TSPY1 (testis specific protein, Y-linked 1)

2013-06-01   Stephanie Schubert 

Hannover Medical School, Institute for Human Genetics, Hannover, Germany

Identity

HGNC
LOCATION
Yp11.2
LOCUSID
ALIAS
CT78,DYS14,TSPY,pJA923

DNA/RNA

Note

Human TSPY was originally identified as the first Y-chromosomal gene, which expression was elusively restricted to the testis (Arnemann et al., 1987). Nowadays it is known that TSPY is predominantly expressed in the testes and to much lesser extent expressed in the native prostate and the human brain (Kido and Lau, 2005; Lau et al., 2003).
The organization of human TSPY on the human Y chromosome as a heterogeneous repetitive gene family with varying copy number ranging from 9-101 among individuals is unusual in the human genome (Nickkholgh et al., 2010; Giachini et al., 2009; Shen et al., 2013). Besides a single separate functional TSPY gene (TSPY3) on Yp are most TSPY copies (TSPY1) embedded in 20.4 kb repeat units of the DYZ5 tandem array (Skaletsky et al., 2003). Especially this ampliconic TSPY1 gene array on Yp11.2 is a hotspot for intrachromosomal recombination likely by unequal sister chromatid exchange (Skaletsky et al., 2003) that leads to differences in copy number among men. It has to be mentioned that the TSPY nomenclature is far from being established right now. Besides the TSPY1 and TSPY3 genes were also TSPY2, TSPY4, TSPY8 and TSPY10 genes and multiple TSPY pseudogenes (TSPYPn) annotated on Yp11.2 on the human Y chromosome (reference NC_00024.9). Controversially, TSPY1 was earlier designated as one out of the multiple TSPY genes within the TSPY tandem array (Bhowmick et al., 2007).
Atlas Image
TSPY gene and TSPY transcripts that were identified in human testes [T] (Schnieders et al., 1998, Dechend et al., 2000; Li et al., 2007), testicular seminoma [TC] (Li et al., 2007) and prostatic adenoma and benign prostatic hyperplasia [P] (Lau et al., 2003) tissues. Exons 1-6 are highlighted as colored boxes and introns 1-5 are shown as grey bars. Small vertical grey bars are showing alternative splice donor and/or splice acceptor sites. 18bp insertion: in frame insertion of 18 nucleotides within exon 1, + combined splice patterns. This figure was originally modified published in Schubert and Schmidtke (2010).

Description

The prototypic human TSPY gene is composed of six exons and five introns and a promoter region of yet unknown length. Functional TSPY genes can differ in sequence within coding and promoter regions of up to 1% (Vogel and Schmidtke, 1998).

Transcription

Besides the TSPY1 main transcript TSPY-L (NM_003308.3), which was originally named as TSPYmajor (Schnieders et al., 1996) or type 1 TSPY transcript (Lau et al., 2003), eleven different transcript isoforms that differ in sequence and in length were detected in the testis, and in prostatic and testicular tumors (Zhang et al., 1992; Dechend et al., 2000; Schnieders et al., 1996; Lau et al., 2003; Li et al., 2007). One of these TSPY1 minor transcripts is the TSPY-S variant (NM_001197242.1) which uses an alternative splice acceptor site 11 bp upstream of the native intron 5/exon 5 border of the main TSPY-L transcript (Zhang et al., 1992). TSPY-S is translated in a shortened distinct peptide (NP_001184171.1) of 294 amino acids with frameshifted ORF at amino acid position 275 in comparison to TSPY-L. The TSPY-L transcript has a length of 1160 bp and encodes for a TSPY-L peptide of 308 amino acids (NP_003299.2).

Pseudogene

Multiple annotated TSPY pseudogenes (TSPYPn) are available on the human Y chromosome. These TSPY pseudogenes can show a nucleotide divergence in coding and promoter regions of up to 10% (Vogel and Schmidtke, 1998).

