Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

EP300 (E1A binding protein p300)

Written2000-01Jean-Loup Huret
Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France
Updated2014-11Gloria Negri, Cristina Gervasini
Department of Health Science, Medical Genetics, Universita degli Studi di Milano, Milano, Italy

(Note : for Links provided by Atlas : click)

Identity

Alias_symbol (synonym)p300
KAT3B
HGNC (Hugo) EP300
LocusID (NCBI) 2033
Atlas_Id 97
Location 22q13.2  [Link to chromosome band 22q13]
Location_base_pair Starts at 41488614 and ends at 41576081 bp from pter ( according to hg19-Feb_2009)  [Mapping EP300.png]
Fusion genes
(updated 2016)
ARHGEF17 (11q13.4) / EP300 (22q13.2)DHX9 (1q25.3) / EP300 (22q13.2)EP300 (22q13.2) / BCOR (Xp11.4)
EP300 (22q13.2) / DAZAP2 (12q13.13)EP300 (22q13.2) / EP300 (22q13.2)EP300 (22q13.2) / IPO5 (13q32.2)
EP300 (22q13.2) / KAT6A (8p11.21)EP300 (22q13.2) / KMT2A (11q23.3)EP300 (22q13.2) / MCHR1 (22q13.2)
EP300 (22q13.2) / RUNXBP2 ()EP300 (22q13.2) / SPPL3 (12q24.31)EP300 (22q13.2) / TNRC6B (22q13.1)
EP300 (22q13.2) / TTC28 (22q12.1)EP300 (22q13.2) / ZNF384 (12p13.31)KAT6A (8p11.21) / EP300 (22q13.2)
KMT2A (11q23.3) / EP300 (22q13.2)LOC100505806 () / EP300 (22q13.2)LYRM1 (16p12.3) / EP300 (22q13.2)
RNF220 (1p34.1) / EP300 (22q13.2)SPHK1 (17q25.1) / EP300 (22q13.2)TNRC6B (22q13.1) / EP300 (22q13.2)
TSPAN16 (19p13.2) / EP300 (22q13.2)TTC28 (22q12.1) / EP300 (22q13.2)

DNA/RNA

 
  Schematic representation of EP300 gene. Black boxes represent exons and gray ones 5' and 3' UTRs. Thin black lines represent introns. (Modified from Zimmerman et al., 2007).
Description p300 was first discovered on the basis of its interaction with the adenoviral protein E1A and EP300 locus was subsequently mapped to the long arm of chromosome 22, spanning about 88 kb (Whyte et al., 1989; Eckner et al., 1994).
Transcription EP300 has only one splice variant derived from the splicing of its 31 exons with an mRNA of 9585 bp which includes 1219 and 1121 bp of 5'UTR and 3'UTR, respectively.
Pseudogene No pseudogenes are known.

Protein

 
  Schematic structure of p300 protein including its functional and structural domains and their localization. NLS (nuclear localization signal), CH1 (cysteine/histidine-rich region 1, also known as transcriptional-adaptor zinc-finger domain 1 or TAZ1), KIX (kinase inducible domain of CREB interacting domain), BROMO (bromodomain), PHD (plant homeodomain finger), KAT11 (lysine acetyltransferase domain), ZZ (ZZ-type zinc finger domain), TAZ2 (transcriptional-adaptor zinc-finger domain 2; ZZ and TAZ2 together are sometimes referred to as CH3 or cysteine/histidine-rich region 3), and IBiD (IRF3-binding domain). Aminoacid positions are from UniGene NP_001420.2.
Description p300 is a large size protein of about 264 kDa belonging to the KAT3 (lysine or K-acetyltransferase) family (Valor et al., 2013).
p300 shares a modular organization consisting in several conserved domains including a central chromatin association and modification region which includes the bromodomain/PHD finger module and the KAT11 domain (Rack et al., 2014) which is flanked by four transactivation domains (TADs): i) the CH1 that encompasses the TAZ1 domain, ii) the KIX domain, iii) another CH3 containing the TAZ2 domain and a ZZ domain, and iv) the IBiD (Bedford et al., 2012; Wang et al., 2013).
The Bromodomain mediates p300 binding to acetylated histones, nucleosomes and transcriptional factors and could therefore play a role in tethering p300 to specific chromosomal sites (Kalkhoven et al., 2004; Rack et al., 2014) moreover, the associated PHD finger is an integral part of the enzymatic core of the protein influencing its ability to recognize and acetylate both itself as well as histones and non-histone substrates (Kalkhoven et al., 2004; Wang et al., 2013; Rack et al., 2014). The KAT11 catalytic domain can acetylate p300 itself and a variety of histonic and non-histonic proteins and the CH rich regions are able to bind zinc and are involved in protein-protein interaction (Valor et al., 2013; Wang et al., 2013).
p300 has also multiple specific interaction domains for different transcriptional factors such as the KIX domain that mediates CREB-p300 interaction and CREB phosphorylation at serine 133 residue but also for the Retinoic Acid Receptor-related orphan receptor A (RORA) and for ALX1 at the N-term end of the protein and for Interferons at C-term end.
Expression p300 is ubiquitously expressed in human tissues (Kalkhoven et al., 2004; Valor et al., 2013). p300 is highly evolutionary conserved and present in many multicellular organisms including flies, worms and plants but not in lower eukaryotes such as yeasts (Kalkhoven et al., 2004).
Localisation p300 is a nuclear protein which resides in a specific nuclear structure called nuclear body (Chan and La Thangue, 2001).
Function p300 is a transcriptional coactivator with intrinsic lysine acetyltransferase activity able to regulate transcription and gene expression in different ways.
1) Acetylation of histones tails: p300 can enable transcription through the catalytic activity of its KAT domain which is able to acetylate promoter nucleosomal histones resulting in chromatin remodelling and relaxation and in increased accessibility of the DNA to other essential regulators (Kalhoven et al., 2004; Wang et al., 2013). Thanks to its ability in modifying chromatin structure by histone acetylation, p300 can be defined as "writer" of the epigenetic code (Berdasco et al., 2013).
2) Acetylation of other target proteins: p300 can also acetylate other kinds of proteins, such as transcriptional factors, modulating their activity positively or negatively, or coactivators.
Acetylation of non-histone substrates can result in either positive or negative effects on transcription by affecting protein-protein interactions (activator of thyroid and retinoid receptors ACTR), protein-DNA interactions (the high mobility group protein HMGI), nuclear retention (the hepatocyte nuclear factor HNF4) or protein half-life (E2F).
For example some acetylated p300 targets regulate the expression of histone methyltransferase leading to chromatin condensation and gene silencing.
3) RNA Polymerase II stabilization: p300 functions as a "bridge" linking the DNA-bound transcription factors (activators) to the basal transcription machinery through direct interaction with TFIID, including TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs) and TFIIB promoting the pre-initiation complex (PIC) assembly (Wang et al., 2013).

