Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

SH3PXD2A (SH3 and PX domains 2A)

Written2015-08Carman Man-Chung Li, Tyler Jacks
David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Abstract The TKS5 protein, encoded by the gene SH3PXD2A, is a scaffolding protein essential for the formation of podosomes and invadopodia in untransformed cells and cancer cells, respectively. Podosomes and invadopodia (which collectively are termed invadosomes) are actin-rich cellular protrusions capable of secreting proteolytic enzymes that can degrade the extracellular matrix. These structures are thought to regulate cellular migration and invasion, as well as adhesion and the release of growth factors. In the context of cancer, TKS5-dependent invadopodia activity has been shown to play important roles in tumor growth and metastasis in various cancer types. Multiple isoforms of TKS5 exist due to alternative mRNA splicing and promoter usage.

Keywords SH3PXD2A; TKS5; podosomes; invadopodia; metastasis.

(Note : for Links provided by Atlas : click)


Alias (NCBI)TKS5 (Tyrosine kinase substrate with five SH3 domains)
FISH (five SH3 domains)
HGNC Alias symbFISH
HGNC Alias namefive SH3 domains
HGNC Previous nameSH3MD1
HGNC Previous nameSH3 multiple domains 1
LocusID (NCBI) 9644
Atlas_Id 45995
Location 10q24.33  [Link to chromosome band 10q24]
Location_base_pair Starts at 103594027 and ends at 103855406 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping SH3PXD2A.png]
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
C6orf89 (6p21.2)::SH3PXD2A (10q24.33)CHMP2A (19q13.43)::SH3PXD2A (10q24.33)CMTR2 (16q22.2)::SH3PXD2A (10q24.33)
SH3PXD2A (10q24.33)::ERC2 (3p14.3)SH3PXD2A (10q24.33)::HTRA1 (10q26.13)SH3PXD2A (10q24.33)::RB1 (13q14.2)
SH3PXD2A (10q24.33)::SH3PXD2A (10q24.33)SH3PXD2A (10q24.33)::STN1 (10q24.33)SH3PXD2A (10q24.33)::TSHZ3 (19q12)
SH3PXD2A (10q24.33)::UTRN (6q24.2)TGFBI (5q31.1)::SH3PXD2A (10q24.33)ZNF608 (5q23.2)::SH3PXD2A (10q24.33)


  The SH3PXD2A locus encodes multiple TKS5 isoforms as a result of alternative splicing at exons 7 and 10 as well as alternative promoter usage. Genomic information was obtained from the UCSC genome browser ( Short-form Tks5 (Tks5-short and Tks5-beta) have been reported by Li et al. (2013) and Cejudo-Martin et al. (2014).
Description The SH3PXD2A gene is located on chromosome 10 (10q24.33). It contains 15 exons.
Transcription The full-length SH3PXD2A transcript is 11264 nt in length. Multiple TKS5 isoforms arise as a result of alternative mRNA splicing involving exons 7 and 10, and alternative use of transcription start sites.


