Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

TGFB1 (transforming growth factor, beta 1)

Identity

Other namesCED
DPD1
LAP
TGFB
TGFbeta
HGNC (Hugo) TGFB1
LocusID (NCBI) 7040
Location 19q13.2
Location_base_pair Starts at 41836436 and ends at 41859838 bp from pter ( according to hg19-Feb_2009)  [Mapping]

DNA/RNA

Description The human TGFB1 gene encodes 7 exons (Derynck et al., 1987).
Transcription A 2,5 kb transcript of TGF-β1 has been described (Derynck et al., 1985). A subsequent study showed that human TGF-β1 transcript is 381 bases shorter than the original because the ATTAAA polyadenylation signal is located at position 2136 instead of 2517 (Scotto et al., 1990).

Protein

 
  Figure 1: TGF-β1 structure. Small latent complex (SLC) is formed by one LAP segment and the mature TGF-β1. Monomers of these proteins dimerize forming disulfide bridges between C223 and C225 in the LAP and C356 in mature TGF-β1 forming a dimeric structure. Large latent complex (LLC) is formed by SLC and LTBP protein. Disulfide bridges are formed between C33 of LAP protein and the third 8-Cys repeat (CR domain) of LTBP. LLC can bind to extracellular matrix (ECM) through ECM domain in LTBP.
Description TGF-β1 is a dimeric cytokine which shares a cysteine knot structure connected together by intramolecular disulfide bonds.
It is synthesized as a 390-amino acid precursor protein (pre-pro-TGF-β1 or small latent complex (SLC)) with a molecular weight of 25 kDa (Massague, 1990; Annes et al., 2003). The pre-pro-TGF-β1 is a monomer with three distinct parts: the signal peptide (SP: aminoacids 1-29), the latency associated peptide (LAP: aminoacids 30-278) and the mature peptide (mature TGF-β1: aminoacids 279-390) (Figure 1).
The SP targets the protein to a secretory pathway and it is cleaved off in the rough endoplasmatic reticulum where two monomers dimerize forming a disulfide bridge between cys 223 and 225 in the LAP and cys 278 in the mature TGF-β1. SLC is formed by the cleavage of arginine in position 278 by a furin convertase. The LAP peptide prevents the interaction between TGF-β1 and its receptors.
The SLC might associate covalently with a latent TGF-β1 binding protein (LTBP) which helps in SLC secretion and storage in the extracellular matrix (Koli et al., 2001).
Expression TGF-β1 is a growth factor ubiquitously expressed. It was initially discovered as a factor inducing colony formation of normal rat kidney fibroblasts in soft agar in the presence of epidermal growth factor (EGF) (Roberts et al., 1980; Roberts et al., 1981). By immunohistochemical techniques TGF-β1 was strongly detected in adrenal cortex, megakaryocytes and other bone marrow cells, cardiac myocytes, chondrocytes, renal distal tubules, ovarian glandular cells and chorionic cells of the placenta and also in cartilage, heart, pancreas, skin, and uterus (Thompson et al., 1989).
Localisation TGF-β1 is secreted as an inactive precursor bound to the Latency Associated Peptide (LAP), forming the complex called Small Latent Complex (SLC). SLCs are secreted from cells and deposited into the extracellular matrix as covalent complexes with its binding proteins, also known as Latent TGF-β Binding Proteins, LTBPs (Koli et al., 2001). The latency proteins contribute to TGF-β1 stability. Active TGF-β1 half-life is about two minutes whereas LTBPs half-life is about 90 minutes. In cells, active TGF-β1 is forming a large ligand-receptor complex involving a ligand dimer and four receptor molecules.
Function TGF-β1 has an important role in controlling development, tissue repair, immune defense, inflammation and tumorigenesis (Roberts, 1998). Moreover, TGF-β1 is involved in the interactions between epithelia and the surrounding mesenchyme, promoting epithelial-to-mesenchymal transition (EMT) (Massague et al., 2000).
Active TGF-β1 is released as a dimer due to proteolytic cleavage of LAP at low pH or via interactions with other proteins such as thrombospondins and αVβ6 integrin (Koli et al., 2001; Derynck et al., 2003). TGF-β1 bounds to the serine-threonine kinase TGF-β type I receptor (TβRI) and recruits a constitutively phosphorylated TGF-β type II receptor (TβRII) that phosphorylates the regulatory segment, a 30-amino-acid region of the TβRI and forms a heterotetrameric receptor complex.
This complex activates both SMAD dependent and independent pathways such as STRAP (Datta et al., 1998), TRAP-1 (Charng et al., 1998), FKBP12 (Wang et al., 1994) and Ras/Raf/ERK (Matsuzaki, 2011). In the SMAD-dependent pathways, the receptor complex (or directly the type I receptor) phosphorylates receptor-regulated SMADs (R-SMADs: SMAD1, SMAD2, SMAD3, SMAD5 and SMAD8) which can now bind the cooperative SMAD (co-SMAD) SMAD4. SMAD6 and SMAD7 have inhibitory effects on TGF-β1 (Feng and Derynck, 2005). The R-SMAD/coSMAD complexes accumulate in the nucleus where they interact with DNA and other transcription factors and participate in the regulation of 100-300 target genes expression (Massague et al., 2005) (Figure 2).
 
  Figure 2: TGF-β1 signalling through the Smad-dependent pathway. 1) Mature TGF-β1 is released by different mechanisms such as degradation of LAP by proteases, induction of conformational change in LAP by interaction with thrombospondin or by rupture of noncovalent bonds between LAP and TGFβ-1. 2) Active TGFβ-1 binds to receptor type II (TβRII) which is constitutively phosphorylated and active. 3) The TGF-β1-TβRII complex recruits and activates TβRI by transphosphorylation of the GS domain. 4) The heterotetrameric receptor complex phosphorylates R-SMAD at the C-terminal SSXS domain. SARA protein promotes the binding of R-SMAD with TβRI. 5) The phosphorylation of R-SMAD allows the interaction with Co-SMADs. 6) This complex can translocate to the nucleus, joining the DNA and inducing or modulating the transcription of different target genes. 7) I-SMAD can inhibit signalling through the blockade of the access of the receptor complex to R-SMAD by mechanical interaction or inducing TβRI degradation by ubiquitination.
Homology TGF-β1 shares a high degree of amino acid sequence homology (70%) with TGF-β2 (Massague et al., 1987).

Mutations

Germinal Heterozygous mutations in TGFB1 gene result in Camurati-Engelmann disease type I (CED; MIM#131300). One of the most common mutations replaces the amino acid arginine with the amino acid cysteine at position 218 in the TGFβ-1 protein (written as Arg218Cys or R218C).
Somatic Overexpression or alteration of active TGFβ-1 protein induced by somatic mutations in the TGFB1 gene are implicated in certain types of cancers (prostate, breast, colon, lung and bladder cancers).

