A case of trisomy 8 and loss of the Y-chromosome as secondary aberrations in a ten year old boy with de novo AML FAB M2 and t(16;21)(q24;q22)

Jutta Bradtke, Peter Vorwerk, Jochen Harbott

Clinics
Age and sex: 10 year(s) old male patient.
Previous History: no preleukemia
 no previous malignant disease
 no inborn condition of note
Organomegaly: hepatomegaly; no splenomegaly; no enlarged lymph nodes; no central nervous system involvement

Blood
WBC: 34 x 10^9/l; Hb: 8.2 g/dl; platelets: 57 x 10^9/l; blasts: 92%
Bone marrow: 94%

Cyto pathology classification
Cytology: M2 without Auer rods; Peroxidase (+) esterase (+)
Immunophenotype: CD13+, CD33+
Pathology: -
Electron microscopy: -
Precise diagnosis: ANLL M2

Survival
Date of diagnosis: 06-2007
Treatment: AML BFM Protocol (high risk)
Complete remission was obtained
Treatment related death: -
Relapse: -
Status: Alive 09-2007

Karyotype
Sample: Bone Marrow; culture time: two cultures 48 hours; banding: GTG-Banding
Results: 46,X,-Y,+8,t(16;21)(q24;q22)

Other molecular studies
Technics: FISH evaluation for AML1 rearrangement and trisomy 8 was performed on abnormal metaphases after 48h of cultivation with the LSI AML1/ETO Dual Color Probe (Abbott Molecular/Vysis, Inc.).
Results: ish +8(ETO x 3), der(16)t(16;21)(dimAML1+), der(21)t(16;21)(dimAML1+)
GTG-banded chromosomes which are representing the trisomy 8 and the t(16;21).

DAPI stained and inverted metaphase which shows three signals for ETO (red) and three signals for AML1 (green, one signal splitted).

Comments

The t(16;21)(q24;q22) is a rare aberration in AML with 16 cases described in the Mitelman-database and it is extreme rare in children (only two cases published). Most of these 16 cases are classified to the FAB M2 subtype and a trisomy 8 was seen as a recurrent secondary aberration of t(16;21). Loss of one sex chromosome as a secondary aberration of t(16;21) has not been described yet. This is to our knowledge the first case of an AML with t(16;21)(q24;q22), trisomy 8 and loss of the Y-chromosome. The specific aberration for AML M2 is the t(8;21)(q22;q22), which shows often a loss of one sex chromosome (seen in 50% of the cases) and in 10% a trisomy 8 as secondary aberrations (Huret, 1997). Maybe the t(16;21)(q24;q21) is a rare equivalent of the t(8;21), because 1) the same gene RUNX1, located on (21)(q22), is involved and has similar genes as translocation partners: RUNX1T1 (ETO) in the t(8;21) and CBFA2T3 in the t(16;21); both are coding for ETO proteins, 2) the t(16;21) occurs often in cases with the same AML M2 morphology, and 3) patients with t(16;21) show the same additional chromosome anomalies (-Y/+8). While trisomy 8 is quite frequent in various leukemias the
loss of the Y chromosome is a very specific secondary aberration of the t(8;21). This is the second described case of a de novo AML M2 with t(16;21)(q24;q22) in childhood AML (Jeandidier E et al., 2006).

Internal links
- Atlas Card t(16;21)(q24;q22)
- Case Report t(16;21)(q24;q22) in therapy-related acute myelogenous leukemia arising from myelodysplastic syndrome
- Case Report A new case of t(16;21)(q24;q22) in a secondary AML-M2 following breast cancer therapy

Bibliography

Cytogenetics of childhood acute nonlymphocytic leukemia.
Raimondi SC, Kalwinsky DK, Hayashi Y, Behm FG, Mirro J Jr, Williams DL
PMID 2758395

Secondary acute myeloblastic leukemia with t(16;21) (q24;q22). involving the AML1 gene.
Berger R, Le Coniat M, Romana SP, Jonveaux P
Hematology and cell therapy. 1996 ; 38 (2) : 183-186.
PMID 8932000

AML1/MTG16 fusion gene from a t(16;21)(q24;q22) translocation in treatment-induced leukemia after breast cancer.
La Starza R, Sambani C, Crescenzi B, Matteucci C, Martelli MF, Mecucci C
Haematologica. 2001 ; 86 (2) : 212-213.
PMID 11224496

A pediatric case of secondary leukemia associated with t(16;21)(q24;q22) exhibiting the chimeric AML1-MTG16 gene.
Leukemia & lymphoma. 2002 ; 43 (2) : 415-420.
PMID 11999578

Metaphase fluorescence in situ hybridization (FISH) in the follow-up of 60 patients with haemopoietic malignancies.
Nylund SJ, Ruutu T, Saarinen U, Knuutila S
PMID 7819102

Clonal karyotypic hematopoietic cell abnormalities occurring after autologous bone marrow transplantation for Hodgkin's disease and non-Hodgkin's lymphoma.
Traweek ST, Slovak ML, Nademanee AP, Brynes RK, Niland JC, Forman SJ
Blood. 1994 ; 84 (3) : 957-963.
PMID 8043877

A recurrent translocation, t(16;21)(q24;q22), associated with acute myelogenous leukemia: identification by fluorescence in situ hybridization.
Shimada M, Ohtsuka E, Shimizu T, Matsumoto T, Matsushita K, Tanimoto F, Kajii T
Cancer genetics and cytogenetics. 1997 ; 96 (2) : 102-105.
PMID 9216714

A case of therapy-related acute myeloblastic leukemia with t(16;21)(q24;q22) after chemotherapy with DNA-topoisomerase II inhibitors, etoposide and mitoxantrone, and the alkylating agent, cyclophosphamide.
Takeda K, Shinohara K, Kameda N, Ariyoshi K
PMID 9631585

AML1-MTG16 fusion gene in therapy-related acute leukemia with t(16;21)(q24;q22): two new cases.
Leukemia. 2000;14(9):1704-1705. PMID 10995019

Abnormalities of the long arm of chromosome 21 in 107 patients with hematopoietic disorders: a collaborative retrospective study of the Groupe Francais de Cytogenetique Hematologique.
Cancer genetics and cytogenetics. 2006;166(1):1-11. PMID 16616106

A patient with de novo AML M1 and t(16;21) with karyotype evolution.
Zatkova A, Fonatsch C, Sperr WR, Valent P.
Leukemia research. 2007;31(9):1319-1321. PMID 17126398

t(8;21)(q22;q22).
Huret JL.
Atlas Genet Cytogenet Oncol Haematol.

Contributor(s)
Written 11-2007 Jutta Bradtke, Peter Vorwerk, Jochen Harbott
Citation
This paper should be referenced as such:
URL: http://AtlasGeneticsOncology.org/Reports/1621BradtkeID100031.html
© Atlas of Genetics and Cytogenetics in Oncology and Haematology