p300 has also some more indirect chromatin-related roles:
4) DNA replication and repair: p300 interacts with various replication and repair proteins, including proliferating cell nuclear antigen (PCNA), the Recq4 helicase, Flap endonuclease 1 (Fen1), DNA polymerase b and thymine DNA glycosylase, with the latter three also serving as acetylation substrates.
5) Cell cycle regulation: p300 associates with the complex formed between cyclin E and cyclin-dependent kinase 2 (cdk2) regulating proper progression of the cell cycle.
6) p53 activity regulation: p300 is involved in p53 degradation, which depends on the murine double minute 2 protein (MDM2). Degradation and ubiquitination of p53 is dependent on MDM2, and a ternary complex between these two proteins and p300 regulates the turnover of p53 itself in cycling cells. Furthermore, the CH-1 region of p300 displays polyubiquitin ligase activity towards p53, and could therefore play a key role in controlling p53 levels.
7) Nuclear import: p300 can acetylate two proteins involved in regulating nuclear import, the importin-α1 isoform Rch1 and importin-α7, and could therefore play a role in this process.
Because of its ability of interacting with more than 400 partner proteins, p300 can be considered a "hub" (Bedford et al., 2014). Its interactome includes pro-proliferative proteins and oncoproteins: c-Myc, c-Myb, CREB, c-Jun and c-Fos; transforming viral proteins: E1A, and E6; as well as tumor suppressors and pro-apoptotic proteins: Forkhead box class O (FoxO) transcription factors FoxO1, FoxO3a, and FoxO4, signal transducers and activators of transcription (STAT) 1 and STAT 2, Hypoxia-inducible factor 1α (HIF-1α), breast cancer 1 (BRCA1), SMA/MAD homology (Smad) proteins, the Runt-related transcription factor (RUNX), E2 Transcription Factor (E2F), and E-proteins (Wang et al., 2013).

 
  Comparison of p300 and CBP amino acidic sequences. The blue regions indicate the areas of highest homology with the percentage of amino acid identity specified in between. Position of the corresponding domains are taken from UniGene (NP_001420.2 for EP300 and NP_004371.2 for CREBBP). (Modified from Chan and La Thangue, 2001).
Homology p300 is highly homologous to the cyclic AMP response element-binding (CREB) binding protein (CBP) with 63% identity and 75% similarity at amino-acid level (Narayanan et al., 2004; Wang et al., 20113). CREBBP/CBP locus was mapped on 16p13.3, a region of extensive homology to the one on chromosome 22 where EP300/p300 resides (Chan and La Thangue, 2001; Gervasini, 2010).

Mutations

Epigenetics The identification of mutations in epigenetic genes, classified as writers, readers and erasers based on their function (Berdasco and Esteller, 2013), represents a link between the cancer epigenome and genetic alterations acting as "driver" or "passenger" mutations in cancer development. Actually, many genetic alterations in cancer epigenetic regulators cause cancer-associated phenotype via epigenetic dysfunction (Roy et al., 2014).
Germinal Rubinstein-Taybi Syndrome (RSTS; OMIM #180849, #613684).
Somatic Cancers derived from almost all tissues and organs, such as those of hematopoietic and lymphoid organs, cancers of eye, skin, bones, thyroid, salivary and adrenal glands, central nervous system (CNS) including meninges, and nervous system (NS) including automatic ganglia, esophagus, upper aerodigestive tract, lung and pleura, stomach, liver, pancreas, biliary tract, large and small intestine, kidney, urinary tract and breast, endometrium, cervix, ovary and prostate.

Implicated in

Note
Entity Rubinstein-taybi syndrome (RSTS; OMIM #180849, #613684)
Note Germinal mutations leading to loss of function/haploinsufficiency.
Disease Rubinstein-Taybi syndrome is a rare (1:125000 live birth) autosomal dominant neurodevelopmental disorder. It is characterized by postnatal growth retardation, intellectual disability (ID), skeletal anomalies (broad and/or duplicated distal phalanges of thumbs and halluces are a landmark sign) and distinctive facial dysmorphisms including down-slanting palpebral fissures, broad nasal bridge, beaked nose and micrognathia (Hennekam, 2006).
Prognosis All EP300-mutated RSTS patients described in literature are alive (Roelfsema et al., 2005; Bartholdi et al., 2007; Zimmermann et al., 2007; Foley et al., 2009; Bartsh et al., 2010; Tsai et al., 2011; Negri et al., 2014).
Hybrid/Mutated Gene The identification of EP300 as the second RSTS causative gene in 2005 (Roelfsema et al., 2005) disclosed the heterogeneous nature of the syndrome. EP300 heterozygous point mutations and intragenic deletions have been detected in about 8% of RSTS CREBBP-negative cases (Negri et al., 2014). Fourteen patients are clinically and genetically described (Roelfsema et al., 2005; Bartholdi et al., 2007; Zimmermann et al., 2007; Foley et al., 2009; Bartsh et al., 2010; Tsai et al., 2011; Negri et al., 2014), while 12 additional alterations are reported in the LOVD database .
 
EP300 germline mutations in Rubinstein-Taybi patients (2014 update). A) Point mutations, B) intragenic deletions and C) schematic of the gene with type and localization of all 26 mutations reported so far. (Modified from Negri et al., 2014).
Oncogenesis RSTS patients (estimated incidence 5%) have an increased predisposition to malignancies like leukemia, neuroblastoma, meningioma and pilomatrixoma, developed either in the first years of life or in mid-adulthood (30-40 years) (Siraganin et al., 1989; van de Kar, 2014). Glaucomas and keloids are reported too; in particular, EP300-mutated RSTS patients show a slight increase in developing skin anomalies such as keloids (Van Genderen et al., 2000; van de Kar, 2014; Negri et al., 2014).
  
Entity Various cancers
Note All data are taken from COSMIC database (Catalogue of Somatic Mutations In Cancer) ( Release v70 August 2014).
Disease EP300 point mutations, copy number variations (CNVs) but also gene expression profile alterations have been detected in almost all human cancers independently of the embryonic origin. Out of >14.000 tumor samples tested, those derived from hematopoietic and lymphoid organs, lung, central nervous system (CNS), breast, intestine and ovary show the highest prevalence of EP300 mutations.
Hybrid/Mutated Gene The majority of EP300 point mutations detected in tumoral samples are heterozygous (Aumann et al., 2014).
With about ~400 unique somatic alterations reported, point mutations appear to be the most represented kind of EP300,mutations: in particular, missense mutations account for >60% of all mutations, followed by synonymous (~13%) and nonsense (~11%) mutations. In detail, transitions justify about 70% of all substitutions. Out of frame insertion/deletions (ins/del) represent together 38% and in frame ins/del about 4%.
Mutations are widespread across the gene with a great concentration in the large KAT11 domain, which clusters about 26% of all alterations. Few recurrent mutations are reported: the most frequently mutated amino acid residue is the aspartic acid at position 1339 in the KAT11 domain which is replaced by either asparagine (eight samples) or tyrosine (four samples).
CNVs are described too. In particular, losses are reported in 31 samples including breast, endometrium, ovary, large intestine and lung cancer, while gains seem to be rarer being described in 11 samples including breast, hematopoietic and lymphoid, and lung cancer.
Alterations in EP300 gene expression are recorded too: in particular over expression was described in 94 samples, while under expression in 104 samples, both in cancers derived from breast, endometrium, ovary, CNV, haematopoietic and lymphoid organs, kidney, large intestine and lung.
 
