation in mammary epithelial tumor cells.
Rubenstein NM, Chan JF, Kim JY, Hansen SH, Firestone GL.
Exp Cell Res. 2005 Apr 15;305(1):74-82. Epub 2005 Jan 27.
PMID 15777789
 
Plakoglobin-dependent regulation of keratinocyte apoptosis by Rnd3.
Ryan KR, Lock FE, Heath JK, Hotchin NA.
J Cell Sci. 2012 Jul 1;125(Pt 13):3202-9. doi: 10.1242/jcs.101931. Epub 2012 Mar 27.
PMID 22454524
 
17Beta-estradiol induces gastrointestinal motility disorder by decreasing CPI-17 phosphorylation via changes in rho-family G-protein Rnd expression in small intestine.
Shimomura A, Ohama T, Hori M, Ozaki H.
J Vet Med Sci. 2009 Dec;71(12):1591-7.
PMID 20046026
 
Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.
Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF.
Cell. 2009 Aug 7;138(3):592-603. doi: 10.1016/j.cell.2009.07.011.
PMID 19665978
 
Low-dose chemotherapeutic agents regulate small Rho GTPase activity in dendritic cells.
Shurin GV, Tourkova IL, Shurin MR.
J Immunother. 2008 Jun;31(5):491-9. doi: 10.1097/CJI.0b013e318176fae4.
PMID 18463535
 
RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling.
Talens-Visconti R, Peris B, Guerri C, Guasch RM.
J Neurochem. 2010 Feb;112(4):1074-87. doi: 10.1111/j.1471-4159.2009.06526.x. Epub 2009 Dec 3.
PMID 19968760
 
Vps4-A (vacuolar protein sorting 4-A) is a binding partner for a novel Rho family GTPase, Rnd2.
Tanaka H, Fujita H, Katoh H, Mori K, Negishi M.
Biochem J. 2002 Jul 15;365(Pt 2):349-53.
PMID 11931639
 
Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity.
Tanaka H, Katoh H, Negishi M.
J Biol Chem. 2006 Apr 14;281(15):10355-64. Epub 2006 Feb 15.
PMID 16481321
 
Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications.
Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B.
Am J Pathol. 2010 Apr;176(4):1878-90. doi: 10.2353/ajpath.2010.090950. Epub 2010 Feb 4.
PMID 20133820
 
Different requirement for Rnd GTPases of R-Ras GAP activity of Plexin-C1 and Plexin-D1.
Uesugi K, Oinuma I, Katoh H, Negishi M.
J Biol Chem. 2009 Mar 13;284(11):6743-51. doi: 10.1074/jbc.M805213200. Epub 2009 Jan 9.
PMID 19136556
 
RhoE inhibits 4E-BP1 phosphorylation and eIF4E function impairing cap-dependent translation.
Villalonga P, Fernandez de Mattos S, Ridley AJ.
J Biol Chem. 2009 Dec 18;284(51):35287-96. doi: 10.1074/jbc.M109.050120.
PMID 19850923
 
The role of COX-2 in intestinal inflammation and colorectal cancer.
Wang D, Dubois RN.
Oncogene. 2010 Feb 11;29(6):781-8. doi: 10.1038/onc.2009.421. Epub 2009 Nov 30. (REVIEW)
PMID 19946329
 
Rnd proteins function as RhoA antagonists by activating p190 RhoGAP.
Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, Der CJ, Hansen SH.
Curr Biol. 2003 Jul 1;13(13):1106-15.
PMID 12842009
 
MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells.
Xia W, Li J, Chen L, Huang B, Li S, Yang G, Ding H, Wang F, Liu N, Zhao Q, Fang T, Song T, Wang T, Shao N.
Mol Cell Biochem. 2010 Nov;344(1-2):261-6. doi: 10.1007/s11010-010-0550-2. Epub 2010 Aug 4.
PMID 20683643
 