Implicated in

Entity Cancer
Note TGF-β1 has a relevant and complex role in cancer cell growth and development (Roberts et al., 1993). Alterations in TGF-β signalling pathway modify cancer risk. Overall, decreases in TGF-β1 signalling induce an increase in cancer risk, whereas increases in TGF-β secretion and signaling activation enhance the aggressiveness of tumors. TGF-β also stimulates invasion, angiogenesis, and metastasis, and inhibits immune surveillance.
  
Entity Colorectal cancer
Note TGF-β1 is involved in colorectal cancer (Kemik et al., 2013), modulating the degree of angiogenesis (Xiong et al., 2002). TGF-β induces a prometastatic program in stromal cells associated with a high risk of colorectal cancer relapse upon treatment (Calon et al., 2012). A polymorphism in TGFB1 (gene promoter -509C allele variant) is a possible risk factor for developing colorectal cancer (Wang et al., 2013).
  
Entity Breast cancer
Note The TGFB1 LP10 polymorphism has been associated with breast cancer risk inducing an increase in TGF-β1 cellular expression and elevating plasma TGF-β1 levels, which might suppress the immune regulatory activities of macrophages and increase the risk of breast cancer (Dunning et al., 2003; Lee et al., 2005; Breast Cancer Association Consortium, 2006; Ivanovic et al., 2006; Cox et al., 2007; Sun et al., 2013), although other authors suggest that lower levels of circulating TGF-β1 are associated with a higher metastatic risk and poor disease prognosis (Panis et al., 2013).
  
Entity Glioma
Note TGF-β1 is also involved in human gliomas, decreasing anti-tumour immunity (Lee et al., 1997; Dong et al., 2001; Zagzag et al., 2005) and increasing the motility of glioma cells by enhancing the expression of collagen and α2,5,β3 integrin, as well as up-regulating the activity of metalloproteinases MMP-2 and MMP-9 at the cell surface of glioma cells (Wick et al., 2001).
  
Entity Prostate cancer
Note Cancer progression and metastasis are associated with an increase in TGF-β1 circulating levels in patients with prostate cancer (Shariat et al., 2004; Ivanovic et al., 2006). Local expression of TGF-β1 is associated with tumor grade, tumor invasion and metastasis. The TGFB1 L10 polymorphism is associated with a poorer outcome and more aggressive tumors in patients with prostate cancer, and the TGFB1 509T polymorphism may play a role in advanced stage prostate cancer affecting TGF-β1 expression and increasing TGF-β1 serum levels (Ewart-Toland and Balmain, 2004). However, an association between single nucleotide polymorphisms of TGFB1 at C-509T and a decreased risk of aggressive prostate cancer has been described (Brand et al., 2008). On the other hand, the codon 10 polymorphism in TGFB1 may have a significant influence on the development of prostate cancer and benign prostatic hyperplasia (Omrani et al., 2009).
  
Entity Lung cancer
Note Elevated plasma TGF-β1 levels occur frequently in patients with lung cancer (Kong et al., 1996; Kang et al., 2006). TGF-β1 may offer protection against development of lung cancer acting as a suppressor of tumor initiation (Blobe et al., 2000; Rich et al., 2001; Siegel and Massague, 2003).
  
Entity Bladder cancer
Note TGF-β is also overexpressed in bladder cancer. In this context, TGF-β1 may facilitate tumor escape from the immune system (de Visser and Kast, 1999; Wojtowicz-Praga, 2003; Helmy et al., 2007).
  
Entity Fibrosis
Note The role of TGF-β1 in fibrosis is widely accepted (Verrecchia and Mauviel, 2002; Schnaper et al., 2003). In the kidney, TGF-β1 mediates apoptosis and epithelial-mesenchimal transition (EMT), causing progressive loss of differentiated renal cells, thus inducing chronic progression of renal disease. TGF-β1-induced apoptosis is likely to have a pathogenetic role in podocyte depletion and glomerulosclerosis, tubular degeneration/atrophy, and loss of glomerular and peritubular capillaries. In addition, EMT induced by TGF-β1 may contribute to tubular atrophy and generation of interstitial myofibroblasts, leading to concomitant tubulointerstitial fibrosis (Bottinger and Bitzer, 2002).
TGF-β1 is involved in liver fibrosis (Kanzler et al., 1999), inducing cirrhosis, liver failure, and portal hypertension, and is also involved in pulmonary fibrosis (Kang et al., 2007), inducing chronic obstructive pulmonary disease. Patients with cystic fibrosis and homozygosity for the common phe508del mutation had an increased risk of severe pulmonary disease if they are also homozygous for C at nucleotide 29 of the TGFB1 gene, corresponding to a change in codon 10 (Drumm et al., 2005). High TGF-β1 protein production has been associated with pulmonary sarcoidosis, which can develop into pulmonary fibrosis (Limper et al., 1994).
Cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT). TGF-β1 induced endothelial cells to undergo EndMT, which contributes to the progression of cardiac fibrosis (Zeisberg et al., 2007). TGFbeta1 mRNA expression is greater in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy patients than in controls. Expression of TGF-β1 in the early stages of DMD may be critical in initiating muscle fibrosis, and antifibrosis treatment might slow progression of the disease (Bernasconi et al., 1995).
  
Entity Pulmonary edema
Note The TGF-β1 latency-associated peptide (LAP) is a ligand for the integrin alpha-V-beta-6, and alpha-V-beta-6-expressing cells induce spatially restricted activation of TGFβ-1 (Munger et al., 1999). Mice lacking this integrin develop exaggerated inflammation and are protected from pulmonary fibrosis. Integrin-mediated local activation of TGF-β is critical to the development of pulmonary edema in acute lung injury and thus, the blockade of either TGF-β or its activation could be effective treatments (Pittet et al., 2001).
  