EP300 somatic point mutations load. A) Pie chart of the main kinds of point mutations and relative numbers, B) bar chart of the distribution of the mutations within the gene domains and C) recurrent mutations and localization. Data are reworked from COSMIC database.
Oncogenesis The oncogenic mechanism by which EP300 mutations act is not yet clear, but as the most frequently mutated region is the lysine acetyltransferase domain, which catalyzes acetylation of histones and other essential proteins, aberrant acetyltransferase activity may be a key feature. In vitro studies demonstrated reduced H3K18 acetylation, as well as decreased ability to acetylate p53 and BCL6, in p300- mutated cells (Peifer et al., 2012). Because of p300 multiple functions and diverse interactions, many intertwisted mechanisms could play a role in the different mutations' effects.
  
Entity t(11;22)(q23;q13) resulting in MLL1-EP300 fusion gene
Note Somatic mutations.
Disease Therapy-related leukemias and myeloid neoplasms.
Cytogenetics Ida et al., described the first patient presenting the karyotype 48,XY,+8,+8,(11;22)(q23;q13); the same group (Ohnishi et al.) described a second patient with 46,XX,t(1;22;11)(q44;q13;q23), t(10;17)(q22,q21), while a third patient, with 46;XY,t(11;22)(q23;q13)[15]/47,idem,+8[2], was reported by Duhoux et al.
Hybrid/Mutated Gene Rearrangements of the mixed lineage leukemia (MLL1 or KMT2A; gene ID: 4297) locus are frequently encountered in acute leukemias and at least 104 different chromosomal rearrangements involving MLL1 itself with more than 64 translocation partner genes have been described (Meyer et al., 2009) while rearrangements of EP300 gene locus seem to be rare events.
Only three cases of MLL1-EP300 fusion genes have been described, all in therapy-related leukemia patients following chemoterapy with topoisomerase II inhibitors. The first patient was initially diagnosed as having non-Hodgkin lymphoma and, after conventional chemotherapy, he developed secondary AML which was cytogenetically characterized as t(11;22)(q23;q13) producing a chimeric MLL1-EP300 gene in which the exon 9 of MLL1 was juxtaposed to EP300 exon 15 (Ida et al., 1997). The second case is a girl who developed AML after chemotherapy for neuroblastoma. She presented a complex karyotype 46,XX,t(1;22;11)(q44;q13;q23),t(10;17)(q22,q21) with the fusion of MLL1 exon 8 to EP300 exon 15 and also a less expressed clone in which exon 7 of MLL1 is fused with exon 15 of EP300, which was considered to be generated by alternative splicing (Ohnishi et al., 2008). The third patient presented AML with myelodysplasia-related changes evolving after chemotherapy in acute myelomonocytic leukaemia (AMML). Leukemic cells were cytologically characterised as 46;XY,t(11;22)(q23;q13)[15]/47,idem,+8[2] including the fusion of exon 10, or exon 11 resulting from alternative splicing, of MLL1 with exon 13 of EP300 (Duhoux et al., 2011).
All chimeric proteins retain almost the same part of both MLL1, including the AT-hook, the DNA methyltransferase and the transcriptional repression domains and p300, i.e. the bromodomain, the catalytic KAT and TADs
 
t(11;22)(q23;q13) leads to fusion of MLL1 gene to EP300. A) Schematic representation of MLL1, p300 and the predicted MLL1-p300 fusion proteins of all reported cases (Ida et al., 1997; Ohnishi et al. 2008; Duhoux et al., 2011). B) Nucleotide sequences of the hybrid junctions of the chimeric MLL1-EP300 genes and relative references. Breakpoints are indicated by arrows; AT: AT hooks, NLS: nuclear localization signals, CxxC: motif recognizing unmethylated CpG dinucleotides, PHD: plant homeodomain fingers, TAD: transactivation domain, SET: histone methyltransferase active sites; CH: cystidine/histidine-rich; KIX: kinase inhibitory domain, Bromo: bromodomain, KAT: Lysine acetyltransferase domain. (Modified from Duhoux et al., 2011).
Oncogenesis The fusion of MLL1 with the lysine-acetyltransferase p300 supposedly leads to hyperacetylation of chromatin which contributes to increase the transcriptional output conferring a significant oncogenic advantage to the cells. Furthermore, nuclear factors, such as p300, have transcriptional activity and their function might be deregulated by the fusion with MLL1 (Ohnishi et al., 2008; Duhoux et al., 2011).
The translocation t(11;22)(q23;q13) involving MLL1-EP300 is characteristic of therapy related leukemias where it is likely driven by topoisomerase II inhibitors, rather than of de novo leukaemias.
  
Entity t(8;22)(p11;q13) resulting in MOZ-EP300 fusion gene
Note Somatic mutations.
Disease de novo, progression or therapy-related AML.
Cytogenetics The t(8;22)(p11;q13) is a rare translocation found in acute myeloid leukaemia (AML) described in only three patients (Lai et al., 1992; Soenen et al., 1996; Chaffanet et al., 2000; Kitabayashi et al., 2000; Tasaka et al., 2002). The first patient was diagnosed as having a de novo AML with karyotype 47, XY,+8,t(8;22)(p11;q13), while the second patient suffered from a chronic myelomonocytic leukaemia (CMML) which evolved in AML with the abnormal karyotype: 46,XY,t(8;22)(p11;q13)/idem,+der(8)t(8;22)(p11;q13)del(17)(p11) (Lai et al., 1992; Soenen et al., 1996; Chaffanet et al., 2000). The third case is a man with primary macroglobulinemia who developed a secondary AML during chemotherapy, with the karyotype: 47, XY, t(8;22)(p11.2;q13.1),+der(8)t(8;22)(22qter→22q13.1::8p11.2→8q13::8q22→8qter),add(19)(p13.3) (Kitabayashi et al., 2001; Tasaka et al., 2002).
Hybrid/Mutated Gene Monocytic leukemia zinc finger gene (MOZ, Gene ID: 7994) codifies for a Myst (MOZ, Ybf2 (Sas3), Sas2, Tip60)-type lysine acetyltransferase (KAT) also named KAT6A (lysine acetyltransferase 6A).
The gene underlies chromosomal translocation with different partners, generating fusion genes, such as MOZ-TIF2, MOZ-CBP and MOZ-EP300 in acute myeloid leukemia (AML). All MOZ fusion partner genes are involved in histone modification and transcriptional regulation (Katsumoto et al., 2008).
To date, only three cases of t(8;22)(p11;q13) involving MOZ and EP300 have been reported and investigated at DNA and RNA levels in two of them (Lai et al., 1992; Soenen et al., 1996; Chaffanet et al., 2000; Kitabayashi et al., 2001; Tasaka et al., 2002).
In Chaffanet et al., and in Kitabayashi et al., MOZ-EP300 fusion genes result from the hybrid junction between exon 16 and exon 15 of MOZ with exons 2 and 3 of EP300, respectively.
In both cases, the MOZ breakpoints are located in or around its acidic domain resulting in the retention of its N-terminal region and the replacement of the C-terminal end with the p300 fusion partner. The N-terminal region of MOZ contains a H15 (histone H1/H5) domain related to nuclear localization, a PHD (plant homeobox-like domain) zinc finger involved in binding to methylated histones, a basic domain and a Myst-type KAT domain. The KAT domain contains C2HC zinc finger and helix-turn-helix motifs that bind to nucleosomes and DNA. Because of the early truncation of EP300 , almost all its functional domains are conserved, including the KAT, the bromodomain and the CH1-3, resulting in a fusion protein with both MOZ and p300 KAT domains.
In the reciprocal fusion genes, EP300-MOZ, exon 1 or 2 of EP300 are juxtaposed to exons 17 and 16 of MOZ, respectively. In both cases, the N-terminal region including only the nuclear receptor interaction domain (NID) of p300 and the C-terminal of MOZ encompassing its serine, proline-glutammine and methionine-rich regions are conserved (Chaffanet et al., 2000; Kitabayashi et al., 2001).
 