Proteins

Description

Human TSPY1 encodes the TSPY1 protein. The main protein is named TSPY-L and is composed of 308 amino acids (size 33 kDa). TSPY-L occurs mainly as a phosphoprotein with a predicted size of 38 kDa (Schnieders et al., 1996). TSPY is sharing with its X-encoded homolog TSPYL2 (designated also as TSPX, CDA1, DENTT or NP79), autosomal TSPY-like paralogs and with SET and NAP-1 a highly-conserved type B cyclin binding SET/NAP domain (amino acids residues 121-265 according to Li and Lau, 2008).
For human TSPY the translation elongation factor eEF1A1 has also been identified as binding partner of the SET/NAP domain in a yeast-two-hybrid screen (Kido and Lau, 2008). An interaction of TSPY with eEF1A1 and eEF1A2 was also shown by in vitro GST-pull down assays by Kido and Lau (2008).
An in vitro binding of the SET/NAP domain of TSPY and the calcium/calmodulin-dependent serine protein kinase (CASK), which is among other things essential for synapsis formation and memory, was also demonstrated in transfected COS7 cells (Kido et al., 2011).
Besides the cyclin B, eEF1A1 and CASK interactive SET/NAP domain is TSPY-L harbouring an N-terminus of 120 and a C-terminus of 43 amino acids.
Two putative homodimer forming α-helices (α1, aa 52-95 and α2, aa 105-141) were predicted within the N-terminal region by in silico analysis (Kido and Lau, 2008). It was further shown by co-immunprecipitation of TSPY from transfected COS7 cells that TSPY can form homodimers, which is presumably mediated through the α-helices of its N-terminal region (Kido and Lau, 2008).
The N-terminal region of TSPY is also capable to bind to the androgen receptor (AR) AF-2 region (Akimoto et al., 2010). For rat TSPY it was also shown that the N-terminal region of rat TSPY is preferentially binding to core histones, although a much lower binding affinity for core histones was also observed for the acidic part of the SET/NAP domain of rat TSPY (Kido and Lau, 2006).

Expression

Human TSPY is mainly expressed in testicular germ cells and weakly expressed in epithelial cells of the prostate. However, some TSPY ESTs originated from the medulla of human brains are also available in databases (Kido and Lau, 2005). TSPY is expressed in gonocytes and prespermatogonia of the fetal testis and in prespermatogonia of the neonatal testis (Honecker et al., 2004). Within the adult testis are highest TSPY expression levels observed in spermatogonia and in primary spermatocytes of the preleptotene to zygotene stage of the meiotic prophase I, while expression level decreases gradually during meiosis form primary spermatocytes of the pachytene stage to round spermatids (Lau et al., 2011).

Localisation

TSPY is predominantly localized in the cytoplasm but also to lesser extent present in the nucleus of male germ cells and epithelial cells of the prostate. It is supposed that the phosphorylation status of the CK2 phosphorylation site (T300) at the C-terminus of human TSPY is important for its nucleo-cytoplasmatic shuttling (Krick et al., 2006).