Entity Skeleton anomalies, dysplasia - Camurati-Engelmann disease
Note A 673T-C transition in the TGFB1 gene resulting in a cys225-to-arg (C225R) missense mutation was found in Japanese and European patients with Camurati-Engelmann disease (CED) (Janssens et al., 2000; Kinoshita et al., 2000). That mutation causes the instability of the LAP homodimer and consequently leads to the activation of a constitutively active form of TGFβ-1 and increased proliferation of osteoblasts (Saito et al., 2001). Other mutations in the TGFB1 gene (653G-A transition resulting in an arg218-to-his (R218H) missense amino acid substitution, 652C-T transition resulting in an arg218-to-cys (R218C) missense mutation, tyr81-to-his (Y81H) substitution, 667T-C transition in exon 4, resulting in a cys223-to-arg (C223R) mutation, 667T-G transition in exon 4 resulting in a cys223-to-gly (C223G) mutation) were found in several Japanese and European families with Camurati-Engelmann disease. The most frequent mutation was R218C (Janssens et al., 2000; Kinoshita et al., 2000; Kinoshita et al., 2004). Osteoclast formation was enhanced approximately 5-fold and bone resorption approximately 10-fold in CED patients harbouring the R218C mutation (McGowan et al., 2003); the R218C mutation increases TGFB1 bioactivity and enhances osteoclast formation in vitro. The activation of osteoclast activity was consistent with clinical reports that showed biochemical evidence of increased bone resorption as well as bone formation in CED.
  
Entity Genetic disorder of the connective tissue - Marfan syndrome
Note Circulating total TGF-β1 levels are significantly higher in patients with Marfan syndrome than in controls. TGF-β1 levels might serve as a prognostic or therapeutic marker in Marfan syndrome (Matt et al., 2009).
  
Entity Inflammatory skin disorder - Psoriasis
Note Although TGF-β1 is known as an anti-inflammation cytokine (Letterio and Roberts, 1998), the inflammatory effect of TGF-β1 on skin has been described in inducible TGF-β1 transgenic mice, where inflammation is correlated with TGF-β1 expression (Han et al., 2001; Mohammed et al., 2010).
  
Entity Muscle atrophy - Amyotrophic lateral sclerosis (Lou Gehring's disease, motor neurone disease)
Note In amyotrophic lateral sclerosis (ALS) the plasma concentration of TGF-β1 increases significantly with the duration of illness, suggesting that TGF-β1 is involved in the disease process of ALS (Houi et al., 2002).
  
Entity Cerebrovascular amyloidosis - Alzheimer
Note Chronic overproduction of TGFβ1 triggers a pathogenic cascade leading to Alzheimer disease-like cerebrovascular amyloidosis, microvascular degeneration, and local alterations in brain metabolic activity (Wyss-Coray et al., 2000).
  
Entity Obesity - Diabetes, hypertension
Note Increased expression and a polymorphism of TGFB1 had been associated with abdominal obesity and body mass index (BMI) in humans (Long et al., 2003).
  

