Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

TSHR (thyroid stimulating hormone receptor)

Written2009-11Carmela Iosco, Kerry J Rhoden
Medical Genetics Unit, Department of Gynaecologic, Obstetric, Pediatric Sciences, University of Bologna, Bologna, Italy

(Note : for Links provided by Atlas : click)


HGNC Alias symbLGR3
LocusID (NCBI) 7253
Atlas_Id 290
Location 14q31.1  [Link to chromosome band 14q31]
Location_base_pair Starts at 80955621 and ends at 81108940 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping TSHR.png]
Local_order Telomeric to NMNATP (nicotinamide nucleotide adenylyltransferase pseudogene); centromeric to GTF2A1 (general transcription factor IIA, 1, 19/37 kDa).
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
TTLL5 (14q24.3)::TSHR (14q31.1)
Note Belongs to the rhodopsin-like G-protein coupled receptor superfamily (GPCR) and leucine-rich repeat containing GPCR family (LRG).


  Structure of the TSHR gene and coding sequence (CDS). Boxes represent exons numbered 1 to 10 and proportional to length, red representing the coding sequence, grey representing untranslated regions (UTR); the horizontal line joining exons represents introns, shrunk to minimal length. Positions below the CDS are numbered relative to the transcription start.
Description Spans 190,778 bp, contains 10 exons. Kakinuma and Nagayama (2002) identified 13 exons, but most findings relate to the 10-exon pattern.
Transcription Regulated by a TATA-less promoter containing binding sites for GABP, TTF1, CREB, ATF2, TR/RXR, SSBP and ICER.
Major transcript (TSHR isoform 1 precursor, NM_000369.2) encoded by 10 exons, transcript length 4410 bp, 2295 bp ORF, ~100 bp 5' UTR and 1.6 kb 3' UTR; the coding region spans positions 157-2451 bp, with a signal peptide at 157-216 bp, mature peptide from 217 to 2448 bp, poly-A signal at 4371-4376. Encodes the canonical protein, 764 aa.
NCBI Entrez Gene describes two alternatively spliced variants, TSHR isoform 2 precursor (NM_001018036.1) and TSHR isoform 3 precursor (NM_001142626.1). Additional transcripts are possible; according to NCBI/Aceview, there are 10 alternatively spliced variants, based upon cDNAs deposited in GenBank derived from normal and neoplastic human tissues and cell lines. There are 3 probable alternative promoters, 6 non overlapping alternative last exons and 6 validated alternative polyadenylation sites. The mRNAs appear to differ by truncation of the 5' end, truncation of the 3' end, overlapping exons with different boundaries, alternative splicing or retention of 2 introns. There is no evidence for protein expression of splice variants.
Transcription variant *
Exons in CDS
Predicted protein
Protein evidence
a; isoform 1 precursor
4570 bp
764 aa
b; isoform 3 precursor
1089 bp
274 aa
c; isoform 2 precursor
1281 bp
253 aa
1184 bp
231 aa
901 bp
229 aa
699 bp
167 aa
1018 bp
160 aa
445 bp
141 aa
561 bp
106 aa
2541 bp
69 aa
333 bp
57 aa
Table 1: TSHR transcript variants. *Letters refer to NCBI Aceview nomenclature as of April 2007; names in italics refer to NCBI Entrez Gene nomenclature.