  The full-length TKS5 mRNA encodes a protein that contains a PX domain and five SH3 domains, as well as proline-rich regions (PxxP) and Src phosphorylation sites (Y). The various short isoforms lack the PX domain.
Description The full-length SH3PXD2A transcript (TKS5-LONG or TKS5-ALPHA) is transcribed from a promoter upstream of exon 1 and is translated into a 150 kDa protein that contains a Phox-homology (PX) domain in the N-terminus and five Src homology 3 (SH3) domains in the C-terminus. The shorter isoforms that arise from downstream transcription start sites lack the PX domain but retain the five SH3 domains. Because the PX domain is required for binding to the cell membrane, full-length TKS5 is able to localize to invadosome foci but the short isoforms cannot.
Expression TKS5 expression is detected in many tissue types, including brain, lung, liver, heart, skeletal muscles, and, kidneys, but was low in spleen and absent in testis (Lock et al, 1998). Tks5 has also been detected in many cell types, including macrophages, myoblasts, neural crest cells, osteoblasts, and neurons (Burger et al., 2011; Thompson et al., 2008; Murphy et al., 2011; Oikawa et al., 2012; Santiago-Medina et al. 2015).
Localisation Cytoplasmic and at invadosome foci.
Function TKS5 was initially identified as a substrate for SRC (Lock et al., 1998), and was subsequently shown to play a critical role in invadosome formation in multiple cell types (Courtneidge, 2011; Murphy and Courtneidge, 2011; Paz et al., 2013).
Full-length TKS5 functions as an adaptor for recruiting other proteins to the cell membrane for invadosome formation. The recruitment of TKS5 to the cell membrane depends on its PX domain and phosphorylation by Src (Abram et al., 2003). It has been proposed that phosphorylation of TKS5 releases its PX domain from intramolecular interaction and allows TKS5 to bind to cell membrane phosphatidylinositol lipids, such as phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) (Abram et al., 2003; Oikawa et al., 2008). At the cell membrane, TKS5 is thought to interact with multiple components of invadosomes either directly or indirectly, and thereby mediates invadosome formation and maturation (Sharma et al., 2013). These interacting partners includes adaptor proteins and actin regulatory proteins, such as NCK1, NCK2, GRB2, CTTN (Cortactin), WASL (N-WASP), ACTR2/ACTR3 (Arp2/3) complex, and ARHGAP35 (p190RhoGAP) (Crimaldi et al., 2009; Oikawa et al., 2008; Stylli et al., 2009).
TKS5 also interacts with NOXA1 and CYBA (p22phox), which are components of the NADPH oxidase complex, and thereby promotes reactive oxygen species (ROS) production by NOX enzymes at invadosomes (Diaz et al., 2009; Gianni et al., 2010; 2009). ROS have been shown to facilitate invadosome formation by maintaining or amplifying the phosphorylation of TKS5. As such, TKS5 is thought to promote invadosome formation via ROS in a positive feedback loop.
Finally, TKS5 has also been shown to interact with members of the ADAM family metalloproteases, specifically ADAM12, ADAM15, ADAM19 (Abram et al., 2003). It is believed that Tks5 recruits theses proteases to the invadosome foci for processing growth factors and regulating cell motility. For example, ADAM12 has been shown to promote ectodomain shedding of HBEGF (heparin-binding EGF-like growth factor) and enhance invadopodia formation in cancer cells (Diaz et al., 2013).
In the context of cancer, TKS5-dependent formation of invadopodia is thought to promote metastasis by mediating local tumor invasion and intravasation at the primary site, as well as extravasation and colonization at the distant site (Murphy and Courtneidge, 2011; Paz et al., 2014). In the context of normal development, TKS5-depedent podosomes are important for mediating cell migration during embryogenesis. Knockdown of Tks5 in zebrafish led to impaired dorsal-ventral migration of neural crest cells and defective craniofacial structures and pigmentation (Murphy et al., 2011). Similarly, genetic deletion of Tks5 in mice led to complete cleft of the secondary palate and neonatal death (Cejudo-Martin et al., 2014). In addition, study in Xenopus showed that Tks5-dependent podosomes are also required for the migration of neuronal growth cones (Santiago-Medina et al., 2015).
While most studies have focused on full-length TKS5, shorter isoforms of TKS5 that lack the PX domain have been reported (Lock et al, 1998; Li et al., 2013; Cejudo-Martin et al., 2014). There are few reports on the functions of these short isoforms. Experiments in mouse lung cancer cell lines showed that overexpression of a short isoform (Tks5-short) suppressed invadopodia function by disrupting the stability of invadopodia (Li et al., 2013). In addition, overexpression of a short-form equivalent protein, ΔPX-Tks5, in Xenopus neural crest cells inhibited invadosome functions and impaired motoneuron axon extension into the peripheral myotomal tissue in Xenopus embryos (Santiago-Medina et al., 2015). These data suggest that the short forms of TKS5 can function as negative regulators of invadosomes.
At the mRNA level, the transcription of full-length Tks5 has been shown to be synergistically inhibited by the developmental regulators NKX2-1, FOXA2, and CDX2 in lung adenocarcinoma (Li et al., 2015). Furthermore, TKS5 has been shown to be a target of the microRNA mir200-c (Sundararajan et al., 2015). In terms of protein stability and abundance, the full-length isoform of TKS5 is positively regulated by Src, while the short isoform (TKS5-beta) is negatively regulated by Src (Cejudo-Martin et al. 2014).
Homology TKS5 is homologous to SH3PXD2B (TKS4), another adaptor protein that functions as a Src substrate and promotes invadosome function (Buschman et al, 2009). TKS4 contains a PX domain at the N-terminus and four SH3 domains in the C-terminus.