Dendritic spine formation and stabilization.
Yoshihara Y, De Roo M, Muller D.
Curr Opin Neurobiol. 2009 Apr;19(2):146-53. doi: 10.1016/j.conb.2009.05.013. Epub 2009 Jun 10. (REVIEW)
PMID 19523814
 
Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse.
Zanata SM, Hovatta I, Rohm B, Puschel AW.
J Neurosci. 2002 Jan 15;22(2):471-7.
PMID 11784792
 
The effect of RhoE on CD44 promoter and the malignant behaviors of colorectal cancer cell.
Zhou HJ, Li LL, Yue CX, Wei W, Li NJ, Tang QL, Bi F.
Sichuan Da Xue Xue Bao Yi Xue Ban. 2011 Sep;42(5):589-93.
PMID 22007478
 
Transcriptional up-regulation of RhoE by hypoxia-inducible factor (HIF)-1 promotes epithelial to mesenchymal transition of gastric cancer cells during hypoxia.
Zhou J, Li K, Gu Y, Feng B, Ren G, Zhang L, Wang Y, Nie Y, Fan D.
Biochem Biophys Res Commun. 2011 Nov 18;415(2):348-54. doi: 10.1016/j.bbrc.2011.10.065. Epub 2011 Oct 19.
PMID 22037464
 
RhoE is associated with relapse and prognosis of patients with colorectal cancer.
Zhou J, Yang J, Li K, Mo P, Feng B, Wang X, Nie Y, Fan D.
Ann Surg Oncol. 2013 Jan;20(1):175-82. doi: 10.1245/s10434-012-2472-6. Epub 2012 Sep 1.
PMID 22941156
 

Citation

This paper should be referenced as such :
Hongwei, X ; Yucheng, Z ; Feng, B
RND3 (Rho family GTPase 3)
Atlas Genet Cytogenet Oncol Haematol. 2013;17(7):467-472.
Free journal version : [ pdf ]   [ DOI ]
On line version : http://AtlasGeneticsOncology.org/Genes/RND3ID46247ch2q23.html