  TSHR localization and structure. Left, thyroid follicle where the TSH-stimulated synthesis of thyroid hormone (T3 and T4) occurs following iodide uptake and organification into thyroglobulin (Tg). Right, TSHR protein structure, showing the A subunit composed of leucine-rich repeats (LRR) and the N-terminus, and the B subunit composed of 7 transmembrane domains (TMD), the intracellular and extracellular loops (ICL and ECL respectively) and the C-terminus.
Description G-protein coupled receptor (GPCR), 764 aa membrane glycoprotein. Predicted MW 84.5 kDa; apparent MW of glycosylated protein 95-120 kDa.
Consists of two subunits:
(i) A or α subunit: encoded by exons 1-8 of TSHR gene; glycosylated extracellular ectodomain containing 9 leucine-rich repeats (LRR) and the N-terminus; binds TSH and other ligands (hCG and LH),
(ii) B or β subunit: encoded by exons 9-10 of TSHR gene; consists of 7 trans-membrane domains (TMD) connected by extracellular loops (important for basal and activated function) and intracellular loops (important for G protein coupling), and an intracellular C terminus.
A and B subunits are produced by posttranslational proteolytic cleavage of single-chain TSHR at the cell surface, with removal of a 50 aa peptide, and subsequent joining of A and B subunits by disulfide bridges. The B subunit is thought to be constitutionally active, and interaction with the A subunit ectodomain maintains the B subunit in an inactive state.
Expression Thyroid follicular epithelial cells; to a lesser degree in thymus, pituitary gland, lymphocytes, testis, retro-ocular fibroblasts, adipocytes, brain, heart and kidney.
Localisation Plasma membrane.
Function Regulation of thyroid metabolism.
TSHR is the receptor for thyrotropin (thyroid stimulating hormone or TSH), a member of the glycoprotein hormone family. TSH is released by the anterior pituitary gland and is the main regulator of thyroid gland growth and development. Binding of TSH to TSHR stimulates thyroid epithelial cell proliferation, and regulates the expression of differentiation markers such as thyroglobulin, thyroperoxidase and the sodium iodide symporter (NIS), necessary for the synthesis of thyroid hormones.
TSHR is coupled to heterotrimetric G proteins, regulatory proteins associated with the inner surface of the plasma membrane. Binding of TSH to TSHR causes a conformational change in TSHR, provoking the GTP-dependent dissociation of the Gα subunit from GβGγ dimers. Gα activates distinct signal transduction pathways to stimulate gene transcription and cell proliferation.
Two G protein-dependent pathways are activated by TSHR:
(i) Gαs activates adenylate cyclase to increase cAMP levels; cAMP activates protein kinase A (PKA) causing translocation of its catalytic subunit to the nucleus; PKA phosphorylates, among others, the transcription factor CREB thereby increasing its transcriptional activity.
(ii) Gαq activates phospholipase C to increase phosphoinositide turnover, releasing inositol triphosphate (IP3) and diacylglycerol (DAG); DAG activates protein kinase C, which promotes proliferation via the RAF/MEK/ERK pathway.
Complex cross-talk occurs between these pathways and other signaling pathways including the PI3/Akt, PKC/NFkB and JAK/STAT pathways (for reviews see García-Jiménez and Santisteban (2007) and Latif et al. (2009)).
TSHR is also activated by other members of the glycoprotein hormone family, including human chorionic gonadotropin (hCG), luteinizing hormone (LH) and thyrostimulin (a heterodimer composed of A2 and B5 glycoprotein hormone subunits).
Homology LHCGR (Luteinizing Hormone, Choriogonadotropin receptor) 51% amino acid identity; FSHR (Follicle Stimulating Hormone receptor) 48% amino acid identity.


Note Over 90 naturally occurring TSHR mutations have been identified, and are catalogued in the GRIS database and TSHR mutation database. Mutations are gain-of-function resulting in constitutional activation of the receptor independently of TSH, or loss-of-function resulting in loss of TSH sensitivity.
Polymorphisms: Coding missense SNPs: Pro27Thr, Glu34Lys, Asp36His, Pro52Thr, Thr574Ser, Tyr601His, Val721Phe, Glu727Asp, Asn 744Lys.
  Table 2: TSHR mutations in thyroid disease. Mutations are listed in terms of the amino acid residues altered and their respective location (α = A subunit, β = B subunit, TM = transmembrane domain, ICL = intracellular loop, ECL = extracellular loop, LRR = leucine-rich repeat, hinge = domain connecting leucine-rich repeats to first transmembrane domain).
Note: * unknown functional status of mutations (Ohno et al., 1995).
Germinal Germinal TSHR mutations include missense mutations, nonsense mutations, insertion/deletions, and exon skipping due to alternative splicing. Germinal activating mutations are associated with hereditary or sporadic congenital hyperthyroidism, whereas germinal inactivating mutations are a cause of TSH resistance associated with congenital hypothyroidism and euthyroid hyperthyrotropinaemia.
Somatic Somatic TSHR mutations include missense mutations and in-frame deletions. Activating mutations have been identified in hyperfunctioning thyroid adenoma and toxic multinodular goiter; few cases are associated with thyroid carcinoma. No somatic inactivating mutations have been described so far.