Implicated in

Entity Breast cancer
Note TKS5 expression is increased in human primary breast tumors compared to normal tissues, and is further increased in metastases (Stylli et al., 2014). TKS5 is required for invadopodia formation in breast cancer cells (Seals et al, 2005). TKS5-dependent invadopodia have been shown to promote tumor growth in a transplantation setting, cancer cell intravasation and extravasation, and metastasis formation (Eckert et al., 2011; Gligorijevic et al., 2012; Leong et al., 2014; Blouw et al., 2015). Expression of full-length TKS5 in human breast tumors correlated with poor prognosis (Blouw et al., 2015).
Entity Lung cancer
Note TKS5 expression is increased in human lung tumors compared to normal tissues (Stylli et al., 2014). Full-length Tks5 is required for metastasis in a mouse model of lung cancer (Li et al., 2013). Furthermore, higher expression of full-length TKKS5 relative to short-form TKS5 correlated with poor survival of early-stage lung adenocarcinoma patients (Li et al., 2013).
Entity Melanoma
Note TKS5 is required for invadopodia formation in melanoma cells (Seals et al, 2005).
Entity Prostate cancer
Note TKS5 expression is increased in human prostate tumors compared to normal tissues, and is required for invadopodia function in prostate cancer cells (Stylli et al., 2014; Burger et al., 2014).
Entity Gliomas
Note TKS5 expression correlates with poor survival of glioma patients (Stylli et al., 2011).
Entity Colon Cancer
Note TKS5 expression is increased in human colon tumors compared to normal tissues (Stylli et al., 2014).
Entity Alzeimer disease
Note KS5 and ADAM12 have been proposed to mediate the toxicity of amyloid-β peptide (Aβ), which is a potential cause of Alzheimer's disease as it has been shown to mediate neurodegenerative alterations that are associated with amyloid plaques (Malinin et al., 2005; Harold et al., 2007).