Schematic representation of the p300, MOZ, MOZ-p300 and p300-MOZ proteins. A) p300, MOZ, p300-MOZ and MOZ-p300 diagram of the first case and B) p300, MOZ, p300-MOZ and MOZ-p300 diagram of the third one.
Red arrows indicate the breakpoints of the translocations and nucleotide sequences of WT and hybrid junctions are reported. The functional domains of MOZ and p300 as well as those of fusion proteins are indicated above and beneath the diagrams.
NID: nuclear receptor interaction domain, CH1-3: cysteine/histidine-rich domain, CID: CREB-interaction domain, B: bromodomain, KAT: lysine acetyltransferase domain, Q: glutamine-rich region, PH: PHD class zinc finger, MYST: MOZ, YB1, SAS, TIP homology domain, S: serine-rich region, PQ: proline/glutamine region, M: methionine-rich region. (Modified from Kitabayashi et al., 2001).
Oncogenesis The conservation of MOZ and p300 KAT catalytic domains in the hybrid proteins MOZ-p300 may result in abnormal acetylation of histonic and non histonic proteins with a consequent alteration in gene expression regulation, leading to leukaemogenesis; furthermore, MOZ-p300 fusion proteins retain the domains required for the interaction with AML1 thus affecting AML1-dependent transcription whose deregulation may be implicated in leukaemogenesis too (Kitabayashi et al., 2001).
  

Bibliography

Somatic alterations and dysregulation of epigenetic modifiers in cancers.
Aumann S, Abdel-Wahab O.
Biochem Biophys Res Commun. 2014 Dec 5;455(1-2):24-34. doi: 10.1016/j.bbrc.2014.08.004. Epub 2014 Aug 9.
PMID 25111821
 
Genetic heterogeneity in Rubinstein-Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300.
Bartholdi D, Roelfsema JH, Papadia F, Breuning MH, Niedrist D, Hennekam RC, Schinzel A, Peters DJ.
J Med Genet. 2007 May;44(5):327-33. Epub 2007 Jan 12.
PMID 17220215
 
Two patients with EP300 mutations and facial dysmorphism different from the classic Rubinstein-Taybi syndrome.
Bartsch O, Labonte J, Albrecht B, Wieczorek D, Lechno S, Zechner U, Haaf T.
Am J Med Genet A. 2010 Jan;152A(1):181-4. doi: 10.1002/ajmg.a.33153.
PMID 20014264
 
Is histone acetylation the most important physiological function for CBP and p300?
Bedford DC, Brindle PK.
Aging (Albany NY). 2012 Apr;4(4):247-55.
PMID 22511639
 
Genetic syndromes caused by mutations in epigenetic genes.
Berdasco M, Esteller M.
Hum Genet. 2013 Apr;132(4):359-83. doi: 10.1007/s00439-013-1271-x. Epub 2013 Jan 31. (REVIEW)
PMID 23370504
 
MOZ is fused to p300 in an acute monocytic leukemia with t(8;22).
Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ.
Genes Chromosomes Cancer. 2000 Jun;28(2):138-44.
PMID 10824998
 
p300/CBP proteins: HATs for transcriptional bridges and scaffolds.
Chan HM, La Thangue NB.
J Cell Sci. 2001 Jul;114(Pt 13):2363-73. (REVIEW)
PMID 11559745
 
Novel variant form of t(11;22)(q23;q13)/MLL-EP300 fusion transcript in the evolution of an acute myeloid leukemia with myelodysplasia-related changes.
Duhoux FP, De Wilde S, Ameye G, Bahloula K, Medves S, Lege G, Libouton JM, Demoulin JB, A Poirel H.
Leuk Res. 2011 Mar;35(3):e18-20. doi: 10.1016/j.leukres.2010.09.024. Epub 2010 Oct 25.
PMID 20980053
 
The adenovirus E1A-associated 300-kD protein exhibits properties of a transcriptional coactivator and belongs to an evolutionarily conserved family.
Eckner R, Arany Z, Ewen M, Sellers W, Livingston DM.
Cold Spring Harb Symp Quant Biol. 1994;59:85-95.
PMID 7587135
 
Further case of Rubinstein-Taybi syndrome due to a deletion in EP300.
Foley P, Bunyan D, Stratton J, Dillon M, Lynch SA.
Am J Med Genet A. 2009 May;149A(5):997-1000. doi: 10.1002/ajmg.a.32771.
PMID 19353645
 
CREBBP (CREB binding protein).
Gervasini C.
Atlas Genet Cytogenet Oncol Haematol. 2010;14(2).
 
Rubinstein-Taybi syndrome.
Hennekam RC.
Eur J Hum Genet. 2006 Sep;14(9):981-5. Epub 2006 Jul 26. (REVIEW)
PMID 16868563
 
Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13).
Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y.
Blood. 1997 Dec 15;90(12):4699-704.
PMID 9389684
 
CBP and p300: HATs for different occasions.
Kalkhoven E.
Biochem Pharmacol. 2004 Sep 15;68(6):1145-55. (REVIEW)
PMID 15313412
 
Roles of the histone acetyltransferase monocytic leukemia zinc finger protein in normal and malignant hematopoiesis.
Katsumoto T, Yoshida N, Kitabayashi I.
Cancer Sci. 2008 Aug;99(8):1523-7. doi: 10.1111/j.1349-7006.2008.00865.x. (REVIEW)
PMID 18754862
 
Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation.
Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, Abe T, Ohki M.
Leukemia. 2001 Jan;15(1):89-94.
PMID 11243405
 
Acute monocytic leukemia with (8;22)(p11;q13) translocation. Involvement of 8p11 as in classical t(8;16)(p11;p13).
Lai JL, Zandecki M, Fenaux P, Preudhomme C, Facon T, Deminatti M.
Cancer Genet Cytogenet. 1992 Jun;60(2):180-2.
PMID 1606561
 
New insights to the MLL recombinome of acute leukemias.
Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cave H, Clappier E, van Dongen JJ, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grumayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Moricke A, Schrappe M, Alonso CN, Schafer BW, Krauter J, Lee DA, Zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R.
Leukemia. 2009 Aug;23(8):1490-9. doi: 10.1038/leu.2009.33. Epub 2009 Mar 5.
PMID 19262598
 