Implicated in

Entity Thyroid adenoma
Disease Somatic activating TSHR mutations are a major cause of hyperfunctioning thyroid adenomas, benign neoplasms of thyroid follicular cells:
- 10-80% of hyperfunctioning or 'hot' adenomas (i.e. ademomas with active radioiodide uptake and thyroid hormone synthesis) harbor somatic activating mutations (Parma et al., 1993; Russo et al., 1996; Führer et al., 2007). The highly variable frequency of mutations may reflect geographic differences.
- Activating mutations are largely located in exon 10 encoding the TSHR β-subunit, and are particularly frequent in the sixth transmembrane segment (TM6) important for coupling to G proteins.
- Mutations result in the constitutive activation of adenylate cyclase, stimulating thyrocyte proliferation and thyroid hormone synthesis. As a consequence, hyperfunctioning nodules provoke hyperthyroidism and thyrotoxicosis.
- Nonfunctioning or 'cold' adenomas (i.e. not able to accumulate radioiodide or synthesize thyroid hormones) do not harbor TSHR mutations.
Entity Toxic multinodular goiter (Plummer's disease)
Disease Somatic activating TSHR mutations are a major cause of Toxic Multinodular Goiter (TMNG), a hyperplastic thyroid enlargement with multiple bilateral nodules:
- 70-80% of hyperfunctioning nodules of TMNG harbor somatic activating mutations, many of which are shared with hyperfunctioning thyroid adenoma suggesting a common pathogenic event (Tonacchera et al., 1998; Tonacchera et al., 2000).
- Different hyperfunctioning nodules within a goiter harbor may distinct TSHR activating mutations, confirming the polyclonal etiology of TMNG. In contrast, nonfunctioning nodules within the same goiter do not harbor mutations.
- TMNG is most common in iodine-deficient areas, and this may reflect the increased mutagenic load associated with chronic TSH stimulation and thyrocyte proliferation.
- A germline polymorphism of codon 727 of TSHR was reported to be associated with TMNG (Gabriel et al., 1999), however a subsequent study failed to substantiate this finding in a European population (Mulhberg et al., 2000).
Entity Thyroid carcinoma
Prognosis TSHR mRNA in thyroid tumours: Reduced or absent TSHR mRNA in thyroid tumours is a negative prognostic marker, indicative of reduced effectiveness of radioiodine therapy. TSHR expression in thyroid carcinoma correlates with the state of differentiation of tumours, with loss of differentiation resulting in a loss of mRNA expression. Thus, well-differentiated carcinomas (papillary and follicular) show variable TSHR mRNA levels ranging from normal to markedly reduced, whereas undifferentiated anaplastic carcinoma shows absent TSHR mRNA (Brabant et al., 2001; Brönnegård et al., 1994; Shiels et al., 1999). TSHR regulates the thyroid expression of the iodide transporter NIS, and decreased TSHR expression impairs the iodine-concentrating capacity of thyroid tumours.
Circulating TSHR mRNA: TSHR mRNA in peripheral blood has been suggested as a potential molecular marker of circulating thyroid carcinoma cells to aid in the differential diagnosis of malignant and benign thyroid disease preoperatively, and to detect residual, recurrent or metastatic thyroid cancer (Barzon et al., 2004; Chinnappa et al., 2004).
TSHR promoter methylation: TSHR promoter methylation may be a marker for malignancy in thyroid carcinoma (Xing et al., 2003).
Oncogenesis TSHR mutations: Mutagenic screening of thyroid carcinomas reveals a low incidence of somatic TSHR mutations ranging from 0-22%, suggesting a limited role for TSHR mutations in the pathogenesis of thyroid carcinoma (Matsuo et al., 1993; Russo et al., 1995; Ohno et al., 1995; Spambalg et al., 1996; Esapa et al., 1997; Cetani et al., 1999).
