Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

MAPK12 (mitogen-activated protein kinase 12)

Written2010-01Maria Isabel Cerezo-Guisado, Ana Cuenda
Centro Nacional de Biotecnologia-CSIC, Department of Immunology, Oncology, Madrid, Spain

(Note : for Links provided by Atlas : click)


Alias (NCBI)EC
HGNC (Hugo) MAPK12
HGNC Alias symbERK6
HGNC Previous nameSAPK3
LocusID (NCBI) 6300
Atlas_Id 41290
Location 22q13.33  [Link to chromosome band 22q13]
Location_base_pair Starts at 50252901 and ends at 50261683 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping MAPK12.png]
  MAPK12 genomic context (Chromosome 22, location 22q13.33).
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
BRD1 (22q13.33)::MAPK12 (22q13.33)


  Genomic organization of MAPK12 gene on chromosome 22q13.33. The boxes indicate coding regions (exon 1-12) of the gene.
Description The MAPK12 entire gene spans 8.46 kb on the long arm of chromosome 22. It contains 12 exons.
Transcription The MAPK12 gene encodes a 367 amino-acid protein of about 42 kDa. MAPK12 mRNA is 1457 bp. No splice variants have been reported.
Pseudogene No human or mouse pseudogene known.


Note p38gamma (MAPK12), also known as Stress-activated protein kinase 3 (SAPK3) belongs to the p38 subfamily of MAPKs. The p38MAPK subfamily is composed by four members encoded by different genes, which share high sequence homologies and are designated as p38alpha (MAPK14, or SAPK2a), p38beta (MAPK11 or SAPK2b), p38gamma (MAPK12 or SAPK3) and p38delta (MAPK13 or SAPK4). They are about 60% identical in their amino acid sequence but differ in their expresion patterns, substrate specificities and sensitivities to chemical inhibitors. (Iñesta-Vaquera et al., 2008). All p38 MAPKs are strongly activated in vivo by environmental stresses and inflammatory cytokines, and less by serum and growth factors.
  Schematic representation of the p38gamma (MAPK12) protein structure. Kinase Domain, catalytic kinase domain; TGY, sequence motif containing the regulatory phosphorylation residues. p38gamma (MAPK12) possesses at the C-terminal a sequence that binds to PDZ domain of several proteins.
Description p38gamma (MAPK12) is a Serine/Threonine protein kinase of 367 amino acids with a predicted molecular mass of 42 kDa. It possesses the conserved amino acid domains (I-XI) characteristic of protein kinases (Mertens et al., 1996). The Thr183 and Tyr185 residues in subdomain VIII are in an equivalent position to the TXY sequence in known MAPKs. The activation of p38gamma (MAPK12) occurs via dual phosphorylation of its TGY motif, in the activation loop, by MKK3 and MKK6 (Cuenda et al., 1997; Goedert et al., 1997).
Expression p38gamma (MAPK12) mRNA is widely expressed with high levels of expression in skeletal muscle.
Localisation p38gamma (MAPK12) localizes to the cytoplasm and nucleus of cultured cells.
Function p38gamma (MAPK12) regulates many cellular functions by phosphorylating several proteins. A feature that makes p38gamma unique among the p38 MAPKs is its short C-terminal sequence -KETXL, an amino acid sequence ideal for binding PDZ domains in proteins. SAPK3/p38gamma binds to a variety of these proteins, such as alpha1-syntrophin, SAP90/PSD95 and SAP97/hDlg, and under stress conditions is able to phosphorylate them and modulate their activity (Hasegawa et al., 1999; Sabio et al., 2004; Sabio et al., 2005). These proteins are scaffold proteins usually targeted to the plasma membrane cytoskeleton at specialised sites such as the neuromuscular junction and gap junctions through protein-protein interactions. In the case of SAP97/hDlg its phosphorylation by SAPK3/p38gamma provided a mechanism of dissociating SAP97/hDlg from the cytoskeleton (Sabio et al., 2005). p38gamma can also phosphorylate typical p38 MAPK substrates such as the transcription factors ATF2, Elk-1 or SAP1. However, it cannot phosphorylate MAPKAPK2 or MAPKAPK3, which are good substrates for other p38 MAPK isoforms (Cuenda et al., 1997; Goedert et al., 1997). Another p38gamma substrates that do not require PDZ domain binding interactions are the mitochondrial protein Sab (Court et al., 2004) and the microtubule-associated protein Tau (Feijoo et al., 2005).
Since p38gamma expression is very high in skeletal muscle in comparison to other tissues, it is not surprising that it may play a fundamental role in skeletal muscle differentiation. Thus, p38gamma protein level increases when myoblast differentiate into myotubes endogenous (Tortorella et al., 2003; Cuenda and Cohen, 1999). Moreover, it has been shown that over-expression of p38gamma in skeletal muscle cells leads to differentiation from myoblast to myotubes, and that a dominant-negative mutant of p38gamma prevented this differentiation process (Lechner et al., 1996). Recently, Gillespie et al. (2009) reported that p38gamma phosphorylates the transciption factor MyoD, which results in a decrease in its transcriptional activity. p38gamma plays a cardinal role in blocking the premature differentiation of skeletal muscle stem cells, the satellite cells. Additionally, p38gamma regulates mitochondrial biogenesis and angiogenesis, and it is required for endurance exercise-induced skeletal muscle adaptation (Pogozelski et al., 2009).
Most of the work published on cellular transformation regulation by p38MAPK pathway has been focused on studying the role of the isoforms p38alpha and beta, but there are a number of recent publications providing evidences for the role of p38gamma (MAPK12) in cellular transformation. Overexpression of the active form of Rit, a Ras family member, in NIH3T3 cells, causes transformation and stimulates p38gamma, but not other isoforms of p38MAPKs, ERK1, ERK2 or ERK5 (Sakabe et al., 2002). In rat intestinal epithelial cells, Ras oncogene was found to increase p38gamma RNA and protein expression with concurrently stimulated p38alpha phosphorylation and decreased p38gamma phosphorylation (Tang et al., 2005; Loesch and Chen, 2008). These results indicate that increased p38gamma gene expression is required for Ras oncogene activity but the mechanism by which p38gamma may promote Ras transformation is not clear. Recent studies show that phospho-p38alpha can down-regulate p38gamma protein expression through c-jun dependent ubiquitin/proteasome pathways (Qi et al., 2007; Loesch and Chen, 2008). On the other hand other recent study shows that whereas p38gamma mediates Ras-induced senescence at least partly by stimulating the transcriptional activity of p53 through direct phosphorylation, p38alpha appears to regulate senescence in a p53-independent, p16INK4A dependent manner (Kwong et al., 2009).
Homology p38gamma (MAPK12) shows 70% identity with p38delta (MAPK13), 60% sequence identity with p38alpha (MAPK14) and p38beta (MAPK11), 45% identity with HOG1 from S. cerevisiae, 47% identity with human SAP kinase-1 (JNK1) and 42% identity with p42 MAP kinase (ERK2).