Clinical and molecular characterization of Rubinstein-Taybi syndrome patients carrying distinct novel mutations of the EP300 gene.
Negri G, Milani D, Colapietro P, Forzano F, Della Monica M, Rusconi D, Consonni L, Caffi LG, Finelli P, Scarano G, Magnani C, Selicorni A, Spena S, Larizza L, Gervasini C.
Clin Genet. 2014 Jan 29. doi: 10.1111/cge.12348. [Epub ahead of print]
PMID 24476420
 
A complex t(1;22;11)(q44;q13;q23) translocation causing MLL-p300 fusion gene in therapy-related acute myeloid leukemia.
Ohnishi H, Taki T, Yoshino H, Takita J, Ida K, Ishii M, Nishida K, Hayashi Y, Taniwaki M, Bessho F, Watanabe T.
Eur J Haematol. 2008 Dec;81(6):475-80. doi: 10.1111/j.1600-0609.2008.01154.x. Epub 2008 Sep 6.
PMID 18778367
 
Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.
Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Muller C, Di Cerbo V, Schildhaus HU, Altmuller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Bohm D, Ansen S, Gabler F, Wilkening I, Heynck S, Heuckmann JM, Lu X, Carter SL, Cibulskis K, Banerji S, Getz G, Park KS, Rauh D, Grutter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella LA, Fazio VM, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman DA, Snijders PJ, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun OT, Lund-Iversen M, Sanger J, Clement JH, Soltermann A, Moch H, Weder W, Solomon B, Soria JC, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider PM, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Buttner R, Wolf J, Nurnberg P, Perner S, Heukamp LC, Brindle PK, Haas S, Thomas RK.
Nat Genet. 2012 Oct;44(10):1104-10. doi: 10.1038/ng.2396. Epub 2012 Sep 2.
PMID 22941188
 
The PHD finger of p300 Influences Its Ability to Acetylate Histone and Non-Histone Targets.
Rack JG, Lutter T, Kjaereng Bjerga GE, Guder C, Ehrhardt C, Varv S, Ziegler M, Aasland R.
J Mol Biol. 2014 Dec 12;426(24):3960-72. doi: 10.1016/j.jmb.2014.08.011. Epub 2014 Aug 23.
PMID 25158095
 
Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease.
Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ.
Am J Hum Genet. 2005 Apr;76(4):572-80. Epub 2005 Feb 10.
PMID 15706485
 
Driver mutations of cancer epigenomes.
Roy DM, Walsh LA, Chan TA.
Protein Cell. 2014 Apr;5(4):265-96. doi: 10.1007/s13238-014-0031-6. Epub 2014 Mar 14.
PMID 24622842
 
Keloids and neoplasms in the Rubinstein-Taybi syndrome.
Siraganian PA, Rubinstein JH, Miller RW.
Med Pediatr Oncol. 1989;17(6):485-91.
PMID 2586363
 
Identification of a YAC spanning the translocation breakpoint t(8;22) associated with acute monocytic leukemia.
Soenen V, Chaffanet M, Preudhomme C, Dib A, Lai JL, Fletcher JA, Birnbaurn D, Pebusque MJ.
Genes Chromosomes Cancer. 1996 Mar;15(3):191-4.
PMID 8721686
 
Secondary acute monocytic leukemia with a translocation t(8;22)(p11;q13).
Tasaka T, Nagai M, Matsuhashi Y, Uehara E, Tamura T, Ishida T, Kakazu N, Abe T.
Haematologica. 2002 May;87(5):ECR19.
PMID 12010682
 
Exon deletions of the EP300 and CREBBP genes in two children with Rubinstein-Taybi syndrome detected by aCGH.
Tsai AC, Dossett CJ, Walton CS, Cramer AE, Eng PA, Nowakowska BA, Pursley AN, Stankiewicz P, Wiszniewska J, Cheung SW.
Eur J Hum Genet. 2011 Jan;19(1):43-9. doi: 10.1038/ejhg.2010.121. Epub 2010 Aug 18.
PMID 20717166
 
Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders.
Valor LM, Viosca J, Lopez-Atalaya JP, Barco A.
Curr Pharm Des. 2013;19(28):5051-64. (REVIEW)
PMID 23448461
 
Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition.
Wang F, Marshall CB, Ikura M.
Cell Mol Life Sci. 2013 Nov;70(21):3989-4008. doi: 10.1007/s00018-012-1254-4. Epub 2013 Jan 11. (REVIEW)
PMID 23307074
 
Cellular targets for transformation by the adenovirus E1A proteins.
Whyte P, Williamson NM, Harlow E.
Cell. 1989 Jan 13;56(1):67-75.
PMID 2521301
 
Confirmation of EP300 gene mutations as a rare cause of Rubinstein-Taybi syndrome.
Zimmermann N, Acosta AM, Kohlhase J, Bartsch O.
Eur J Hum Genet. 2007 Aug;15(8):837-42. Epub 2007 Feb 14.
PMID 17299436
 
Ocular features in Rubinstein-Taybi syndrome: investigation of 24 patients and review of the literature.
van Genderen MM, Kinds GF, Riemslag FC, Hennekam RC.
Br J Ophthalmol. 2000 Oct;84(10):1177-84. (REVIEW)
PMID 11004107
 
Keloids in Rubinstein-Taybi syndrome: a clinical study.
van de Kar AL, Houge G, Shaw AC, de Jong D, van Belzen MJ, Peters DJ, Hennekam RC.
Br J Dermatol. 2014 Sep;171(3):615-21. doi: 10.1111/bjd.13124. Epub 2014 Aug 21.
PMID 25132000
 

Citation

This paper should be referenced as such :
Negri G, Gervasini C
EP300 (E1A binding protein p300);
Atlas Genet Cytogenet Oncol Haematol. in press
On line version : http://AtlasGeneticsOncology.org/Genes/P300ID97.html
History of this paper:
Huret, JL. EP300 (E1A binding protein p300). Atlas Genet Cytogenet Oncol Haematol. 2000;4(1):1-2.
http://documents.irevues.inist.fr/bitstream/handle/2042/37578/01-2000-P300ID97.pdf


Other Leukemias implicated (Data extracted from papers in the Atlas) [ 10 ]
  11q23 rearrangements (KMT2A) in leukaemia
t(1;9)(p13;p12) PAX5/HIPK1
t(3;11)(q12;p15) NUP98/LNP1
t(8;16)(p11;p13) KAT6A/CREBBP
t(8;22)(p11;q13) KAT6A/EP300
t(10;16)(q22;p13) KAT6B/CREBBP
t(11;12)(p15;p13) NUP98/KDM5A
t(11;22)(q23;q11.2) KMT2A/SEPT5
t(11;22)(q23;q13) KMT2A/EP300
t(20;21)(q13.2;q22.12) ZFP64/RUNX1


Other Solid tumors implicated (Data extracted from papers in the Atlas) [ 3 ]
  Soft Tissues: Angiofibroma
Breast: Ductal carcinoma
Lung: Translocations in Small Cell Carcinoma