In most cases, somatic activating TSHR mutations occur in hyperfunctioning thyroid carcinomas:
- Met453Thr in papillary carcinoma with hyperfunctioning thyroid nodule (Mirescu et al., 2000).
- Ile486Phe in an autonomously functioning follicular carcinoma presenting a 'hot' nodule causing hyperthyroidism (Camacho et al., 2000).
- Leu512Arg in autonomously functioning papillary carcinoma with 'hot' nodule (Gozu et al., 2004).
- Thr620Ile in follicular carcinoma presenting as autonomous functioning thyroid nodule (Niepomniszcze et al., 2006).
- Ala623Ser in papillary carcinoma with high constitutive adenylate cyclase activity (Russo et al., 1995).
- Phe631Ile and Asp633Tyr in toxic metastasizing follicular thyroid carcinoma; no TSHR mutations in non-functioning lung metastases (Führer et al., 2003).
- Thr632Ile in thyroid hormone-producing follicular carcinoma (Spambalg et al., 1996).
- Asp633His in aggressive insular thyroid carcinoma (poorly-differentiated carcinoma) presenting as an autonomously functioning thyroid nodule and causing severe thyrotoxicosis; TSHR mutation also present in lymph node metastasis (Russo et al., 1997).
- Leu677Val in autonomously functioning Hürthle cell thyroid carcinoma causing thyrotoxicosis (Russo et al., 1999).
Rare cases of TSHR mutations in nonfunctioning thyroid carcinoma have also been reported:
- Thr632Ala in nonfunctioning follicular carcinoma (Spambalg et al., 1996).
- Ala623Ser activating mutation in papillary carcinoma with 'cold' nodule, in patient with past history of Graves' disease (De Cross et al., 2008).
The role of activating TSHR mutations in neoplastic transformation is unclear. Although TSHR activation stimulates thyrocyte proliferation, hyperfunctioning nodules (adenoma or toxic multinodular goiter) are rarely malignant, suggesting that constitutive activation of the cAMP cascade alone is insufficient for the malignant transformation of thyroid follicular cells.
Epigenetics: The TSHR gene promoter is frequently hypermethylated in thyroid carcinoma, with preferential methylation in undifferentiated carcinoma (Xing et al., 2003; Schagdarsurengin et al., 2006). In contrast, TSHR gene promoter is unmethylated in the normal thyroid and in benign tumours (thyroid adenoma). Hypermethylation results in TSHR gene silencing and reduced TSHR expression in some malignant thyroid tumours. In thyroid cancer cell lines, demethylating agents partially restore TSHR expression.
Entity Congenital nongoitrous hypothyroidism-1 (CHNG1)
Disease Germline inactivation TSHR mutations are a cause of hereditary congenital nongoitrous hypothyroidism. Inactivating mutations result in variable degrees of TSH resistance, with clinical consequences ranging from euthyroid hyperthyrotropinemia to mild or severe hypothyroidism. CHNG1 is inherited in an autosomal recessive manner, manifesting in homozygotes or compound heterozygotes. However, subclinical hypothyroidism may also manifest in heterozygotes, suggesting autosomal dominant inheritance.
Entity Hereditary nonautoimmune hyperthyroidism
Disease Germline activating TSHR mutations are a cause of hereditary nonautoimmune congenital hyperthyroidism (autosomal dominant inheritance). Sporadic cases of nonautoimmune congenital hyperthyroidism result from de novo germinal mutations. Activating germline mutations result in constitutive activation of the cAMP pathway in thyrocytes. Mutations are predominantly in exon 10 encoding the transmembrane domains. One activating mutation (Arg183Lys) increases sensitivity towards hCG and manifests in women during pregnancy (familial gestational hyperthyroidism).