External links

Nomenclature
HGNC (Hugo)RND3   671
Cards
AtlasRND3ID46247ch2q23
Entrez_Gene (NCBI)RND3  390  Rho family GTPase 3
AliasesARHE; Rho8; RhoE; memB
GeneCards (Weizmann)RND3
Ensembl hg19 (Hinxton)ENSG00000115963 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000115963 [Gene_View]  chr2:150468193-150487695 [Contig_View]  RND3 [Vega]
ICGC DataPortalENSG00000115963
TCGA cBioPortalRND3
AceView (NCBI)RND3
Genatlas (Paris)RND3
WikiGenes390
SOURCE (Princeton)RND3
Genetics Home Reference (NIH)RND3
Genomic and cartography
GoldenPath hg38 (UCSC)RND3  -     chr2:150468193-150487695 -  2q23.3   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)RND3  -     2q23.3   [Description]    (hg19-Feb_2009)
EnsemblRND3 - 2q23.3 [CytoView hg19]  RND3 - 2q23.3 [CytoView hg38]
Mapping of homologs : NCBIRND3 [Mapview hg19]  RND3 [Mapview hg38]
OMIM602924   
Gene and transcription
Genbank (Entrez)AF498969 AK298007 AK299731 AK309442 AK311312
RefSeq transcript (Entrez)NM_001254738 NM_005168
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)RND3
Cluster EST : UnigeneHs.713765 [ NCBI ]
CGAP (NCI)Hs.713765
Alternative Splicing GalleryENSG00000115963
Gene ExpressionRND3 [ NCBI-GEO ]   RND3 [ EBI - ARRAY_EXPRESS ]   RND3 [ SEEK ]   RND3 [ MEM ]
Gene Expression Viewer (FireBrowse)RND3 [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevisibleExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)390
GTEX Portal (Tissue expression)RND3
Human Protein AtlasENSG00000115963-RND3 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP61587     [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtP61587  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProP61587
Splice isoforms : SwissVarP61587
PhosPhoSitePlusP61587
Domaine pattern : Prosite (Expaxy)RHO (PS51420)   
Domains : Interpro (EBI)P-loop_NTPase    Small_GTP-bd_dom    Small_GTPase   
Domain families : Pfam (Sanger)Ras (PF00071)   
Domain families : Pfam (NCBI)pfam00071   
Conserved Domain (NCBI)RND3
DMDM Disease mutations390
Blocks (Seattle)RND3
PDB (SRS)1M7B    2V55    4BG6   
PDB (PDBSum)1M7B    2V55    4BG6   
PDB (IMB)1M7B    2V55    4BG6   
PDB (RSDB)1M7B    2V55    4BG6   
Structural Biology KnowledgeBase1M7B    2V55    4BG6   
SCOP (Structural Classification of Proteins)1M7B    2V55    4BG6   
CATH (Classification of proteins structures)1M7B    2V55    4BG6   
SuperfamilyP61587
Human Protein Atlas [tissue]ENSG00000115963-RND3 [tissue]
Peptide AtlasP61587
HPRD04233
IPIIPI00001437   IPI00908373   IPI00917768   IPI00916668   
Protein Interaction databases
DIP (DOE-UCLA)P61587
IntAct (EBI)P61587
FunCoupENSG00000115963
BioGRIDRND3
STRING (EMBL)RND3
ZODIACRND3
Ontologies - Pathways
QuickGOP61587
Ontology : AmiGOGolgi membrane  GTPase activity  protein binding  GTP binding  focal adhesion  cell adhesion  small GTPase mediated signal transduction  actin cytoskeleton organization  extracellular exosome  
Ontology : EGO-EBIGolgi membrane  GTPase activity  protein binding  GTP binding  focal adhesion  cell adhesion  small GTPase mediated signal transduction  actin cytoskeleton organization  extracellular exosome  
NDEx NetworkRND3
Atlas of Cancer Signalling NetworkRND3
Wikipedia pathwaysRND3
Orthology - Evolution
OrthoDB390
GeneTree (enSembl)ENSG00000115963
Phylogenetic Trees/Animal Genes : TreeFamRND3
HOVERGENP61587
HOGENOMP61587
Homologs : HomoloGeneRND3
Homology/Alignments : Family Browser (UCSC)RND3
Gene fusions - Rearrangements
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerRND3 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)RND3
dbVarRND3
ClinVarRND3
1000_GenomesRND3 
Exome Variant ServerRND3
ExAC (Exome Aggregation Consortium)ENSG00000115963
GNOMAD BrowserENSG00000115963
Genetic variants : HAPMAP390
Genomic Variants (DGV)RND3 [DGVbeta]
DECIPHERRND3 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisRND3 
Mutations
ICGC Data PortalRND3 
TCGA Data PortalRND3 
Broad Tumor PortalRND3
OASIS PortalRND3 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICRND3  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDRND3
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch RND3
DgiDB (Drug Gene Interaction Database)RND3
DoCM (Curated mutations)RND3 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)RND3 (select a term)
intoGenRND3
NCG5 (London)RND3
Cancer3DRND3(select the gene name)
Impact of mutations[PolyPhen2] [SIFT Human Ãodin' SLP] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM602924   
Orphanet
MedgenRND3
Genetic Testing Registry RND3
NextProtP61587 [Medical]
TSGene390
GENETestsRND3
Target ValidationRND3
Huge Navigator RND3 [HugePedia]
snp3D : Map Gene to Disease390
BioCentury BCIQRND3
ClinGenRND3
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD390
Chemical/Pharm GKB GenePA24953
Clinical trialRND3
Miscellaneous
canSAR (ICR)RND3 (select the gene name)
Probes
Litterature
PubMed60 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
CoreMineRND3
EVEXRND3
GoPubMedRND3
iHOPRND3
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Thu Oct 12 16:32:37 CEST 2017

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.