Note No mutation reported yet.

Implicated in

Entity Breast cancer
Oncogenesis In human MCF-7 breast cancer cells, MKK6 expression inhibits DNA synthesis. This inhibitory effect is enhanced by the co-expressed p38gamma (Pramanik et al., 2003; Loesch and Chen, 2008). Ras also increases p38gamma protein expression in human breast cancer (Qi et al., 2006).
Entity Skin cancer
Oncogenesis p38gamma isoform is specifically implicated in melanoma death induced by UV radiation, cisplatin treatment (Pillaire et al., 2000). Moreover, melanoma cells overexpressing PDGF-Ralpha show a marked increase of p38gamma (Faraone et al., 2009).
Entity Hepatoma
Oncogenesis p38gamma expression is increased in hepatoma cell line HLE (Liu et al., 2003).
Entity Ovarian cancer
Oncogenesis p38gamma expression is regulated by the TNF-related apoptosis inducing ligand (TRIAL) and IL-8 in cellular lines from ovarian cancer (Abdollahi et al., 2003).
Entity Pancreatic cancer
Oncogenesis The levels of p38gamma seems to be decreased in pancreatic cancer cells (Crnogorac-Jurcevic et al., 2001).


Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3.
Abdollahi T, Robertson NM, Abdollahi A, Litwack G.
Cancer Res. 2003 Aug 1;63(15):4521-6.
PMID 12907626
Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3.
Court NW, Kuo I, Quigley O, Bogoyevitch MA.
Biochem Biophys Res Commun. 2004 Jun 18;319(1):130-7.
PMID 15158451
Gene expression profiles of pancreatic cancer and stromal desmoplasia.
Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, Jones M, Tyson K, Bassi C, Scarpa A, Lemoine NR.
Oncogene. 2001 Nov 1;20(50):7437-46.
PMID 11704875
Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis.
Cuenda A, Cohen P.
J Biol Chem. 1999 Feb 12;274(7):4341-6.
PMID 9933636
p38 MAP-kinases pathway regulation, function and role in human diseases.
Cuenda A, Rousseau S.
Biochim Biophys Acta. 2007 Aug;1773(8):1358-75. Epub 2007 Mar 24. (REVIEW)
PMID 17481747
Platelet-derived growth factor-receptor alpha strongly inhibits melanoma growth in vitro and in vivo.
Faraone D, Aguzzi MS, Toietta G, Facchiano AM, Facchiano F, Magenta A, Martelli F, Truffa S, Cesareo E, Ribatti D, Capogrossi MC, Facchiano A.
Neoplasia. 2009 Aug;11(8):732-42.
PMID 19649203
Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly.
Feijoo C, Campbell DG, Jakes R, Goedert M, Cuenda A.
J Cell Sci. 2005 Jan 15;118(Pt 2):397-408. Epub 2005 Jan 4.
PMID 15632108
Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases.
Goedert M, Cuenda A, Craxton M, Jakes R, Cohen P.
EMBO J. 1997 Jun 16;16(12):3563-71.
PMID 9218798
Assignment of the human stress-activated protein kinase-3 gene (SAPK3) to chromosome 22q13.3 by fluorescence in situ hybridization.
Goedert M, Hasegawa J, Craxton M, Leversha MA, Clegg S.
Genomics. 1997 May 1;41(3):501-2.
PMID 9169156
Stress-activated protein kinase-3 interacts with the PDZ domain of alpha1-syntrophin. A mechanism for specific substrate recognition.
Hasegawa M, Cuenda A, Spillantini MG, Thomas GM, Buee-Scherrer V, Cohen P, Goedert M.
J Biol Chem. 1999 Apr 30;274(18):12626-31.
PMID 10212242
Alternative p38MAPK pathways. Stress activated protein kinases.
Inesta-Vaquera FA, Sabio G, Kuma Y, Cuenda A.
Topics in Current Genetics. Springer-Verlag Berlin Heidelberg. 2008; 20:17-26.