Evaluation of circulating thyroid-specific transcripts as markers of thyroid cancer relapse.
Barzon L, Boscaro M, Pacenti M, Taccaliti A, Palu G.
Int J Cancer. 2004 Jul 20;110(6):914-20.
PMID 15170676
Human thyrotropin receptor gene: expression in thyroid tumors and correlation to markers of thyroid differentiation and dedifferentiation.
Brabant G, Maenhaut C, Kohrle J, Scheumann G, Dralle H, Hoang-Vu C, Hesch RD, von zur Muhlen A, Vassart G, Dumont JE.
Mol Cell Endocrinol. 1991 Nov;82(1):R7-12.
PMID 1761161
Expression of thyrotropin receptor and thyroid hormone receptor messenger ribonucleic acid in normal, hyperplastic, and neoplastic human thyroid tissue.
Bronnegard M, Toring O, Boos J, Sylven C, Marcus C, Wallin G.
J Clin Endocrinol Metab. 1994 Aug;79(2):384-9.
PMID 8045952
A Phe 486 thyrotropin receptor mutation in an autonomously functioning follicular carcinoma that was causing hyperthyroidism.
Camacho P, Gordon D, Chiefari E, Yong S, DeJong S, Pitale S, Russo D, Filetti S.
Thyroid. 2000 Nov;10(11):1009-12.
PMID 11128715
Genetic analysis of the TSH receptor gene in differentiated human thyroid carcinomas.
Cetani F, Tonacchera M, Pinchera A, Barsacchi R, Basolo F, Miccoli P, Pacini F.
J Endocrinol Invest. 1999 Apr;22(4):273-8.
PMID 10342361
Thyroid-stimulating hormone receptor messenger ribonucleic acid measurement in blood as a marker for circulating thyroid cancer cells and its role in the preoperative diagnosis of thyroid cancer.
Chia SY, Milas M, Reddy SK, Siperstein A, Skugor M, Brainard J, Gupta MK.
J Clin Endocrinol Metab. 2007 Feb;92(2):468-75. Epub 2006 Nov 21.
PMID 17118994
Detection of thyrotropin-receptor messenger ribonucleic acid (mRNA) and thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease: sensitive and specific markers for thyroid cancer.
Chinnappa P, Taguba L, Arciaga R, Faiman C, Siperstein A, Mehta AE, Reddy SK, Nasr C, Gupta MK.
J Clin Endocrinol Metab. 2004 Aug;89(8):3705-9.
PMID 15292293
Thyrotropin receptor-associated diseases: from adenomata to Graves disease.
Davies TF, Ando T, Lin RY, Tomer Y, Latif R.
J Clin Invest. 2005 Aug;115(8):1972-83. (REVIEW)
PMID 16075037
Functional studies of new TSH receptor (TSHr) mutations identified in patients affected by hypothyroidism or isolated hyperthyrotrophinaemia.
De Marco G, Agretti P, Camilot M, Teofoli F, Tato L, Vitti P, Pinchera A, Tonacchera M.
Clin Endocrinol (Oxf). 2009 Feb;70(2):335-8. Epub 2008 Aug 22.
PMID 18727713
G protein and thyrotropin receptor mutations in thyroid neoplasia.
Esapa C, Foster S, Johnson S, Jameson JL, Kendall-Taylor P, Harris PE.
J Clin Endocrinol Metab. 1997 Feb;82(2):493-6.
PMID 9024242
Somatic mutations in the thyrotropin receptor gene and not in the Gs alpha protein gene in 31 toxic thyroid nodules.
Fuhrer D, Holzapfel HP, Wonerow P, Scherbaum WA, Paschke R.
J Clin Endocrinol Metab. 1997 Nov;82(11):3885-91.
PMID 9360556
Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases.
Fuhrer D, Tannapfel A, Sabri O, Lamesch P, Paschke R.
Endocr Relat Cancer. 2003 Dec;10(4):591-600.
PMID 14713269
Germline polymorphism of codon 727 of human thyroid-stimulating hormone receptor is associated with toxic multinodular goiter.
Gabriel EM, Bergert ER, Grant CS, van Heerden JA, Thompson GB, Morris JC.
J Clin Endocrinol Metab. 1999 Sep;84(9):3328-35.
PMID 10487707
TSH signalling and cancer.
Garcia-Jimenez C, Santisteban P.
Arq Bras Endocrinol Metabol. 2007 Jul;51(5):654-71. (REVIEW)
PMID 17891229
Does a Leu 512 Arg thyrotropin receptor mutation cause an autonomously functioning papillary carcinoma?
Gozu H, Avsar M, Bircan R, Sahin S, Ahiskanali R, Gulluoglu B, Deyneli O, Ones T, Narin Y, Akalin S, Cirakoglu B.
Thyroid. 2004 Nov;14(11):975-80.
PMID 15671779
Multiple messenger ribonucleic acid transcripts and revised gene organization of the human TSH receptor.
Kakinuma A, Nagayama Y.
Endocr J. 2002 Apr;49(2):175-80.
PMID 12081236
The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling.
Latif R, Morshed SA, Zaidi M, Davies TF.
Endocrinol Metab Clin North Am. 2009 Jun;38(2):319-41, viii. (REVIEW)
PMID 19328414
United detection GNAS and TSHR mutations in subclinical toxic multinodular goiter.
Liu C, Yang J, Wang F, Wu C, Zhou M.
Eur Arch Otorhinolaryngol. 2009 Oct 14. [Epub ahead of print]
PMID 19826830
The thyrotropin receptor (TSH-R) is not an oncogene for thyroid tumors: structural studies of the TSH-R and the alpha-subunit of Gs in human thyroid neoplasms.