Function

Currently the biological role of TSPY within the testis and in the prostate are unknown but TSPY proposed functions are diverse. Especially the conservation of functional TSPY genes in different mammalian lineages indicates an important biological role of TSPY in spermatogenesis. Expression studies of human TSPY within the human testis suggest that TSPY could act as proliferation factor of testicular germ cells, such as gonocytes, prespermatogonia and spermatogonia in the fetal, neonatal, pubertal and adult testis and could act as a catalyst in meiotic differentiation and division of spermatocytes within the pubertal and adult testis (Schnieders et al., 1996; Honecker et al., 2004; Lau et al., 2011). These proposed functions are founded on the following observations:
- TSPY shares a highly conserved SET/NAP domain with other members of a protein family that was designated as TSPY/TSPY-like/SET/NAP (TTSN)-family (Schnieders et al., 1996; Vogel and Schmidtke, 1998). Besides TSPY itself, are its X-encoded homologue TSPYL2, the oncogene SET (suppressor of variegation, enhancer of zeste and Trithorax), the neucleosome assembly protein-1 (NAP1) and the autosomal encoded paralogs TSPYL1, TSPYL3, TSPYL4, TSPYL5, TSPYL6 members of this protein family. Members of the SET/NAP-protein-family play function in cell cycle regulation, transcription, translation, signal transduction, DNA replication and chromatin condensation (Lau et al., 2009; Lau et al., 2011 and included references).
- Ectopic expression of TSPY in transfected human HeLa and murine NIH3T3 cells stimulates cell growth by promoting the G2/M-phase transition of the cell cycle (Oram et al., 2006). It was later shown in transiently transfected HeLa and HEK293 cells that this effect is mediated by a direct interaction of the SET/NAP domain of TSPY with the activated cyclin B1/CDK complex. TSPY accelerates the G2/M-phase transition of host cells by stimulating the kinase activity of the activated cyclin B1/CDK complex (Li et al., 2008). The co-localization of TSPY and cyclin B1 in spermatogonia and primary spermatocytes suggests a putative interaction of both proteins during spermatogonial renewal and during the prophase I of the first meiotic division (Lau et al., 2011). However, the relevance of TSPYs ability to stimulate the kinase activity of an activated cyclin B1/cdk complex in transiently transfected human HEK293 cells to its in vivo function within the testis is still unclear.
- Kido and Lau (2008) have identified the eucaryotic elongation factor 1 alpha (eEF1A) in a yeast two-hybrid screen as interaction partner for human and rat TSPY. It was shown by in vitro GST pull down assays that eEF1A1 and eEF1A2, which both are essential for the elongation phase of protein translation, can bind to the SET/NAP domain of human TSPY. Kido and Lau (2008) have also demonstrated that ectopic expression of TSPY in HEK293 cells enhances expression of a cotransfected luciferase reporter transcript. Whether this effect is mediated by a synergistically interaction of TSPY and eEF1A in reporter gene transcription and translation is currently unknown. It is also still unclear whether TSPY could affect the expression of specific genes in spermatogonia and spermatocytes by interaction with eEF1A. The co-expression and co-localization of TSPY and eEF1A in spermatogonia and spermatocytes makes an interaction of both proteins in the human testis not unlikely. The findings of the latter study suggest that TSPY and eEF1A could synergistic exert progrowth functions on germ cells by promoting gene expression.
Other TSPY proposed functions are:
- It is also supposed that rat TSPY could affect spermatogenesis by acting as histone chaperone in elongated spermatids during the maturation process when histones are replaced by basic protamines (Kido and Lau, 2006). It was shown by in vitro GST pull down assays that human TSPY and rTSPY can both bind to the core histones H2A, H2B, H3 and H4, respectively (Kido and Lau, 2006). The non overlapping expression pattern of human TSPY and rTSPY in spermatids makes a function of human TSPY as histone chaperone in spermatids rather unlikely.
- TSPY is coexpressed with the androgen receptor in testicular germ cell tumors (seminomas and nonseminomas) and in prostatic tumors (Akimoto et al., 2010). TSPY can trap the androgen-bound androgen receptor in the cytoplasm of TSPY stably expressing NEC8-TSPY cells (a model nonseminoma cell line) and in TSPY endogenously expressing LNCaP cells, thereby repressing AR mediated gene transcription (Akimoto et al., 2010). It is supposed that TSPY represses androgen dependent cell proliferation in TGCTs, presumably by preventing AR nuclear translocation. However TSPY is not coexpressed with the human AR in testicular cells, which exclude such a function in the native testis.
- TSPY and CASK are coexpressed and co-localized in the brains of TSPY transgenic founder mice, carrying a human TSPY 12,5 kb genomic fragment, which includes 7,1 kb TSPY promoter region, a 2,8 kb structural TSPY gene and 2,6 kb 3-region. Whether an in vivo co-localization and interaction of both proteins exist in humans is currently unknown (Kido et al., 2011).

Homology

Especially the SET/NAP domain of TSPY shares high homology to other members of the TTSN-protein family.

Mutations

Note

Due to the multi-copy status of TSPY genes and the presence of multiple TSPY pseudogenes on the Y chromosome no disease associated mutations have been identified so far. Recently, multiple TSPY-variants within the 5-UTR, exon 1 and 3-UTR have been identified in a screening approach of 72 infertile men and 31 fertile men as controls (Svacinova et al., 2011). Out of these were 39 variants in exon 1 elusively restricted to the infertile cohort (Svacinova et al., 2011).