The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells
Abram CL, Seals DF, Pass I, Salinsky D, Maurer L, Roth TM, Courtneidge SA
J Biol Chem 2003 May 9;278(19):16844-51
PMID 12615925
The invadopodia scaffold protein Tks5 is required for the growth of human breast cancer cells in vitro and in vivo
Blouw B, Patel M, Iizuka S, Abdullah C, You WK, Huang X, Li JL, Diaz B, Stallcup WB, Courtneidge SA
PLoS One 2015 Mar 31;10(3):e0121003
PMID 25826475
The podosome marker protein Tks5 regulates macrophage invasive behavior
Burger KL, Davis AL, Isom S, Mishra N, Seals DF
Cytoskeleton (Hoboken) 2011 Dec;68(12):694-711
PMID 22021214
Src-dependent Tks5 phosphorylation regulates invadopodia-associated invasion in prostate cancer cells
Burger KL, Learman BS, Boucherle AK, Sirintrapun SJ, Isom S, Díaz B, Courtneidge SA, Seals DF
Prostate 2014 Feb;74(2):134-48
PMID 24174371
The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation
Buschman MD, Bromann PA, Cejudo-Martin P, Wen F, Pass I, Courtneidge SA
Mol Biol Cell 2009 Mar;20(5):1302-11
PMID 19144821
Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5
Cejudo-Martin P, Yuen A, Vlahovich N, Lock P, Courtneidge SA, Díaz B
PLoS One 2014 Sep 26;9(9):e107674
PMID 25259869
Cell migration and invasion in human disease: the Tks adaptor proteins
Courtneidge SA
Biochem Soc Trans 2012 Feb;40(1):129-32
PMID 22260678
Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation
Crimaldi L, Courtneidge SA, Gimona M
Exp Cell Res 2009 Sep 10;315(15):2581-92
PMID 19540230
Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia
Díaz B, Yuen A, Iizuka S, Higashiyama S, Courtneidge SA
J Cell Biol 2013 Apr 15;201(2):279-92
PMID 23589494
Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation
Diaz B, Shani G, Pass I, Anderson D, Quintavalle M, Courtneidge SA
Sci Signal 2009 Sep 15;2(88):ra53
PMID 19755709
Twist1-induced invadopodia formation promotes tumor metastasis
Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L, Yang J
Cancer Cell 2011 Mar 8;19(3):372-86
PMID 21397860
Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity
Gianni D, Diaz B, Taulet N, Fowler B, Courtneidge SA, Bokoch GM
Sci Signal 2009 Sep 15;2(88):ra54
c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells
Gianni D, Taulet N, DerMardirossian C, Bokoch GM
Mol Biol Cell 2010 Dec;21(23):4287-98
PMID 20943948
N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors
Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J
J Cell Sci 2012 Feb 1;125(Pt 3):724-34
PMID 22389406
Interaction between the ADAM12 and SH3MD1 genes may confer susceptibility to late-onset Alzheimer's disease
Harold D, Jehu L, Turic D, Hollingworth P, Moore P, Summerhayes P, Moskvina V, Foy C, Archer N, Hamilton BA, Lovestone S, Powell J, Brayne C, Rubinsztein DC, Jones L, O'Donovan MC, Owen MJ, Williams J
Am J Med Genet B Neuropsychiatr Genet 2007 Jun 5;144B(4):448-52
PMID 17440933
Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis
Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, Hague MN, Ablack A, Carmine-Simmen K, McPherson VA, Postenka CO, Turley EA, Courtneidge SA, Chambers AF, Lewis JD
Cell Rep 2014 Sep 11;8(5):1558-70