External links

Nomenclature
HGNC (Hugo)EP300   3373
Cards
AtlasP300ID97
Entrez_Gene (NCBI)EP300  2033  E1A binding protein p300
AliasesKAT3B; RSTS2; p300
GeneCards (Weizmann)EP300
Ensembl hg19 (Hinxton)ENSG00000100393 [Gene_View]  chr22:41488614-41576081 [Contig_View]  EP300 [Vega]
Ensembl hg38 (Hinxton)ENSG00000100393 [Gene_View]  chr22:41488614-41576081 [Contig_View]  EP300 [Vega]
ICGC DataPortalENSG00000100393
TCGA cBioPortalEP300
AceView (NCBI)EP300
Genatlas (Paris)EP300
WikiGenes2033
SOURCE (Princeton)EP300
Genetics Home Reference (NIH)EP300
Genomic and cartography
GoldenPath hg19 (UCSC)EP300  -     chr22:41488614-41576081 +  22q13.2   [Description]    (hg19-Feb_2009)
GoldenPath hg38 (UCSC)EP300  -     22q13.2   [Description]    (hg38-Dec_2013)
EnsemblEP300 - 22q13.2 [CytoView hg19]  EP300 - 22q13.2 [CytoView hg38]
Mapping of homologs : NCBIEP300 [Mapview hg19]  EP300 [Mapview hg38]
OMIM114500   180849   602700   613684   
Gene and transcription
Genbank (Entrez)AA235167 AB385004 AI302618 BC053889 BC172280
RefSeq transcript (Entrez)NM_001429
RefSeq genomic (Entrez)NC_000022 NC_018933 NG_009817 NT_011520 NW_004929430
Consensus coding sequences : CCDS (NCBI)EP300
Cluster EST : UnigeneHs.655211 [ NCBI ]
CGAP (NCI)Hs.655211
Alternative Splicing GalleryENSG00000100393
Gene ExpressionEP300 [ NCBI-GEO ]   EP300 [ EBI - ARRAY_EXPRESS ]   EP300 [ SEEK ]   EP300 [ MEM ]
Gene Expression Viewer (FireBrowse)EP300 [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevisibleExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)2033
GTEX Portal (Tissue expression)EP300
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ09472   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ09472  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ09472
Splice isoforms : SwissVarQ09472
PhosPhoSitePlusQ09472
Domaine pattern : Prosite (Expaxy)BROMODOMAIN_1 (PS00633)    BROMODOMAIN_2 (PS50014)    CBP_P300_HAT (PS51727)    KIX (PS50952)    ZF_TAZ (PS50134)    ZF_ZZ_1 (PS01357)    ZF_ZZ_2 (PS50135)   
Domains : Interpro (EBI)Bromodomain    Bromodomain_CS    CBP_P300_HAT    DUF902_CREBbp    Histone_AcTrfase_Rtt109/CBP    KIX_dom    Nuc_rcpt_coact    Nuc_rcpt_coact_CREBbp    Znf_TAZ    Znf_ZZ   
Domain families : Pfam (Sanger)Bromodomain (PF00439)    Creb_binding (PF09030)    DUF902 (PF06001)    HAT_KAT11 (PF08214)    KIX (PF02172)    zf-TAZ (PF02135)    ZZ (PF00569)   
Domain families : Pfam (NCBI)pfam00439    pfam09030    pfam06001    pfam08214    pfam02172    pfam02135    pfam00569   
Domain families : Smart (EMBL)BROMO (SM00297)  ZnF_TAZ (SM00551)  ZnF_ZZ (SM00291)  
Conserved Domain (NCBI)EP300
DMDM Disease mutations2033
Blocks (Seattle)EP300
PDB (SRS)1L3E    1P4Q    2K8F    2MH0    2MZD    3BIY    3I3J    3IO2    3P57    3T92    4BHW    4PZR    4PZS    4PZT    5BT3   
PDB (PDBSum)1L3E    1P4Q    2K8F    2MH0    2MZD    3BIY    3I3J    3IO2    3P57    3T92    4BHW    4PZR    4PZS    4PZT    5BT3   
PDB (IMB)1L3E    1P4Q    2K8F    2MH0    2MZD    3BIY    3I3J    3IO2    3P57    3T92    4BHW    4PZR    4PZS    4PZT    5BT3   
PDB (RSDB)1L3E    1P4Q    2K8F    2MH0    2MZD    3BIY    3I3J    3IO2    3P57    3T92    4BHW    4PZR    4PZS    4PZT    5BT3   
Structural Biology KnowledgeBase1L3E    1P4Q    2K8F    2MH0    2MZD    3BIY    3I3J    3IO2    3P57    3T92    4BHW    4PZR    4PZS    4PZT    5BT3   
SCOP (Structural Classification of Proteins)1L3E    1P4Q    2K8F    2MH0    2MZD    3BIY    3I3J    3IO2    3P57    3T92    4BHW    4PZR    4PZS    4PZT    5BT3   
CATH (Classification of proteins structures)1L3E    1P4Q    2K8F    2MH0    2MZD    3BIY    3I3J    3IO2    3P57    3T92    4BHW    4PZR    4PZS    4PZT    5BT3   
SuperfamilyQ09472
Human Protein AtlasENSG00000100393
Peptide AtlasQ09472
HPRD04078
IPIIPI00020985   IPI00909883   
Protein Interaction databases
DIP (DOE-UCLA)Q09472
IntAct (EBI)Q09472
FunCoupENSG00000100393
BioGRIDEP300
STRING (EMBL)EP300
ZODIACEP300
Ontologies - Pathways
QuickGOQ09472
Ontology : AmiGOnegative regulation of transcription from RNA polymerase II promoter  histone acetyltransferase complex  chromatin  RNA polymerase II core promoter proximal region sequence-specific DNA binding  RNA polymerase II core promoter sequence-specific DNA binding  core promoter binding  RNA polymerase II activating transcription factor binding  transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-specific binding  response to hypoxia  somitogenesis  liver development  positive regulation of protein phosphorylation  p53 binding  stimulatory C-type lectin receptor signaling pathway  DNA binding  chromatin binding  chromatin binding  damaged DNA binding  transcription coactivator activity  transcription coactivator activity  histone acetyltransferase activity  histone acetyltransferase activity  lysine N-acetyltransferase activity, acting on acetyl phosphate as donor  protein binding  nucleus  nucleoplasm  nucleoplasm  transcription factor complex  cytoplasm  transcription-coupled nucleotide-excision repair  regulation of transcription, DNA-templated  transcription from RNA polymerase II promoter  protein acetylation  protein acetylation  internal protein amino acid acetylation  apoptotic process  DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest  positive regulation of transcription from RNA polymerase II promoter involved in unfolded protein response  Notch signaling pathway  nervous system development  heart development  skeletal muscle tissue development  memory  circadian rhythm  beta-catenin binding  protein C-terminus binding  transcription factor binding  zinc ion binding  organ morphogenesis  regulation of autophagy  positive regulation of glycoprotein biosynthetic process  positive regulation of cell death  positive regulation of muscle atrophy  viral process  acetyltransferase activity  acetyltransferase activity  acetyltransferase activity  transferase activity, transferring acyl groups  N-terminal peptidyl-lysine acetylation  internal peptidyl-lysine acetylation  B cell differentiation  platelet formation  lung development  chromatin DNA binding  response to cobalt ion  positive regulation of protein binding  protein complex binding  positive regulation of type I interferon production  positive regulation of collagen biosynthetic process  protein-DNA complex  positive regulation of protein import into nucleus, translocation  activating transcription factor binding  peptide N-acetyltransferase activity  response to tumor necrosis factor  cellular response to UV  positive regulation of histone acetylation  nuclear hormone receptor binding  glucocorticoid receptor binding  cellular response to drug  megakaryocyte development  cellular