External links

Nomenclature
HGNC (Hugo)TGFB1   11766
Cards
AtlasTGFB1ID42534ch19q13
Entrez_Gene (NCBI)TGFB1  7040  transforming growth factor, beta 1
GeneCards (Weizmann)TGFB1
Ensembl (Hinxton) [Gene_View]  chr19:41836436-41859838 [Contig_View]  TGFB1 [Vega]
AceView (NCBI)TGFB1
Genatlas (Paris)TGFB1
WikiGenes7040
SOURCE (Princeton)NM_000660
Genomic and cartography
GoldenPath (UCSC)TGFB1  -  19q13.2   chr19:41836436-41859838 -  19q13.1   [Description]    (hg19-Feb_2009)
EnsemblTGFB1 - 19q13.1 [CytoView]
Mapping of homologs : NCBITGFB1 [Mapview]
OMIM131300   190180   219700   
Gene and transcription
Genbank (Entrez)AI304490 AK291907 AK307742 AY820829 BC000125
RefSeq transcript (Entrez)NM_000660
RefSeq genomic (Entrez)AC_000151 NC_000019 NC_018930 NG_013364 NT_011109 NW_001838496 NW_004929415
Consensus coding sequences : CCDS (NCBI)TGFB1
Cluster EST : UnigeneHs.645227 [ NCBI ]
CGAP (NCI)Hs.645227
Alternative Splicing : Fast-db (Paris)GSHG0015842
Gene ExpressionTGFB1 [ NCBI-GEO ]     TGFB1 [ SEEK ]   TGFB1 [ MEM ]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP01137 (Uniprot)
NextProtP01137  [Medical]
With graphics : InterProP01137
Splice isoforms : SwissVarP01137 (Swissvar)
Domaine pattern : Prosite (Expaxy)TGF_BETA_1 (PS00250)    TGF_BETA_2 (PS51362)   
Domains : Interpro (EBI)TGF-b_C    TGF-b_N    TGF-beta    TGF-beta-rel    TGFb1    TGFb_CS   
Related proteins : CluSTrP01137
Domain families : Pfam (Sanger)TGF_beta (PF00019)    TGFb_propeptide (PF00688)   
Domain families : Pfam (NCBI)pfam00019    pfam00688   
Domain families : Smart (EMBL)TGFB (SM00204)  
DMDM Disease mutations7040
Blocks (Seattle)P01137
PDB (SRS)1KLA    1KLC    1KLD    3KFD   
PDB (PDBSum)1KLA    1KLC    1KLD    3KFD   
PDB (IMB)1KLA    1KLC    1KLD    3KFD   
PDB (RSDB)1KLA    1KLC    1KLD    3KFD   
Peptide AtlasP01137
HPRD01821
IPIIPI00000075   
Protein Interaction databases
DIP (DOE-UCLA)P01137
IntAct (EBI)P01137
BioGRIDTGFB1
InParanoidP01137
Interologous Interaction database P01137
IntegromeDBTGFB1
STRING (EMBL)TGFB1
Ontologies - Pathways
Ontology : AmiGOprotein import into nucleus, translocation  negative regulation of transcription from RNA polymerase II promoter  MAPK cascade  ureteric bud development  response to hypoxia  epithelial to mesenchymal transition  negative regulation of protein phosphorylation  positive regulation of protein phosphorylation  regulation of sodium ion transport  chondrocyte differentiation  hematopoietic progenitor cell differentiation  connective tissue replacement involved in inflammatory response wound healing  adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains  tolerance induction to self antigen  platelet degranulation  type II transforming growth factor beta receptor binding  type II transforming growth factor beta receptor binding  protein binding  extracellular region  proteinaceous extracellular matrix  extracellular space  nucleus  cytoplasm  Golgi lumen  microvillus  protein phosphorylation  protein export from nucleus  ATP biosynthetic process  phosphate-containing compound metabolic process  cellular calcium ion homeostasis  inflammatory response  cell cycle arrest  mitotic cell cycle checkpoint  epidermal growth factor receptor signaling pathway  transforming growth factor beta receptor signaling pathway  transforming growth factor beta receptor signaling pathway  common-partner SMAD protein phosphorylation  SMAD protein complex assembly  SMAD protein import into nucleus  negative regulation of neuroblast proliferation  salivary gland morphogenesis  endoderm development  female pregnancy  aging  blood coagulation  growth factor activity  negative regulation of DNA replication  positive regulation of cell proliferation  negative regulation of cell proliferation  germ cell migration  response to radiation  response to wounding  response to glucose  embryo development  defense response to fungus, incompatible interaction  cell surface  positive regulation vascular endothelial growth factor production  positive regulation of gene expression  positive regulation of epithelial to mesenchymal transition  positive regulation of epithelial to mesenchymal transition  macrophage derived foam cell differentiation  positive regulation of fibroblast migration  positive regulation of peptidyl-threonine phosphorylation  positive regulation of pathway-restricted SMAD protein phosphorylation  negative regulation of macrophage cytokine production  cell growth  regulation of striated muscle tissue development  regulation of transforming growth factor beta receptor signaling pathway  modulation by virus of host morphology or physiology  evasion or tolerance of host defenses by virus  viral life cycle  enzyme binding  negative regulation of cell-cell adhesion  platelet activation  extracellular matrix organization  hyaluronan catabolic process  negative regulation of ossification  negative regulation of cell growth  regulation of cell migration  positive regulation of cell migration  axon  positive regulation of bone mineralization  negative regulation of transforming growth factor beta receptor signaling pathway  positive regulation of histone deacetylation  platelet alpha granule lumen  organ regeneration  positive regulation of protein complex assembly  positive regulation of exit from mitosis  lipopolysaccharide-mediated signaling pathway  positive regulation of cellular protein metabolic process  response to estradiol  response to progesterone  positive regulation of interleukin-17 production  receptor catabolic process  positive regulation of superoxide anion generation  mononuclear cell proliferation  positive regulation of collagen biosynthetic process  positive regulation of collagen biosynthetic process  positive regulation of peptidyl-serine phosphorylation  response to vitamin D  response to laminar fluid shear stress  positive regulation of histone acetylation  positive regulation of protein dephosphorylation  negative regulation of T cell proliferation  regulation of protein import into nucleus  positive regulation of protein import into nucleus  positive regulation of odontogenesis  response to drug  myelination  protein homodimerization activity  myeloid dendritic cell differentiation  neuronal cell body  T cell homeostasis  positive regulation of apoptotic process  positive regulation of MAP kinase activity  protein kinase B signaling cascade  positive regulation of blood vessel endothelial cell migration  negative regulation of blood vessel endothelial cell migration  positive regulation of phosphatidylinositol 3-kinase activity  ossification involved in bone remodeling  regulatory T cell differentiation  cell-cell junction organization  negative regulation of fat cell differentiation  negative regulation of myoblast differentiation  negative regulation of cell cycle  negative regulation of transcription, DNA-dependent  positive regulation of transcription, DNA-dependent  positive regulation of transcription, DNA-dependent  negative regulation of mitotic cell cycle  positive regulation of transcription from RNA polymerase II promoter  active induction of host immune response by virus  protein heterodimerization activity  protein N-terminus binding  positive regulation of isotype switching to IgA isotypes  lymph node development  digestive tract development  negative regulation of skeletal muscle tissue development  inner ear development  positive regulation of epithelial cell proliferation  negative regulation of epithelial cell proliferation  negative regulation of epithelial cell proliferation  positive regulation of protein secretion  negative regulation of phagocytosis  negative regulation of immune response  positive regulation of chemotaxis  positive regulation of NF-kappaB transcription factor activity  regulation of binding  regulation of DNA binding  positive regulation of smooth muscle cell differentiation  negative regulation of release of sequestered calcium ion into cytosol  positive regulation of cell division  positive regulation of protein kinase B signaling cascade  face morphogenesis  frontal suture morphogenesis  pathway-restricted SMAD protein phosphorylation  positive regulation of SMAD protein import into nucleus  mammary gland branching involved in thelarche  branch elongation involved in mammary gland duct branching  regulation of branching involved in mammary gland duct morphogenesis  regulation of cartilage development  lens fiber cell differentiation  response to cholesterol  positive regulation of cell cycle arrest  cellular response to organic cyclic compound  cellular response to dexamethasone stimulus  extracellular matrix assembly  positive regulation of branching involved in ureteric bud morphogenesis  extrinsic apoptotic signaling pathway  negative regulation of hyaluronan biosynthetic process  positive regulation of NAD+ ADP-ribosyltransferase activity  positive regulation of transcription regulatory region DNA binding  