PMID 25176655
Differential Tks5 isoform expression contributes to metastatic invasion of lung adenocarcinoma
Li CM, Chen G, Dayton TL, Kim-Kiselak C, Hoersch S, Whittaker CA, Bronson RT, Beer DG, Winslow MM, Jacks T
Genes Dev 2013 Jul 15;27(14):1557-67
PMID 23873940
Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis
Li CM, Gocheva V, Oudin MJ, Bhutkar A, Wang SY, Date SR, Ng SR, Whittaker CA, Bronson RT, Snyder EL, Gertler FB, Jacks T
Genes Dev 2015 Sep 1;29(17):1850-62
PMID 26341558
A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate
Lock P, Abram CL, Gibson T, Courtneidge SA
EMBO J 1998 Aug 3;17(15):4346-57
PMID 9687503
Amyloid-beta neurotoxicity is mediated by FISH adapter protein and ADAM12 metalloprotease activity
Malinin NL, Wright S, Seubert P, Schenk D, Griswold-Prenner I
Proc Natl Acad Sci U S A 2005 Feb 22;102(8):3058-63
PMID 15710903
The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function
Murphy DA, Courtneidge SA
Nat Rev Mol Cell Biol 2011 Jun 23;12(7):413-26
PMID 21697900
A Src-Tks5 pathway is required for neural crest cell migration during embryonic development
Murphy DA, Diaz B, Bromann PA, Tsai JH, Kawakami Y, Maurer J, Stewart RA, Izpisúa-Belmonte JC, Courtneidge SA
PLoS One 2011;6(7):e22499
PMID 21799874
Sequential signals toward podosome formation in NIH-src cells
Oikawa T, Itoh T, Takenawa T
J Cell Biol 2008 Jul 14;182(1):157-69
PMID 18606851
Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion
Oikawa T, Oyama M, Kozuka-Hata H, Uehara S, Udagawa N, Saya H, Matsuo K
J Cell Biol 2012 May 14;197(4):553-68
PMID 22584907
Invading one step at a time: the role of invadopodia in tumor metastasis
Paz H, Pathak N, Yang J
Oncogene 2014 Aug 14;33(33):4193-202
PMID 24077283
Regulation of ECM degradation and axon guidance by growth cone invadosomes
Santiago-Medina M, Gregus KA, Nichol RH, O'Toole SM, Gomez TM
Development 2015 Feb 1;142(3):486-96
PMID 25564649
The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells
Seals DF, Azucena EF Jr, Pass I, Tesfay L, Gordon R, Woodrow M, Resau JH, Courtneidge SA
Cancer Cell 2005 Feb;7(2):155-65
PMID 15710328
Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells
Sharma VP, Eddy R, Entenberg D, Kai M, Gertler FB, Condeelis J
Curr Biol 2013 Nov 4;23(21):2079-89
PMID 24206842
Prognostic significance of Tks5 expression in gliomas
Stylli SS, I ST, Kaye AH, Lock P
J Clin Neurosci 2012 Mar;19(3):436-42
PMID 22249020
Expression of the adaptor protein Tks5 in human cancer: prognostic potential
Stylli SS, Luwor RB, Kaye AH, I ST, Hovens CM, Lock P
Oncol Rep 2014 Sep;32(3):989-1002
PMID 24993883
Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation
Stylli SS, Stacey TT, Verhagen AM, Xu SS, Pass I, Courtneidge SA, Lock P
J Cell Sci 2009 Aug 1;122(Pt 15):2727-40
PMID 19596797
The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5
Sundararajan V, Gengenbacher N, Stemmler MP, Kleemann JA, Brabletz T, Brabletz S
Oncotarget 2015 Sep 29;6(29):27083-96
PMID 26334100
Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts
Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ
PLoS One 2008;3(11):e3638
PMID 18982058