response to trichostatin A  intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator  peroxisome proliferator activated receptor binding  negative regulation of cysteine-type endopeptidase activity involved in apoptotic process  positive regulation of DNA binding  bHLH transcription factor binding  protein kinase B signaling  response to estrogen  positive regulation by host of viral transcription  histone H3 acetylation  histone H4 acetylation  histone H2B acetylation  fat cell differentiation  response to ethanol  positive regulation of translation  positive regulation of axon extension  positive regulation of cell size  positive regulation of gene expression, epigenetic  positive regulation of proteolysis  positive regulation of transcription from RNA polymerase II promoter  positive regulation of transcription from RNA polymerase II promoter  SMAD binding  digestive tract development  androgen receptor binding  positive regulation of protein secretion  protein stabilization  mitogen-activated protein kinase binding  NF-kappaB binding  positive regulation of sequence-specific DNA binding transcription factor activity  response to calcium ion  regulation of cell cycle  regulation of angiotensin metabolic process  positive regulation of sarcomere organization  regulation of androgen receptor signaling pathway  regulation of transcription from RNA polymerase II promoter in response to hypoxia  protein-DNA complex assembly  cellular response to hydrogen peroxide  response to fatty acid  cellular response to retinoic acid  cellular response to cAMP  cellular response to glucose stimulus  cellular response to mineralocorticoid stimulus  cellular response to dexamethasone stimulus  regulation of tubulin deacetylation  pre-mRNA intronic binding  regulation of cellular response to heat  regulation of signal transduction by p53 class mediator  beta-catenin-TCF complex assembly  cellular response to nerve growth factor stimulus  protein antigen binding  negative regulation of miRNA metabolic process  
Ontology : EGO-EBInegative regulation of transcription from RNA polymerase II promoter  histone acetyltransferase complex  chromatin  RNA polymerase II core promoter proximal region sequence-specific DNA binding  RNA polymerase II core promoter sequence-specific DNA binding  core promoter binding  RNA polymerase II activating transcription factor binding  transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-specific binding  response to hypoxia  somitogenesis  liver development  positive regulation of protein phosphorylation  p53 binding  stimulatory C-type lectin receptor signaling pathway  DNA binding  chromatin binding  chromatin binding  damaged DNA binding  transcription coactivator activity  transcription coactivator activity  histone acetyltransferase activity  histone acetyltransferase activity  lysine N-acetyltransferase activity, acting on acetyl phosphate as donor  protein binding  nucleus  nucleoplasm  nucleoplasm  transcription factor complex  cytoplasm  transcription-coupled nucleotide-excision repair  regulation of transcription, DNA-templated  transcription from RNA polymerase II promoter  protein acetylation  protein acetylation  internal protein amino acid acetylation  apoptotic process  DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest  positive regulation of transcription from RNA polymerase II promoter involved in unfolded protein response  Notch signaling pathway  nervous system development  heart development  skeletal muscle tissue development  memory  circadian rhythm  beta-catenin binding  protein C-terminus binding  transcription factor binding  zinc ion binding  organ morphogenesis  regulation of autophagy  positive regulation of glycoprotein biosynthetic process  positive regulation of cell death  positive regulation of muscle atrophy  viral process  acetyltransferase activity  acetyltransferase activity  acetyltransferase activity  transferase activity, transferring acyl groups  N-terminal peptidyl-lysine acetylation  internal peptidyl-lysine acetylation  B cell differentiation  platelet formation  lung development  chromatin DNA binding  response to cobalt ion  positive regulation of protein binding  protein complex binding  positive regulation of type I interferon production  positive regulation of collagen biosynthetic process  protein-DNA complex  positive regulation of protein import into nucleus, translocation  activating transcription factor binding  peptide N-acetyltransferase activity  response to tumor necrosis factor  cellular response to UV  positive regulation of histone acetylation  nuclear hormone receptor binding  glucocorticoid receptor binding  cellular response to drug  megakaryocyte development  cellular response to trichostatin A  intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator  peroxisome proliferator activated receptor binding  negative regulation of cysteine-type endopeptidase activity involved in apoptotic process  positive regulation of DNA binding  bHLH transcription factor binding  protein kinase B signaling  response to estrogen  positive regulation by host of viral transcription  histone H3 acetylation  histone H4 acetylation  histone H2B acetylation  fat cell differentiation  response to ethanol  positive regulation of translation  positive regulation of axon extension  positive regulation of cell size  positive regulation of gene expression, epigenetic  positive regulation of proteolysis  positive regulation of transcription from RNA polymerase II promoter  positive regulation of transcription from RNA polymerase II promoter  SMAD binding  digestive tract development  androgen receptor binding  positive regulation of protein secretion  protein stabilization  mitogen-activated protein kinase binding  NF-kappaB binding  positive regulation of sequence-specific DNA binding transcription factor activity  response to calcium ion  regulation of cell cycle  regulation of angiotensin metabolic process  positive regulation of sarcomere organization  regulation of androgen receptor signaling pathway  regulation of transcription from RNA polymerase II promoter in response to hypoxia  protein-DNA complex assembly  cellular response to hydrogen peroxide  response to fatty acid  cellular response to retinoic acid  cellular response to cAMP  cellular response to glucose stimulus  cellular response to mineralocorticoid stimulus  cellular response to dexamethasone stimulus  regulation of tubulin deacetylation  pre-mRNA intronic binding  regulation of cellular response to heat  regulation of signal transduction by p53 class mediator  beta-catenin-TCF complex assembly  cellular response to nerve growth factor stimulus  protein antigen binding  negative regulation of miRNA metabolic process  