Ontology : EGO-EBIprotein import into nucleus, translocation  negative regulation of transcription from RNA polymerase II promoter  MAPK cascade  ureteric bud development  response to hypoxia  epithelial to mesenchymal transition  negative regulation of protein phosphorylation  positive regulation of protein phosphorylation  regulation of sodium ion transport  chondrocyte differentiation  hematopoietic progenitor cell differentiation  connective tissue replacement involved in inflammatory response wound healing  adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains  tolerance induction to self antigen  platelet degranulation  type II transforming growth factor beta receptor binding  type II transforming growth factor beta receptor binding  protein binding  extracellular region  proteinaceous extracellular matrix  extracellular space  nucleus  cytoplasm  Golgi lumen  microvillus  protein phosphorylation  protein export from nucleus  ATP biosynthetic process  phosphate-containing compound metabolic process  cellular calcium ion homeostasis  inflammatory response  cell cycle arrest  mitotic cell cycle checkpoint  epidermal growth factor receptor signaling pathway  transforming growth factor beta receptor signaling pathway  transforming growth factor beta receptor signaling pathway  common-partner SMAD protein phosphorylation  SMAD protein complex assembly  SMAD protein import into nucleus  negative regulation of neuroblast proliferation  salivary gland morphogenesis  endoderm development  female pregnancy  aging  blood coagulation  growth factor activity  negative regulation of DNA replication  positive regulation of cell proliferation  negative regulation of cell proliferation  germ cell migration  response to radiation  response to wounding  response to glucose  embryo development  defense response to fungus, incompatible interaction  cell surface  positive regulation vascular endothelial growth factor production  positive regulation of gene expression  positive regulation of epithelial to mesenchymal transition  positive regulation of epithelial to mesenchymal transition  macrophage derived foam cell differentiation  positive regulation of fibroblast migration  positive regulation of peptidyl-threonine phosphorylation  positive regulation of pathway-restricted SMAD protein phosphorylation  negative regulation of macrophage cytokine production  cell growth  regulation of striated muscle tissue development  regulation of transforming growth factor beta receptor signaling pathway  modulation by virus of host morphology or physiology  evasion or tolerance of host defenses by virus  viral life cycle  enzyme binding  negative regulation of cell-cell adhesion  platelet activation  extracellular matrix organization  hyaluronan catabolic process  negative regulation of ossification  negative regulation of cell growth  regulation of cell migration  positive regulation of cell migration  axon  positive regulation of bone mineralization  negative regulation of transforming growth factor beta receptor signaling pathway  positive regulation of histone deacetylation  platelet alpha granule lumen  organ regeneration  positive regulation of protein complex assembly  positive regulation of exit from mitosis  lipopolysaccharide-mediated signaling pathway  positive regulation of cellular protein metabolic process  response to estradiol  response to progesterone  positive regulation of interleukin-17 production  receptor catabolic process  positive regulation of superoxide anion generation  mononuclear cell proliferation  positive regulation of collagen biosynthetic process  positive regulation of collagen biosynthetic process  positive regulation of peptidyl-serine phosphorylation  response to vitamin D  response to laminar fluid shear stress  positive regulation of histone acetylation  positive regulation of protein dephosphorylation  negative regulation of T cell proliferation  regulation of protein import into nucleus  positive regulation of protein import into nucleus  positive regulation of odontogenesis  response to drug  myelination  protein homodimerization activity  myeloid dendritic cell differentiation  neuronal cell body  T cell homeostasis  positive regulation of apoptotic process  positive regulation of MAP kinase activity  protein kinase B signaling cascade  positive regulation of blood vessel endothelial cell migration  negative regulation of blood vessel endothelial cell migration  positive regulation of phosphatidylinositol 3-kinase activity  ossification involved in bone remodeling  regulatory T cell differentiation  cell-cell junction organization  negative regulation of fat cell differentiation  negative regulation of myoblast differentiation  negative regulation of cell cycle  negative regulation of transcription, DNA-dependent  positive regulation of transcription, DNA-dependent  positive regulation of transcription, DNA-dependent  negative regulation of mitotic cell cycle  positive regulation of transcription from RNA polymerase II promoter  active induction of host immune response by virus  protein heterodimerization activity  protein N-terminus binding  positive regulation of isotype switching to IgA isotypes  lymph node development  digestive tract development  negative regulation of skeletal muscle tissue development  inner ear development  positive regulation of epithelial cell proliferation  negative regulation of epithelial cell proliferation  negative regulation of epithelial cell proliferation  positive regulation of protein secretion  negative regulation of phagocytosis  negative regulation of immune response  positive regulation of chemotaxis  positive regulation of NF-kappaB transcription factor activity  regulation of binding  regulation of DNA binding  positive regulation of smooth muscle cell differentiation  negative regulation of release of sequestered calcium ion into cytosol  positive regulation of cell division  positive regulation of protein kinase B signaling cascade  face morphogenesis  frontal suture morphogenesis  pathway-restricted SMAD protein phosphorylation  positive regulation of SMAD protein import into nucleus  mammary gland branching involved in thelarche  branch elongation involved in mammary gland duct branching  regulation of branching involved in mammary gland duct morphogenesis  regulation of cartilage development  lens fiber cell differentiation  response to cholesterol  positive regulation of cell cycle arrest  cellular response to organic cyclic compound  cellular response to dexamethasone stimulus  extracellular matrix assembly  positive regulation of branching involved in ureteric bud morphogenesis  extrinsic apoptotic signaling pathway  negative regulation of hyaluronan biosynthetic process  positive regulation of NAD+ ADP-ribosyltransferase activity  positive regulation of transcription regulatory region DNA binding  
Pathways : BIOCARTAp38 MAPK Signaling Pathway [Genes]    Erythrocyte Differentiation Pathway [Genes]    Cytokines and Inflammatory Response [Genes]    MAPKinase Signaling Pathway [Genes]    TGF beta signaling pathway [Genes]    Role of Tob in T-cell activation [Genes]    ALK in cardiac myocytes [Genes]    CTCF: First Multivalent Nuclear Factor [Genes]    Selective expression of chemokine receptors during T-cell polarization [Genes]    Function of SLRP in Bone: An Integrated View [Genes]    Cell Cycle: G1/S Check Point [Genes]    Signal transduction through IL1R [Genes]   
Pathways : KEGGMAPK signaling pathway    Cytokine-cytokine receptor interaction    FoxO signaling pathway    Cell cycle    Endocytosis    TGF-beta signaling pathway    Osteoclast differentiation    Hippo signaling pathway    Intestinal immune network for IgA production    Non-alcoholic fatty liver disease (NAFLD)    Leishmaniasis    Chagas disease (American trypanosomiasis)    Malaria    Toxoplasmosis    Amoebiasis    Tuberculosis    Hepatitis B    HTLV-I infection    Pathways in cancer    Proteoglycans in cancer    Colorectal cancer    Renal cell carcinoma    Pancreatic cancer    Chronic myeloid leukemia    Inflammatory bowel disease (IBD)    Rheumatoid arthritis    Hypertrophic cardiomyopathy (HCM)    Dilated cardiomyopathy   
REACTOMETGFB1
Protein Interaction DatabaseTGFB1
Wikipedia pathwaysTGFB1
Gene fusion - rearrangments
Polymorphisms : SNP, mutations, diseases
SNP Single Nucleotide Polymorphism (NCBI)TGFB1
SNP (GeneSNP Utah)TGFB1
SNP : HGBaseTGFB1
Genetic variants : HAPMAPTGFB1
1000_GenomesTGFB1 
Somatic Mutations in Cancer : COSMICTGFB1 
CONAN: Copy Number AnalysisTGFB1 
Mutations and Diseases : HGMDTGFB1
OMIM131300    190180    219700   
GENETestsTGFB1
Disease Genetic AssociationTGFB1
Huge Navigator TGFB1 [HugePedia]  TGFB1 [HugeCancerGEM]
Genomic VariantsTGFB1  TGFB1 [DGVbeta]
Exome VariantTGFB1
dbVarTGFB1
ClinVarTGFB1
snp3D : Map Gene to Disease7040
General knowledge
Homologs : HomoloGeneTGFB1
Homology/Alignments : Family Browser (UCSC)TGFB1
Phylogenetic Trees/Animal Genes : TreeFamTGFB1
Chemical/Protein Interactions : CTD7040
Chemical/Pharm GKB GenePA350
Clinical trialTGFB1
Other databases
Probes
Litterature
PubMed499 Pubmed reference(s) in Entrez
CoreMineTGFB1
iHOPTGFB1