This paper should be referenced as such :
Carman Man-Chung Li, Tyler Jacks
SH3PXD2A (SH3 and PX domains 2A)
Atlas Genet Cytogenet Oncol Haematol. ;20(6):326-330.
Free journal version : [ pdf ]   [ DOI ]

External links


HGNC (Hugo)SH3PXD2A   23664
Entrez_Gene (NCBI)SH3PXD2A    SH3 and PX domains 2A
AliasesFISH; SH3MD1; TKS5
GeneCards (Weizmann)SH3PXD2A
Ensembl hg19 (Hinxton)ENSG00000107957 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000107957 [Gene_View]  ENSG00000107957 [Sequence]  chr10:103594027-103855406 [Contig_View]  SH3PXD2A [Vega]
ICGC DataPortalENSG00000107957
Genatlas (Paris)SH3PXD2A
SOURCE (Princeton)SH3PXD2A
Genetics Home Reference (NIH)SH3PXD2A
Genomic and cartography
GoldenPath hg38 (UCSC)SH3PXD2A  -     chr10:103594027-103855406 -  10q24.33   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)SH3PXD2A  -     10q24.33   [Description]    (hg19-Feb_2009)
GoldenPathSH3PXD2A - 10q24.33 [CytoView hg19]  SH3PXD2A - 10q24.33 [CytoView hg38]
Genome Data Viewer NCBISH3PXD2A [Mapview hg19]  
Gene and transcription
Genbank (Entrez)AB007878 AK025783 AK056469 AK096575 AK123570
RefSeq transcript (Entrez)NM_001365079 NM_001394015 NM_001394016 NM_001394017 NM_001394018 NM_001394019 NM_001394020 NM_001394021 NM_001394022 NM_001394023 NM_014631
Consensus coding sequences : CCDS (NCBI)SH3PXD2A
Gene ExpressionSH3PXD2A [ NCBI-GEO ]   SH3PXD2A [ EBI - ARRAY_EXPRESS ]   SH3PXD2A [ SEEK ]   SH3PXD2A [ MEM ]
Gene Expression Viewer (FireBrowse)SH3PXD2A [ Firebrowse - Broad ]
GenevisibleExpression of SH3PXD2A in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)9644
GTEX Portal (Tissue expression)SH3PXD2A
Human Protein AtlasENSG00000107957-SH3PXD2A [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ5TCZ1   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ5TCZ1  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ5TCZ1
Domaine pattern : Prosite (Expaxy)PX (PS50195)    SH3 (PS50002)   
Domains : Interpro (EBI)PX_dom    PX_dom_sf    SH3-like_dom_sf    SH3_domain    SH3PXD2_PX    SH3PXD2A    SH3PXD2A_SH3_1    SH3PXD2A_SH3_2    SH3PXD2A_SH3_3    SH3PXD2A_SH3_4    SH3PXD2A_SH3_5   
Domain families : Pfam (Sanger)PX (PF00787)    SH3_1 (PF00018)   
Domain families : Pfam (NCBI)pfam00787    pfam00018   
Domain families : Smart (EMBL)PX (SM00312)  SH3 (SM00326)  
Conserved Domain (NCBI)SH3PXD2A
PDB (RSDB)2DNU    2EGA    2EGC    2EKH   
PDB Europe2DNU    2EGA    2EGC    2EKH   
PDB (PDBSum)2DNU    2EGA    2EGC    2EKH   
PDB (IMB)2DNU    2EGA    2EGC    2EKH   
Structural Biology KnowledgeBase2DNU    2EGA    2EGC    2EKH   
SCOP (Structural Classification of Proteins)2DNU    2EGA    2EGC    2EKH   
CATH (Classification of proteins structures)2DNU    2EGA    2EGC    2EKH   
AlphaFold pdb e-kbQ5TCZ1   
Human Protein Atlas [tissue]ENSG00000107957-SH3PXD2A [tissue]
Protein Interaction databases
IntAct (EBI)Q5TCZ1
Ontologies - Pathways
Ontology : AmiGOin utero embryonic development  protease binding  podosome  protein binding  phosphatidylinositol-4,5-bisphosphate binding  cytoplasm  cytosol  superoxide metabolic process  superoxide metabolic process  superoxide metabolic process  phosphatidylinositol-5-phosphate binding  superoxide-generating NADPH oxidase activator activity  cell junction  extracellular matrix organization  phosphatidylinositol-3-phosphate binding  cell projection  phosphatidylinositol-3,4-bisphosphate binding  molecular adaptor activity  phosphatidylinositol-4-phosphate binding  osteoclast fusion  
Ontology : EGO-EBIin utero embryonic development  protease binding  podosome  protein binding  phosphatidylinositol-4,5-bisphosphate binding  cytoplasm  cytosol  superoxide metabolic process  superoxide metabolic process  superoxide metabolic process  phosphatidylinositol-5-phosphate binding  superoxide-generating NADPH oxidase activator activity  cell junction  extracellular matrix organization  phosphatidylinositol-3-phosphate binding  cell projection  phosphatidylinositol-3,4-bisphosphate binding  molecular adaptor activity  phosphatidylinositol-4-phosphate binding  osteoclast fusion  
REACTOMEQ5TCZ1 [protein]
REACTOME PathwaysR-HSA-8941237 [pathway]   
NDEx NetworkSH3PXD2A
Atlas of Cancer Signalling NetworkSH3PXD2A
Wikipedia pathwaysSH3PXD2A
Orthology - Evolution
GeneTree (enSembl)ENSG00000107957
Phylogenetic Trees/Animal Genes : TreeFamSH3PXD2A
Homologs : HomoloGeneSH3PXD2A
Homology/Alignments : Family Browser (UCSC)SH3PXD2A
Gene fusions - Rearrangements
Fusion : MitelmanSH3PXD2A::OBFC1 [10q24.33/10q24.33]  
Fusion : MitelmanSH3PXD2A::RB1 [10q24.33/13q14.2]  
Fusion : QuiverSH3PXD2A
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerSH3PXD2A [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)SH3PXD2A
Exome Variant ServerSH3PXD2A
GNOMAD BrowserENSG00000107957
Varsome BrowserSH3PXD2A
ACMGSH3PXD2A variants
Genomic Variants (DGV)SH3PXD2A [DGVbeta]
DECIPHERSH3PXD2A [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisSH3PXD2A 
ICGC Data PortalSH3PXD2A 
TCGA Data PortalSH3PXD2A 
Broad Tumor PortalSH3PXD2A
OASIS PortalSH3PXD2A [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICSH3PXD2A  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DSH3PXD2A
Mutations and Diseases : HGMDSH3PXD2A
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
DgiDB (Drug Gene Interaction Database)SH3PXD2A
DoCM (Curated mutations)SH3PXD2A
CIViC (Clinical Interpretations of Variants in Cancer)SH3PXD2A
NCG (London)SH3PXD2A
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry SH3PXD2A
NextProtQ5TCZ1 [Medical]
Target ValidationSH3PXD2A
Huge Navigator SH3PXD2A [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTDSH3PXD2A
Pharm GKB GenePA134956816
Clinical trialSH3PXD2A
DataMed IndexSH3PXD2A
PubMed61 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Oct 8 21:27:54 CEST 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us