p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms.
Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P.
J Biol Chem. 2009 Apr 24;284(17):11237-46. Epub 2009 Feb 27.
PMID 19251701
ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation.
Lechner C, Zahalka MA, Giot JF, Moller NP, Ullrich A.
Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4355-9.
PMID 8633070
Gene expression profiles of hepatoma cell line HLE.
Liu LX, Liu ZH, Jiang HC, Zhang WH, Qi SY, Hu J, Wang XQ, Wu M.
World J Gastroenterol. 2003 Apr;9(4):683-7.
PMID 12679910
The p38 MAPK stress pathway as a tumor suppressor or more?
Loesch M, Chen G.
Front Biosci. 2008 May 1;13:3581-93. (REVIEW)
PMID 18508457
SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases.
Mertens S, Craxton M, Goedert M.
FEBS Lett. 1996 Apr 1;383(3):273-6.
PMID 8925912
Cisplatin and UV radiation induce activation of the stress-activated protein kinase p38gamma in human melanoma cells.
Pillaire MJ, Nebreda AR, Darbon JM.
Biochem Biophys Res Commun. 2000 Nov 30;278(3):724-8.
PMID 11095975
p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice.
Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, Chi JT, Yan Z.
PLoS One. 2009 Nov 20;4(11):e7934.
PMID 19936205
p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p38 MAPK signal specificity.
Pramanik R, Qi X, Borowicz S, Choubey D, Schultz RM, Han J, Chen G.
J Biol Chem. 2003 Feb 14;278(7):4831-9. Epub 2002 Dec 9.
PMID 12475989
p38alpha antagonizes p38gamma activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response.
Qi X, Pohl NM, Loesch M, Hou S, Li R, Qin JZ, Cuenda A, Chen G.
J Biol Chem. 2007 Oct 26;282(43):31398-408. Epub 2007 Aug 27.
PMID 17724032
p38gamma mitogen-activated protein kinase integrates signaling crosstalk between Ras and estrogen receptor to increase breast cancer invasion.
Qi X, Tang J, Loesch M, Pohl N, Alkan S, Chen G.
Cancer Res. 2006 Aug 1;66(15):7540-7.
PMID 16885352
p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP.
Sabio G, Arthur JS, Kuma Y, Peggie M, Carr J, Murray-Tait V, Centeno F, Goedert M, Morrice NA, Cuenda A.
EMBO J. 2005 Mar 23;24(6):1134-45. Epub 2005 Feb 24.
PMID 15729360
Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2.
Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F, Kuhlendahl S, Leal-Ortiz S, Goedert M, Garner C, Cuenda A.
Biochem J. 2004 May 15;380(Pt 1):19-30.
PMID 14741046
Potent transforming activity of the small GTP-binding protein Rit in NIH 3T3 cells: evidence for a role of a p38gamma-dependent signaling pathway.
Sakabe K, Teramoto H, Zohar M, Behbahani B, Miyazaki H, Chikumi H, Gutkind JS.
FEBS Lett. 2002 Jan 30;511(1-3):15-20.
PMID 11821041
Essential role of p38gamma in K-Ras transformation independent of phosphorylation.
Tang J, Qi X, Mercola D, Han J, Chen G.
J Biol Chem. 2005 Jun 24;280(25):23910-7. Epub 2005 Apr 25.
PMID 15851477
ERK6 is expressed in a developmentally regulated manner in rodent skeletal muscle.
Tortorella LL, Lin CB, Pilch PF.
Biochem Biophys Res Commun. 2003 Jun 20;306(1):163-8.
PMID 12788083
Signal integration by JNK and p38 MAPK pathways in cancer development.
Wagner EF, Nebreda AR.
Nat Rev Cancer. 2009 Aug;9(8):537-49. (REVIEW)
PMID 19629069