Bibliography

Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction.
Roberts AB, Lamb LC, Newton DL, Sporn MB, De Larco JE, Todaro GJ.
Proc Natl Acad Sci U S A. 1980 Jun;77(6):3494-8.
PMID 6251462
 
New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues.
Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB.
Proc Natl Acad Sci U S A. 1981 Sep;78(9):5339-43.
PMID 6975480
 
Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells.
Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV.
Nature. 1985 Aug 22-28;316(6030):701-5.
PMID 3861940
 
Intron-exon structure of the human transforming growth factor-beta precursor gene.
Derynck R, Rhee L, Chen EY, Van Tilburg A.
Nucleic Acids Res. 1987 Apr 10;15(7):3188-9.
PMID 3470709
 
Multiple type-beta transforming growth factors and their receptors.
Massague J, Cheifetz S, Ignotz RA, Boyd FT.
J Cell Physiol Suppl. 1987;Suppl 5:43-7. (REVIEW)
PMID 2890647
 
Expression of transforming growth factor-beta 1 in specific cells and tissues of adult and neonatal mice.
Thompson NL, Flanders KC, Smith JM, Ellingsworth LR, Roberts AB, Sporn MB.
J Cell Biol. 1989 Feb;108(2):661-9.
PMID 2645303
 
The transforming growth factor-beta family.
Massague J.
Annu Rev Cell Biol. 1990;6:597-641. (REVIEW)
PMID 2177343
 
Type beta 1 transforming growth factor gene expression. A corrected mRNA structure reveals a downstream phorbol ester responsive element in human cells.
Scotto L, Vaduva PI, Wager RE, Assoian RK.
J Biol Chem. 1990 Feb 5;265(4):2203-8.
PMID 2298744
 
Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta).
Roberts AB, Sporn MB.
Growth Factors. 1993;8(1):1-9. (REVIEW)
PMID 8448037
 
Immunohistochemical localization of transforming growth factor-beta 1 in the nonnecrotizing granulomas of pulmonary sarcoidosis.
Limper AH, Colby TV, Sanders MS, Asakura S, Roche PC, DeRemee RA.
Am J Respir Crit Care Med. 1994 Jan;149(1):197-204.
PMID 8111583
 
Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12.
Wang T, Donahoe PK, Zervos AS.
Science. 1994 Jul 29;265(5172):674-6.
PMID 7518616
 
Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine.
Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F, Morandi L, Mantegazza R.
J Clin Invest. 1995 Aug;96(2):1137-44.
PMID 7635950
 
Plasma transforming growth factor-beta 1 reflects disease status in patients with lung cancer after radiotherapy: a possible tumor marker.
Kong FM, Washington MK, Jirtle RL, Anscher MS.
Lung Cancer. 1996 Dec;16(1):47-59.
PMID 9017584
 
TGF-beta suppresses IFN-gamma induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression.
Lee YJ, Han Y, Lu HT, Nguyen V, Qin H, Howe PH, Hocevar BA, Boss JM, Ransohoff RM, Benveniste EN.
J Immunol. 1997 Mar 1;158(5):2065-75.
PMID 9036950
 
A novel protein distinguishes between quiescent and activated forms of the type I transforming growth factor beta receptor.
Charng MJ, Zhang D, Kinnunen P, Schneider MD.
J Biol Chem. 1998 Apr 17;273(16):9365-8.
PMID 9545258
 
Identification of STRAP, a novel WD domain protein in transforming growth factor-beta signaling.
Datta PK, Chytil A, Gorska AE, Moses HL.
J Biol Chem. 1998 Dec 25;273(52):34671-4.
PMID 9856985
 
Regulation of immune responses by TGF-beta.
Letterio JJ, Roberts AB.
Annu Rev Immunol. 1998;16:137-61. (REVIEW)
PMID 9597127
 
Molecular and cell biology of TGF-beta.
Roberts AB.
Miner Electrolyte Metab. 1998;24(2-3):111-9. (REVIEW)
PMID 9525693
 
Effects of TGF-beta on the immune system: implications for cancer immunotherapy.
de Visser KE, Kast WM.
Leukemia. 1999 Aug;13(8):1188-99. (REVIEWS)
PMID 10450746
 
TGF-beta1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis.
Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Buschenfelde KH, Blessing M.
Am J Physiol. 1999 Apr;276(4 Pt 1):G1059-68.
PMID 10198351
 
The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis.
Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D.
Cell. 1999 Feb 5;96(3):319-28.
PMID 10025398
 
Role of transforming growth factor beta in human disease.
Blobe GC, Schiemann WP, Lodish HF.
N Engl J Med. 2000 May 4;342(18):1350-8. (REVIEW)
PMID 10793168
 
Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease.
Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M, Lissens W, Van Maldergem L, Vanhoenacker F, Verbruggen L, Van Hul W.
Nat Genet. 2000 Nov;26(3):273-5.
PMID 11062463
 
Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease.
Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, Yamada K, Kondo S, Ikegawa S, Nishimura G, Fukushima Y, Nakagomi T, Saito H, Sugimoto T, Kamegaya M, Hisa K, Murray JC, Taniguchi N, Niikawa N, Yoshiura K.
Nat Genet. 2000 Sep;26(1):19-20.
PMID 10973241
 
TGFbeta signaling in growth control, cancer, and heritable disorders.
Massague J, Blain SW, Lo RS.
Cell. 2000 Oct 13;103(2):295-309. (REVIEW)
PMID 11057902
 
Alzheimer's disease-like cerebrovascular pathology in transforming growth factor-beta 1 transgenic mice and functional metabolic correlates.
Wyss-Coray T, Lin C, von Euw D, Masliah E, Mucke L, Lacombe P.
Ann N Y Acad Sci. 2000 Apr;903:317-23.
PMID 10818521
 
Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors.
Dong SM, Pang JC, Poon WS, Hu J, To KF, Chang AR, Ng HK.
J Neuropathol Exp Neurol. 2001 Aug;60(8):808-16.
PMID 11487055
 
Proliferation and differentiation of the keratinocytes in hyperplastic epidermis overlying dermatofibroma: immunohistochemical characterization.
Han KH, Huh CH, Cho KH.
Am J Dermatopathol. 2001 Apr;23(2):90-8.
PMID 11285402
 
Latency, activation, and binding proteins of TGF-beta.
Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J.
Microsc Res Tech. 2001 Feb 15;52(4):354-62. (REVIEW)
PMID 11170294
 
TGF-beta is a critical mediator of acute lung injury.
Pittet JF, Griffiths MJ, Geiser T, Kaminski N, Dalton SL, Huang X, Brown LA, Gotwals PJ, Koteliansky VE, Matthay MA, Sheppard D.
J Clin Invest. 2001 Jun;107(12):1537-44.
PMID 11413161
 
Transforming growth factor-beta signaling in cancer.
Rich J, Borton A, Wang X.
Microsc Res Tech. 2001 Feb 15;52(4):363-73. (REVIEW)
PMID 11170295
 
Domain-specific mutations of a transforming growth factor (TGF)-beta 1 latency-associated peptide cause Camurati-Engelmann disease because of the formation of a constitutively active form of TGF-beta 1.
Saito T, Kinoshita A, Yoshiura Ki, Makita Y, Wakui K, Honke K, Niikawa N, Taniguchi N.
J Biol Chem. 2001 Apr 13;276(15):11469-72. Epub 2001 Feb 13.
PMID 11278244
 
Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta.
Wick W, Platten M, Weller M.
J Neurooncol. 2001 Jun;53(2):177-85. (REVIEW)
PMID 11716069
 
TGF-beta signaling in renal disease.
Bottinger EP, Bitzer M.
J Am Soc Nephrol. 2002 Oct;13(10):2600-10. (REVIEW)
PMID 12239251
 
Increased plasma TGF-beta1 in patients with amyotrophic lateral sclerosis.
Houi K, Kobayashi T, Kato S, Mochio S, Inoue K.
Acta Neurol Scand. 2002 Nov;106(5):299-301.
PMID 12371924
 
Control of connective tissue gene expression by TGF beta: role of Smad proteins in fibrosis.
Verrecchia F, Mauviel A.
Curr Rheumatol Rep. 2002 Apr;4(2):143-9. (REVIEW)
PMID 11890880
 
TGF beta1 expression and angiogenesis in colorectal cancer tissue.
Xiong B, Gong LL, Zhang F, Hu MB, Yuan HY.
World J Gastroenterol. 2002 Jun;8(3):496-8.
PMID 12046078
 
Making sense of latent TGFbeta activation.
Annes JP, Munger JS, Rifkin DB.
J Cell Sci. 2003 Jan 15;116(Pt 2):217-24. (REVIEW)
PMID 12482908
 
Smad-dependent and Smad-independent pathways in TGF-beta family signalling.
Derynck R, Zhang YE.
Nature. 2003 Oct 9;425(6958):577-84. (REVIEW)
PMID 14534577
 
A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer.
Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC.
Cancer Res. 2003 May 15;63(10):2610-5.
PMID 12750287
 
APOE and TGF-beta1 genes are associated with obesity phenotypes.
Long JR, Liu PY, Liu YJ, Lu Y, Xiong DH, Elze L, Recker RR, Deng HW.
J Med Genet. 2003 Dec;40(12):918-24.
PMID 14684691
 
A mutation affecting the latency-associated peptide of TGFbeta1 in Camurati-Engelmann disease enhances osteoclast formation in vitro.
McGowan NW, MacPherson H, Janssens K, Van Hul W, Frith JC, Fraser WD, Ralston SH, Helfrich MH.
J Clin Endocrinol Metab. 2003 Jul;88(7):3321-6.
PMID 12843182
 
Renal fibrosis.
Schnaper HW, Kopp JB.
Front Biosci. 2003 Jan 1;8:e68-86. (REVIEW)
PMID 12456333
 
Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer.
Siegel PM, Massague J.
Nat Rev Cancer. 2003 Nov;3(11):807-21. (REVIEW)
PMID 14557817
 
Reversal of tumor-induced immunosuppression by TGF-beta inhibitors.
Wojtowicz-Praga S.
Invest New Drugs. 2003 Feb;21(1):21-32. (REVIEW)
PMID 12795527
 
The genetics of cancer susceptibility: from mouse to man.
Ewart-Toland A, Balmain A.
Toxicol Pathol. 2004 Mar-Apr;32 Suppl 1:26-30. (REVIEW)
PMID 15209400
 
TGFB1 mutations in four new families with Camurati-Engelmann disease: confirmation of independently arising LAP-domain-specific mutations.
Kinoshita A, Fukumaki Y, Shirahama S, Miyahara A, Nishimura G, Haga N, Namba A, Ueda H, Hayashi H, Ikegawa S, Seidel J, Niikawa N, Yoshiura K.
Am J Med Genet A. 2004 May 15;127A(1):104-7.
PMID 15103729
 
Association of preoperative plasma levels of vascular endothelial growth factor and soluble vascular cell adhesion molecule-1 with lymph node status and biochemical progression after radical prostatectomy.
Shariat SF, Anwuri VA, Lamb DJ, Shah NV, Wheeler TM, Slawin KM.
J Clin Oncol. 2004 May 1;22(9):1655-63.
PMID 15117988
 
Genetic modifiers of lung disease in cystic fibrosis.
Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R, Zou F, Zariwala M, Fargo D, Xu A, Dunn JM, Darrah RJ, Dorfman R, Sandford AJ, Corey M, Zielenski J, Durie P, Goddard K, Yankaskas JR, Wright FA, Knowles MR; Gene Modifier Study Group.
N Engl J Med. 2005 Oct 6;353(14):1443-53.
PMID 16207846
 
Specificity and versatility in tgf-beta signaling through Smads.
Feng XH, Derynck R.
Annu Rev Cell Dev Biol. 2005;21:659-93. (REVIEW)
PMID 16212511
 
Genetic polymorphisms of TGF-beta1 and TNF-beta and breast cancer risk.
Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A, Noh DY, Ahn SH, Hirvonen A, Kang D.
Breast Cancer Res Treat. 2005 Mar;90(2):149-55.
PMID 15803361
 
Smad transcription factors.
Massague J, Seoane J, Wotton D.
Genes Dev. 2005 Dec 1;19(23):2783-810. (REVIEW)
PMID 16322555
 
Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain.
Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, Garcia R, Demaria S, Newcomb EW.
Lab Invest. 2005 Mar;85(3):328-41.
PMID 15716863
 
Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium.
Breast Cancer Association Consortium.
J Natl Cancer Inst. 2006 Oct 4;98(19):1382-96.
PMID 17018785
 
Elevated plasma TGF-beta1 levels correlate with decreased survival of metastatic breast cancer patients.
Ivanovic V, Demajo M, Krtolica K, Krajnovic M, Konstantinovic M, Baltic V, Prtenjak G, Stojiljkovic B, Breberina M, Neskovic-Konstantinovic Z, Nikolic-Vukosavljevic D, Dimitrijevic B.
Clin Chim Acta. 2006 Sep;371(1-2):191-3. Epub 2006 Feb 28.
PMID 16650397
 
Polymorphisms in TGF-beta1 gene and the risk of lung cancer.
Kang HG, Chae MH, Park JM, Kim EJ, Park JH, Kam S, Cha SI, Kim CH, Park RW, Park SH, Kim YL, Kim IS, Jung TH, Park JY.
Lung Cancer. 2006 Apr;52(1):1-7. Epub 2006 Feb 24.
PMID 16499994
 