Matsuo K, Friedman E, Gejman PV, Fagin JA.
J Clin Endocrinol Metab. 1993 Jun;76(6):1446-51.
PMID 8501149
Effectiveness of peripheral thyrotropin receptor mRNA in follow-up of differentiated thyroid cancer.
Milas M, Barbosa GF, Mitchell J, Berber E, Siperstein A, Gupta M.
Ann Surg Oncol. 2009 Feb;16(2):473-80. Epub 2008 Nov 18.
PMID 19015922
Hyperfunctioning malignant thyroid nodule in an 11-year-old girl: pathologic and molecular studies.
Mircescu H, Parma J, Huot C, Deal C, Oligny LL, Vassart G, Van Vliet G.
J Pediatr. 2000 Oct;137(4):585-7.
PMID 11035845
Decreased expression of thyrotropin receptor gene suggests a high-risk subgroup for oncocytic adenoma.
Mirebeau-Prunier D, Guyetant S, Rodien P, Franc B, Baris O, Rohmer V, Reynier P, Tourmen Y, Malthiery Y, Savagner F.
Eur J Endocrinol. 2004 Mar;150(3):269-76.
PMID 15012610
Lack of association of nonautoimmune hyperfunctioning thyroid disorders and a germline polymorphism of codon 727 of the human thyrotropin receptor in a European Caucasian population.
Muhlberg T, Herrmann K, Joba W, Kirchberger M, Heberling HJ, Heufelder AE.
J Clin Endocrinol Metab. 2000 Aug;85(8):2640-3.
PMID 10946859
Follicular carcinoma presenting as autonomous functioning thyroid nodule and containing an activating mutation of the TSH receptor (T620I) and a mutation of the Ki-RAS (G12C) genes.
Niepomniszcze H, Suarez H, Pitoia F, Pignatta A, Danilowicz K, Manavela M, Elsner B, Bruno OD.
Thyroid. 2006 May;16(5):497-503.
PMID 16756473
Point mutations in the thyrotropin receptor in human thyroid tumors.
Ohno M, Endo T, Ohta K, Gunji K, Onaya T.
Thyroid. 1995 Apr;5(2):97-100.
PMID 7647578
Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas.
Parma J, Duprez L, Van Sande J, Cochaux P, Gervy C, Mockel J, Dumont J, Vassart G.
Nature. 1993 Oct 14;365(6447):649-51.
PMID 8413627
Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas.
Russo D, Arturi F, Suarez HG, Schlumberger M, Du Villard JA, Crocetti U, Filetti S.
J Clin Endocrinol Metab. 1996 Apr;81(4):1548-51.
PMID 8636365
Detection of an activating mutation of the thyrotropin receptor in a case of an autonomously hyperfunctioning thyroid insular carcinoma.
Russo D, Tumino S, Arturi F, Vigneri P, Grasso G, Pontecorvi A, Filetti S, Belfiore A.
J Clin Endocrinol Metab. 1997 Mar;82(3):735-8.
PMID 9062474
A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis.
Russo D, Wong MG, Costante G, Chiefari E, Treseler PA, Arturi F, Filetti S, Clark OH.
Thyroid. 1999 Jan;9(1):13-7.
PMID 10037070
CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma.
Schagdarsurengin U, Gimm O, Dralle H, Hoang-Vu C, Dammann R.
Thyroid. 2006 Jul;16(7):633-42.
PMID 16889486
TSH receptor status of thyroid neoplasms--TaqMan RT-PCR analysis of archival material.
Sheils OM, Sweeney EC.
J Pathol. 1999 May;188(1):87-92.
PMID 10398146
Methylation status of genes in papillary thyroid carcinoma.
Smith JA, Fan CY, Zou C, Bodenner D, Kokoska MS.
Arch Otolaryngol Head Neck Surg. 2007 Oct;133(10):1006-11.
PMID 17938324
Structural studies of the thyrotropin receptor and Gs alpha in human thyroid cancers: low prevalence of mutations predicts infrequent involvement in malignant transformation.
Spambalg D, Sharifi N, Elisei R, Gross JL, Medeiros-Neto G, Fagin JA.
J Clin Endocrinol Metab. 1996 Nov;81(11):3898-901.
PMID 8923835
Activating thyrotropin receptor mutations are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multinodular goiter.
Tonacchera M, Agretti P, Chiovato L, Rosellini V, Ceccarini G, Perri A, Viacava P, Naccarato AG, Miccoli P, Pinchera A, Vitti P.
J Clin Endocrinol Metab. 2000 Jun;85(6):2270-4.
PMID 10852462
GRIS: glycoprotein-hormone receptor information system.
Van Durme J, Horn F, Costagliola S, Vriend G, Vassart G.
Mol Endocrinol. 2006 Sep;20(9):2247-55. Epub 2006 Mar 16.
PMID 16543405
Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing.
Xing M, Usadel H, Cohen Y, Tokumaru Y, Guo Z, Westra WB, Tong BC, Tallini G, Udelsman R, Califano JA, Ladenson PW, Sidransky D.
Cancer Res. 2003 May 1;63(9):2316-21.
PMID 12727856
Fatal outcome of a young woman with papillary thyroid carcinoma and graves' disease: possible implication of "cross-signalling" mechanism.
de Cross GA, Suarez H, Pitoia F, Moncet D, Vanegas M, Bruno OD, Niepomniszcze H.
Arq Bras Endocrinol Metabol. 2008 Oct;52(7):1194-200.
PMID 19082310