This paper should be referenced as such :
Cerezo-Guisado, MI ; Cuenda, A
MAPK12 (mitogen-activated protein kinase 12)
Atlas Genet Cytogenet Oncol Haematol. 2010;14(11):1007-1010.
Free journal version : [ pdf ]   [ DOI ]

Other Leukemias implicated (Data extracted from papers in the Atlas) [ 2 ]
  dic(9;17)(p13;q11) PAX5::TAOK1
t(1;9)(q24;q34) RCSD1::ABL1

External links


HGNC (Hugo)MAPK12   6874
Entrez_Gene (NCBI)MAPK12    mitogen-activated protein kinase 12
AliasesERK-6; ERK3; ERK6; MAPK; 
GeneCards (Weizmann)MAPK12
Ensembl hg19 (Hinxton)ENSG00000188130 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000188130 [Gene_View]  ENSG00000188130 [Sequence]  chr22:50252901-50261683 [Contig_View]  MAPK12 [Vega]
ICGC DataPortalENSG00000188130
TCGA cBioPortalMAPK12
AceView (NCBI)MAPK12
Genatlas (Paris)MAPK12
SOURCE (Princeton)MAPK12
Genetics Home Reference (NIH)MAPK12
Genomic and cartography
GoldenPath hg38 (UCSC)MAPK12  -     chr22:50252901-50261683 -  22q13.33   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)MAPK12  -     22q13.33   [Description]    (hg19-Feb_2009)
GoldenPathMAPK12 - 22q13.33 [CytoView hg19]  MAPK12 - 22q13.33 [CytoView hg38]
Genome Data Viewer NCBIMAPK12 [Mapview hg19]  
Gene and transcription
Genbank (Entrez)AK098058 AK123665 AK289770 AK294422 AK307421
RefSeq transcript (Entrez)NM_001303252 NM_002969
Consensus coding sequences : CCDS (NCBI)MAPK12
Gene ExpressionMAPK12 [ NCBI-GEO ]   MAPK12 [ EBI - ARRAY_EXPRESS ]   MAPK12 [ SEEK ]   MAPK12 [ MEM ]
Gene Expression Viewer (FireBrowse)MAPK12 [ Firebrowse - Broad ]
GenevisibleExpression of MAPK12 in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)6300
GTEX Portal (Tissue expression)MAPK12
Human Protein AtlasENSG00000188130-MAPK12 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP53778   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtP53778  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProP53778
Domaine pattern : Prosite (Expaxy)MAPK (PS01351)    PROTEIN_KINASE_ATP (PS00107)    PROTEIN_KINASE_DOM (PS50011)   
Domains : Interpro (EBI)Kinase-like_dom_sf    MAP_kinase_CS    MAPK_p38-like    p38gamma    Prot_kinase_dom    Protein_kinase_ATP_BS   
Domain families : Pfam (Sanger)Pkinase (PF00069)   
Domain families : Pfam (NCBI)pfam00069   
Domain families : Smart (EMBL)S_TKc (SM00220)  
Conserved Domain (NCBI)MAPK12
PDB (RSDB)1CM8    4QUM    6UNA   
PDB Europe1CM8    4QUM    6UNA   
PDB (PDBSum)1CM8    4QUM    6UNA   
PDB (IMB)1CM8    4QUM    6UNA   
Structural Biology KnowledgeBase1CM8    4QUM    6UNA   
SCOP (Structural Classification of Proteins)1CM8    4QUM    6UNA   
CATH (Classification of proteins structures)1CM8    4QUM    6UNA   
AlphaFold pdb e-kbP53778   
Human Protein Atlas [tissue]ENSG00000188130-MAPK12 [tissue]
Protein Interaction databases
IntAct (EBI)P53778
Ontologies - Pathways
Ontology : AmiGOMAPK cascade  magnesium ion binding  protein serine/threonine kinase activity  protein serine/threonine kinase activity  protein serine/threonine kinase activity  MAP kinase activity  protein binding  ATP binding  nucleus  nucleoplasm  cytoplasm  mitochondrion  cytosol  DNA damage induced protein phosphorylation  cell cycle  signal transduction  muscle organ development  positive regulation of peptidase activity  peptidyl-serine phosphorylation  peptidyl-serine phosphorylation  intracellular signal transduction  myoblast differentiation  negative regulation of cell cycle  positive regulation of muscle cell differentiation  regulation of cell cycle  protein serine kinase activity  protein threonine kinase activity  