A common coding variant in CASP8 is associated with breast cancer risk.
Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S, Lissowska J, Brinton L, Peplonska B, Southey MC, Hopper JL, McCredie MR, Giles GG, Fletcher O, Johnson N, dos Santos Silva I, Gibson L, Bojesen SE, Nordestgaard BG, Axelsson CK, Torres D, Hamann U, Justenhoven C, Brauch H, Chang-Claude J, Kropp S, Risch A, Wang-Gohrke S, Schurmann P, Bogdanova N, Dork T, Fagerholm R, Aaltonen K, Blomqvist C, Nevanlinna H, Seal S, Renwick A, Stratton MR, Rahman N, Sangrajrang S, Hughes D, Odefrey F, Brennan P, Spurdle AB, Chenevix-Trench G; Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer, Beesley J, Mannermaa A, Hartikainen J, Kataja V, Kosma VM, Couch FJ, Olson JE, Goode EL, Broeks A, Schmidt MK, Hogervorst FB, Van't Veer LJ, Kang D, Yoo KY, Noh DY, Ahn SH, Wedren S, Hall P, Low YL, Liu J, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Sigurdson AJ, Stredrick DL, Alexander BH, Struewing JP, Pharoah PD, Easton DF; Breast Cancer Association Consortium.
Nat Genet. 2007 Mar;39(3):352-8. Epub 2007 Feb 11.
PMID 17293864
 
The role of TGF-beta-1 protein and TGF-beta-R-1 receptor in immune escape mechanism in bladder cancer.
Helmy A, Hammam OA, El Lithy TR, El Deen Wishahi MM.
MedGenMed. 2007 Nov 13;9(4):34.
PMID 18311384
 
Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12.
Kang HR, Cho SJ, Lee CG, Homer RJ, Elias JA.
J Biol Chem. 2007 Mar 9;282(10):7723-32. Epub 2007 Jan 5.
PMID 17209037
 
Endothelial-to-mesenchymal transition contributes to cardiac fibrosis.
Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R.
Nat Med. 2007 Aug;13(8):952-61. Epub 2007 Jul 29.
PMID 17660828
 
Association of polymorphisms in TGFB1 and prostate cancer prognosis.
Brand TC, Bermejo C, Canby-Hagino E, Troyer DA, Baillargeon J, Thompson IM, Leach RJ, Naylor SL.
J Urol. 2008 Feb;179(2):754-8. Epub 2007 Dec 20.
PMID 18082198
 
Circulating transforming growth factor-beta in Marfan syndrome.
Matt P, Schoenhoff F, Habashi J, Holm T, Van Erp C, Loch D, Carlson OD, Griswold BF, Fu Q, De Backer J, Loeys B, Huso DL, McDonnell NB, Van Eyk JE, Dietz HC; GenTAC Consortium.
Circulation. 2009 Aug 11;120(6):526-32. doi: 10.1161/CIRCULATIONAHA.108.841981. Epub 2009 Jul 27.
PMID 19635970
 
Association of codon 10 polymorphism of the transforming growth factor beta 1 gene with prostate cancer and hyperplasia in an Iranian population.
Omrani MD, Taghipour-Bazargani S, Salari-Lak S, Bagheri M.
Urol Int. 2009;83(3):329-32. doi: 10.1159/000241677. Epub 2009 Oct 13.
PMID 19829035
 
TGFbeta1-induced inflammation in premalignant epidermal squamous lesions requires IL-17.
Mohammed J, Ryscavage A, Perez-Lorenzo R, Gunderson AJ, Blazanin N, Glick AB.
J Invest Dermatol. 2010 Sep;130(9):2295-303. doi: 10.1038/jid.2010.92. Epub 2010 Apr 22.
PMID 20410912
 
Smad phosphoisoform signaling specificity: the right place at the right time.
Matsuzaki K.
Carcinogenesis. 2011 Nov;32(11):1578-88. doi: 10.1093/carcin/bgr172. Epub 2011 Jul 27. (REVIEW)
PMID 21798854
 
Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation.
Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, Byrom D, Riera A, Rossell D, Mangues R, Massague J, Sancho E, Batlle E.
Cancer Cell. 2012 Nov 13;22(5):571-84. doi: 10.1016/j.ccr.2012.08.013.
PMID 23153532
 
Human neutrophil peptides 1, 2 and 3 (HNP 1-3): elevated serum levels in colorectal cancer and novel marker of lymphatic and hepatic metastasis.
Kemik O, Kemik AS, Sumer A, Begenik H, Purisa S, Tuzun S.
Hum Exp Toxicol. 2013 Feb;32(2):167-71. doi: 10.1177/0960327111412802. Epub 2011 Jun 13.
PMID 21669914
 
Screening of circulating TGF-beta levels and its clinicopathological significance in human breast cancer.
Panis C, Herrera AC, Victorino VJ, Aranome AM, Cecchini R.
Anticancer Res. 2013 Feb;33(2):737-42.
PMID 23393376
 
Regulation of epithelial cell turnover and macrophage phenotype by epithelial cell-derived transforming growth factor beta1 in the mammary gland.
Sun X, Robertson SA, Ingman WV.
Cytokine. 2013 Feb;61(2):377-88. doi: 10.1016/j.cyto.2012.12.002. Epub 2013 Jan 3.
PMID 23290315
 
An updated meta-analysis on the association of TGF-beta1 gene promoter -509C/T polymorphism with colorectal cancer risk.
Wang Y, Yang H, Li L, Xia X.
Cytokine. 2013 Jan;61(1):181-7. doi: 10.1016/j.cyto.2012.09.014. Epub 2012 Oct 16.
PMID 23084539
 
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

Contributor(s)

Written02-2013Isabel Fuentes-Calvo, Carlos Martínez-Salgado
Unidad de Fisiopatologia Renal y Cardiovascular, Instituto "Reina Sofia" de Investigacion Nefrologica, Departamento de Fisiologia y Farmacologia, Universidad de Salamanca, Salamanca, Spain and Instituto de Investigacion Biomedica de Salamanca (IBSAL), Salamanca, Spain (IFC); Instituto de Estudios de Ciencias de la Salud de Castilla y Leon (IECSCYL), Unidad de Investigacion, Hospital Universitario de Salamanca, Salamanca, Spain and Instituto de Investigacion Biomedica de Salamanca (IBSAL), Salamanca, Spain (CMS)

Citation

This paper should be referenced as such :
Fuentes-Calvo I, Martínez-Salgado C . TGFB1 (transforming growth factor, beta 1). Atlas Genet Cytogenet Oncol Haematol. February 2013 .
URL : http://AtlasGeneticsOncology.org/Genes/TGFB1ID42534ch19q13.html

The various updated versions of this paper are referenced and archived by INIST as such :
http://documents.irevues.inist.fr/bitstream/handle/2042/51141/02-2013-TGFB1ID42534ch19q13.pdf   [ Bibliographic record ]

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Apr 18 17:40:42 CEST 2014

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.