Pathways : BIOCARTATranscription Regulation by Methyltransferase of CARM1 [Genes]    IL-7 Signal Transduction [Genes]    Role of MEF2D in T-cell Apoptosis [Genes]    Hypoxia and p53 in the Cardiovascular system [Genes]    Acetylation and Deacetylation of RelA in The Nucleus [Genes]    CARM1 and Regulation of the Estrogen Receptor [Genes]    Melanocyte Development and Pigmentation [Genes]    Pelp1 Modulation of Estrogen Receptor Activity [Genes]    Role of PPAR-gamma Coactivators in Obesity and Thermogenesis [Genes]    Cell Cycle: G2/M Checkpoint [Genes]    Role of ERBB2 in Signal Transduction and Oncology [Genes]    NFkB activation by Nontypeable Hemophilus influenzae [Genes]    Mechanism of Gene Regulation by Peroxisome Proliferators via PPARa(alpha) [Genes]    Hypoxia-Inducible Factor in the Cardiovascular System [Genes]    TGF beta signaling pathway [Genes]    Multi-step Regulation of Transcription by Pitx2 [Genes]    Control of Gene Expression by Vitamin D Receptor [Genes]   
Pathways : KEGGHIF-1 signaling pathway    FoxO signaling pathway    Cell cycle    Wnt signaling pathway    Notch signaling pathway    TGF-beta signaling pathway    Adherens junction    Jak-STAT signaling pathway    Long-term potentiation    Melanogenesis    Thyroid hormone signaling pathway    Huntington's disease    Tuberculosis    Hepatitis B    Influenza A    HTLV-I infection    Herpes simplex infection    Epstein-Barr virus infection    Pathways in cancer    Viral carcinogenesis    MicroRNAs in cancer    Renal cell carcinoma    Prostate cancer   
REACTOMEQ09472 [protein]
REACTOME PathwaysR-HSA-1989781 PPARA activates gene expression [pathway]
REACTOME PathwaysR-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian gene expression [pathway]
REACTOME PathwaysR-HSA-201722 formation of the beta-catenin:TCF transactivating complex [pathway]
REACTOME PathwaysR-HSA-3371568 Attenuation phase [pathway]
REACTOME PathwaysR-HSA-400253 Circadian Clock [pathway]
REACTOME PathwaysR-HSA-983231 Factors involved in megakaryocyte development and platelet production [pathway]
REACTOME PathwaysR-HSA-3214847 HATs acetylate histones [pathway]
REACTOME PathwaysR-HSA-2197563 NOTCH2 intracellular domain regulates transcription [pathway]
REACTOME PathwaysR-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor [pathway]
REACTOME PathwaysR-HSA-918233 TRAF3-dependent IRF activation pathway [pathway]
REACTOME PathwaysR-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription [pathway]
REACTOME PathwaysR-HSA-1368082 RORA activates gene expression [pathway]
REACTOME PathwaysR-HSA-1912408 Pre-NOTCH Transcription and Translation [pathway]
REACTOME PathwaysR-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production [pathway]
REACTOME PathwaysR-HSA-381340 Transcriptional regulation of white adipocyte differentiation [pathway]
REACTOME PathwaysR-HSA-933541 TRAF6 mediated IRF7 activation [pathway]
REACTOME PathwaysR-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants [pathway]
REACTOME PathwaysR-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants [pathway]
REACTOME PathwaysR-HSA-156711 Polo-like kinase mediated events [pathway]
REACTOME PathwaysR-HSA-5621575 CD209 (DC-SIGN) signaling [pathway]
NDEx NetworkEP300
Atlas of Cancer Signalling NetworkEP300
Wikipedia pathwaysEP300
Orthology - Evolution
OrthoDB2033
GeneTree (enSembl)ENSG00000100393
Phylogenetic Trees/Animal Genes : TreeFamEP300
HOVERGENQ09472
HOGENOMQ09472
Homologs : HomoloGeneEP300
Homology/Alignments : Family Browser (UCSC)EP300
Gene fusions - Rearrangements
Fusion : MitelmanARHGEF17/EP300 [11q13.4/22q13.2]  [t(11;22)(q13;q13)]  
Fusion : MitelmanEP300/BCOR [22q13.2/Xp11.4]  [t(X;22)(p11;q13)]  
Fusion : MitelmanEP300/IPO5 [22q13.2/13q32.2]  [t(13;22)(q32;q13)]  
Fusion : MitelmanEP300/MCHR1 [22q13.2/22q13.2]  [t(22;22)(q13;q13)]  
Fusion : MitelmanEP300/TNRC6B [22q13.2/22q13.1]  [t(22;22)(q13;q13)]  
Fusion : MitelmanEP300/TTC28 [22q13.2/22q12.1]  [t(22;22)(q12;q13)]  
Fusion : MitelmanKAT6A/EP300 [8p11.21/22q13.2]  [t(8;22)(p11;q13)]  
Fusion : MitelmanTNRC6B/EP300 [22q13.1/22q13.2]  [t(22;22)(q13;q13)]  
Fusion : MitelmanTTC28/EP300 [22q12.1/22q13.2]  [t(22;22)(q12;q13)]  
Fusion : COSMICKMT2A [11q23.3]  -  EP300 [22q13.2]  [fusion_1906]  [fusion_1907]  [fusion_1908]  [fusion_1909]  [fusion_1910]  [fusion_1911]  [fusion_1912]  
[fusion_1913]  
Fusion: TCGAARHGEF17 11q13.4 EP300 22q13.2 BRCA
Fusion: TCGAEP300 22q13.2 BCOR Xp11.4 LGG
Fusion: TCGAEP300 22q13.2 IPO5 13q32.2 BRCA
Fusion: TCGAEP300 22q13.2 MCHR1 22q13.2 BLCA
Fusion: TCGAEP300 22q13.2 TNRC6B 22q13.1 LGG
Fusion: TCGAEP300 22q13.2 TTC28 22q12.1 LUSC
Fusion: TCGATNRC6B 22q13.1 EP300 22q13.2 KIRC
Fusion: TCGATTC28 22q12.1 EP300 22q13.2 LUSC
Fusion : TICdbKMT2A [11q23.3]  -  EP300 [22q13.2]
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerEP300 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)EP300
dbVarEP300
ClinVarEP300
1000_GenomesEP300 
Exome Variant ServerEP300
ExAC (Exome Aggregation Consortium)EP300 (select the gene name)
Genetic variants : HAPMAP2033
Genomic Variants (DGV)EP300 [DGVbeta]
DECIPHER (Syndromes)22:41488614-41576081  ENSG00000100393
CONAN: Copy Number AnalysisEP300 
Mutations
ICGC Data PortalEP300 
TCGA Data PortalEP300 
Broad Tumor PortalEP300
OASIS PortalEP300 [ Somatic mutations - Copy number]
Cancer Gene: CensusEP300 
Somatic Mutations in Cancer : COSMICEP300  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDEP300
intOGen PortalEP300
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
BioMutasearch EP300
DgiDB (Drug Gene Interaction Database)EP300
DoCM (Curated mutations)EP300 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)EP300 (select a term)
intoGenEP300
NCG5 (London)EP300
Cancer3DEP300(select the gene name)
Impact of mutations[PolyPhen2] [SIFT Human Coding SNP] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM114500    180849    602700    613684   
Orphanet22129   
MedgenEP300
Genetic Testing Registry EP300
NextProtQ09472 [Medical]
TSGene2033
GENETestsEP300
Huge Navigator EP300 [HugePedia]
snp3D : Map Gene to Disease2033
BioCentury BCIQEP300
ClinGenEP300 (curated)
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD2033
Chemical/Pharm GKB GenePA27807
Drug Sensitivity EP300
Clinical trialEP300
Miscellaneous
canSAR (ICR)EP300 (select the gene name)
Probes
Litterature
PubMed499 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
CoreMineEP300
EVEXEP300
GoPubMedEP300
iHOPEP300
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Nov 18 20:11:08 CET 2016

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.