Ontology : EGO-EBIMAPK cascade  magnesium ion binding  protein serine/threonine kinase activity  protein serine/threonine kinase activity  protein serine/threonine kinase activity  MAP kinase activity  protein binding  ATP binding  nucleus  nucleoplasm  cytoplasm  mitochondrion  cytosol  DNA damage induced protein phosphorylation  cell cycle  signal transduction  muscle organ development  positive regulation of peptidase activity  peptidyl-serine phosphorylation  peptidyl-serine phosphorylation  intracellular signal transduction  myoblast differentiation  negative regulation of cell cycle  positive regulation of muscle cell differentiation  regulation of cell cycle  protein serine kinase activity  protein threonine kinase activity  
Pathways : BIOCARTAMAPKinase Signaling Pathway [Genes]   
Pathways : KEGGMAPK signaling pathway    Rap1 signaling pathway    FoxO signaling pathway    Oocyte meiosis    Adrenergic signaling in cardiomyocytes    VEGF signaling pathway    Osteoclast differentiation    Toll-like receptor signaling pathway    NOD-like receptor signaling pathway    RIG-I-like receptor signaling pathway    T cell receptor signaling pathway    Fc epsilon RI signaling pathway    TNF signaling pathway    Leukocyte transendothelial migration    Neurotrophin signaling pathway    Retrograde endocannabinoid signaling    Dopaminergic synapse    GnRH signaling pathway    Progesterone-mediated oocyte maturation    Prolactin signaling pathway    Amyotrophic lateral sclerosis (ALS)    Epithelial cell signaling in Helicobacter pylori infection    Shigellosis    Salmonella infection    Pertussis    Leishmaniasis    Chagas disease (American trypanosomiasis)    Toxoplasmosis    Tuberculosis    Hepatitis C    Influenza A    Epstein-Barr virus infection    Proteoglycans in cancer   
REACTOMEP53778 [protein]
REACTOME PathwaysR-HSA-525793 [pathway]   
NDEx NetworkMAPK12
Atlas of Cancer Signalling NetworkMAPK12
Wikipedia pathwaysMAPK12
Orthology - Evolution
GeneTree (enSembl)ENSG00000188130
Phylogenetic Trees/Animal Genes : TreeFamMAPK12
Homologs : HomoloGeneMAPK12
Homology/Alignments : Family Browser (UCSC)MAPK12
Gene fusions - Rearrangements
Fusion : MitelmanBRD1::MAPK12 [22q13.33/22q13.33]  
Fusion : FusionGDB2.7.11.1   
Fusion : QuiverMAPK12
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerMAPK12 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)MAPK12
Exome Variant ServerMAPK12
GNOMAD BrowserENSG00000188130
Varsome BrowserMAPK12
ACMGMAPK12 variants
Genomic Variants (DGV)MAPK12 [DGVbeta]
DECIPHERMAPK12 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisMAPK12 
ICGC Data PortalMAPK12 
TCGA Data PortalMAPK12 
Broad Tumor PortalMAPK12
OASIS PortalMAPK12 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICMAPK12  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DMAPK12
Mutations and Diseases : HGMDMAPK12
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
DgiDB (Drug Gene Interaction Database)MAPK12
DoCM (Curated mutations)MAPK12
CIViC (Clinical Interpretations of Variants in Cancer)MAPK12
NCG (London)MAPK12
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry MAPK12
NextProtP53778 [Medical]
Target ValidationMAPK12
Huge Navigator MAPK12 [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTDMAPK12
Pharm GKB GenePA30619
Pharm GKB PathwaysPA2032   
Clinical trialMAPK12
DataMed IndexMAPK12
PubMed111 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Oct 8 21:21:43 CEST 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us