This paper should be referenced as such :
Iosco, C ; Rhoden, KJ
TSHR (thyroid stimulating hormone receptor)
Atlas Genet Cytogenet Oncol Haematol. 2010;14(9):846-852.
Free journal version : [ pdf ]   [ DOI ]

External links

HGNC (Hugo)TSHR   12373
LRG (Locus Reference Genomic)LRG_523
Atlas Explorer : (Salamanque)TSHR
Entrez_Gene (NCBI)TSHR    thyroid stimulating hormone receptor
AliasesCHNG1; LGR3; hTSHR-I
GeneCards (Weizmann)TSHR
Ensembl hg19 (Hinxton)ENSG00000165409 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000165409 [Gene_View]  ENSG00000165409 [Sequence]  chr14:80955621-81108940 [Contig_View]  TSHR [Vega]
ICGC DataPortalENSG00000165409
Genatlas (Paris)TSHR
SOURCE (Princeton)TSHR
Genetics Home Reference (NIH)TSHR
Genomic and cartography
GoldenPath hg38 (UCSC)TSHR  -     chr14:80955621-81108940 +  14q31.1   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)TSHR  -     14q31.1   [Description]    (hg19-Feb_2009)
GoldenPathTSHR - 14q31.1 [CytoView hg19]  TSHR - 14q31.1 [CytoView hg38]
Genome Data Viewer NCBITSHR [Mapview hg19]  
OMIM275200   603372   603373   609152   
Gene and transcription
Genbank (Entrez)AB209207 AF035261 AK303378 AY429111 BC009237
RefSeq transcript (Entrez)NM_000369 NM_001018036 NM_001142626
Consensus coding sequences : CCDS (NCBI)TSHR
Gene ExpressionTSHR [ NCBI-GEO ]   TSHR [ EBI - ARRAY_EXPRESS ]   TSHR [ SEEK ]   TSHR [ MEM ]
Gene Expression Viewer (FireBrowse)TSHR [ Firebrowse - Broad ]
GenevisibleExpression of TSHR in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)7253
GTEX Portal (Tissue expression)TSHR
Human Protein AtlasENSG00000165409-TSHR [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
Domain families : Pfam (Sanger)
Domain families : Pfam (NCBI)
Conserved Domain (NCBI)TSHR
Human Protein Atlas [tissue]ENSG00000165409-TSHR [tissue]
Protein Interaction databases
Ontologies - Pathways
PubMed371 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Thu Jan 20 14:19:44 CET 2022

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us