Implicated in

Entity name
Male idiopathic infertility
Note
Four different studies have proven a relation between the TSPY copy number and male idiopathic infertility with different outcome. Vodicka et al. (2007) assessed the relative number of TSPY copies by RQF-PCR in an infertile group (84 cases) and in 40 controls, and found an association of higher number of TSPY copies with impaired sperm production.
Nickkholgh et al. (2010) compared the absolute TSPY copy numbers by quantitative PCR and Southern-Blot analyses in selected cases of 100 men with idiopathic infertility versus 100 normozoospermic controls, and found no association between TSPY copy number and the fertility status. Giacchini et al. (2009) showed that TSPY copy number and sperm count are positively correlated in infertile (n=154) and normozoospermic (n=130) men, respectively, and observed a significantly lower mean TSPY copy number in infertile men compared to fertile controls. Interestingly, a significant difference in mean TSPY copy number among different Y-haplogroups was also observed, which points to the susceptibility of the outcome of TSPY case-control studies to population stratification bias. They estimated a 1.5-fold increased risk of abnormal sperm parameters in individuals with less than 33 TSPY copies. Recently, the TSPY copy number was quantified by quantitative PCR-analyses in a large case-control study in 2272 Han Chinese, composed of 698 normozoospermic controls, 704 men with AZFc-deletions and 870 spermatogenesis impaired non-AZF deleted men (Shen et al., 2013). A significantly higher risk for spermatogenic failure were found for men with TSPY copy numbers ≤20 or ≥ 56 in comparison to individuals with moderate TSPY copies ranging from 21-35. Sperm production in men with 21-55 TSPY copies was significantly higher in comparison to men that harboured less than 21 or more than 55 TSPY copies. The latter study points also to a modulating effect of the TSPY copy number to the spermatogenic status of AFZc-deleted men with gr/gr deletions (Shen et al., 2013). Especially males with gr/gr deletions and TSPY copy number less than 21 seems to have a high risk for spermatogenic failure and reduced sperm numbers. Further studies are indispensable to verify the putative effect of TSPY copy number on male idiopathic infertility, and especially on the phenotypic expression of gr/gr deletion carriers.
Entity name
Gonadoblastoma
Note
TSPY is commonly regarded as the most reliable candidate gene for GBY, the elusive gonadoblastoma locus on the human Y chromosome that fulfills a native function in the testis but predisposes the dysgenetic gonads of 46,XY-sex-revered and intersex individuals for the formation of a gonadoblastoma (Page, 1987; Lau et al., 2011). TSPY abundant expression in germ cells of dysgenetic gonads of sex-reversed humans harbouring at least the GBY critical region (Cools et al., 2006) and in gonadoblastoma (Hildenbrand et al., 1999; Kersemaekers et al., 2005; Cools et al., 2006) depicts TSPY gonadoblastoma predisposing role. Apart from this and TSPY strong expression in the carcinoma-in situ of the testis (Schnieders et al., 1998; Li et al., 2007), in some seminomas (Hersmus et al., 2012) and some non-seminomatous germ cell tumors (Honecker et al., 2006), and some somatic tumors, such as prostatic tumors, melanoma and hepatocellular carcinoma, exist no evidence for an oncogenic role of TSPY in general.

Bibliography

Pubmed IDLast YearTitleAuthors
210416272010Testis-specific protein on Y chromosome (TSPY) represses the activity of the androgen receptor in androgen-dependent testicular germ-cell tumors.Akimoto C et al
17653691991Cloning and sequence analysis of a human Y-chromosome-derived, testicular cDNA, TSPY.Arnemann J et al
171856452007The origin and evolution of human ampliconic gene families and ampliconic structure.Bhowmick BK et al
166088952006Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads.Cools M et al
111738332000TSPY variants in six loci on the human Y chromosome.Dechend F et al
152410142004TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X - implications for Y chromosome evolution.Delbridge ML et al
197733972009TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages.Giachini C et al
229371352012Prevalence of c-KIT mutations in gonadoblastoma and dysgerminomas of patients with disorders of sex development (DSD) and ovarian dysgerminomas.Hersmus R et al
106295671999Detection of TSPY protein in a unilateral microscopic gonadoblastoma of a Turner mosaic patient with a Y-derived marker chromosome.Hildenbrand R et al
162735102006Germ cell lineage differentiation in non-seminomatous germ cell tumours.Honecker F et al
166269322006Tspy is nonfunctional in the Mongolian gerbil but functional in the Syrian hamster.Karwacki V et al
159481182005Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY.Kersemaekers AM et al
186493642008The human Y-encoded testis-specific protein interacts functionally with eukaryotic translation elongation factor eEF1A, a putative oncoprotein.Kido T et al
216217392011Expression of the human TSPY gene in the brains of transgenic mice suggests a potential role of this Y chromosome gene in neural functions.Kido T et al
164265762006CK2-dependent C-terminal phosphorylation at T300 directs the nuclear transport of TSPY protein.Krick R et al
146849912003Expression pattern of a gonadoblastoma candidate gene suggests a role of the Y chromosome in prostate cancer.Lau YF et al
212047512011Role of the Y-located putative gonadoblastoma gene in human spermatogenesis.Lau YF et al
185919332008TSPY and its X-encoded homologue interact with cyclin B but exert contrasting functions on cyclin-dependent kinase 1 activities.Li Y et al
175217022007The Y-encoded TSPY protein: a significant marker potentially plays a role in the pathogenesis of testicular germ cell tumors.Li Y et al
94670171998Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse.Mazeyrat S et al
199175072010Y chromosome TSPY copy numbers and semen quality.Nickkholgh B et al
167620812006TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells.Oram SW et al
35037131987Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads.Page DC et al
89230091996Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues.Schnieders F et al
202373342010Partial rescue of the KIT-deficient testicular phenotype in KitW-v/KitW-v Tg(TSPY) mice.Schöner A et al
233079282013A significant effect of the TSPY1 copy number on spermatogenesis efficiency and the phenotypic expression of the gr/gr deletion.Shen Y et al
128154222003The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes.Skaletsky H et al
222868162011Sequence recombination in exon 1 of the TSPY gene in men with impaired fertility.Svacinova V et al
175091972007TSPY gene copy number as a potential new risk factor for male infertility.Vodicka R et al
95105081998A murine TSPY.Vogel T et al
97306151998Murine and human TSPYL genes: novel members of the TSPY-SET-NAP1L1 family.Vogel T et al
96783601998Structure and function of TSPY, the Y-chromosome gene coding for the "testis-specific protein".Vogel T et al
12845951992Molecular isolation and characterization of an expressed gene from the human Y chromosome.Zhang JS et al

Other Information

Locus ID:

NCBI: 7258
MIM: 480100
HGNC: 12381
Ensembl: ENSG00000258992

Variants:

dbSNP: 7258
ClinVar: 7258
TCGA: ENSG00000258992
COSMIC: TSPY1

RNA/Proteins

Gene IDTranscript IDUniprot
ENSG00000258992ENST00000423647Q01534
ENSG00000258992ENST00000451548Q01534

Expression (GTEx)

0
1
2
3
4
5

Protein levels (Protein atlas)

Not detected
Low
Medium
High

References

Pubmed IDYearTitleCitations
152732832004Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function.34
100908751999Gonadoblastoma, testicular and prostate cancers, and the TSPY gene.29
167620812006TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells.28
167620812006TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells.28
167620812006TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells.28
197733972009TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages.26
197733972009TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages.26
159481182005Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY.20
160350362005A Cre gene directed by a human TSPY promoter is specific for germ cells and neurons.20
164568962006New evidence for the origin of intracranial germ cell tumours from primordial germ cells: expression of pluripotency and cell differentiation markers.19

Citation

Stephanie Schubert

TSPY1 (testis specific protein, Y-linked 1)

Atlas Genet Cytogenet Oncol Haematol. 2013-06-01

Online version: http://atlasgeneticsoncology.org/gene/42718/tspy1