The nuclear pore complex becomes alive: new insights into its dynamics and involvement in different cellular processes

Joachim Köser*, Bohumil Maco*, Ueli Aebi, and Birthe Fahrenkrog

M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland

Running title: NPC becomes alive

* authors contributed equally

corresponding author: birthe.fahrenkrog@unibas.ch; phone: +41 61 267 2255; fax: +41 61 267 2109

March 2005



 

Abstract

In this review we summarize the structure and function of the nuclear pore complex (NPC).  Special emphasis is put on recent findings which reveal the NPC as a dynamic structure in the context of cellular events like nucleocytoplasmic transport, cell division and differentiation, stress response and apoptosis. Evidence for the involvement of nucleoporins in transcription and oncogenesis is discussed, and evolutionary strategies developed by viruses to cross the nuclear envelope are presented.  

Keywords: nucleus; nuclear pore complex; nucleocytoplasmic transport; nuclear assembly; apoptosis; rheumatoid arthritis; primary biliary cirrhosis (PBC); systemic lupus erythematosus; cancer

 

 

 

1. Introduction

Eukaryotic cells in interphase are characterized by distinct nuclear and cytoplasmic compartments separated by the nuclear envelope (NE), a double membrane that is continuous with the endoplasmic reticulum (ER). Nuclear pore complexes (NPCs) are large supramolecular assemblies embedded in the NE and they provide the sole gateways for molecular trafficking between the cytoplasm and nucleus of interphase eukaryotic cells. They allow passive diffusion of ions and small molecules, and facilitate receptor-mediated transport of signal bearing cargoes, such as proteins, RNAs and ribonucleoprotein (RNP) particles (Görlich and Kutay, 1999; Conti and Izaurralde, 2001; Macara, 2001; Fried and Kutay, 2003). A consensus model of the 3D architecture of the NPC has evolved from extensive electron microscopy (EM) and tomography studies in both yeast and higher eukaryotes (Unwin and Milligan, 1982; Hinshaw et al., 1992; Akey and Radermacher, 1993; Yang et al., 1998; Stoffler et al., 2003; Beck et al., 2004). Accordingly, the NPC consists of an eightfold symmetric central framework. The cytoplasmic ring moiety of the central framework is decorated with eight cytoplasmic filaments, whereas the nuclear ring moiety is topped with eight tenuous filaments that join distally into a massive distal ring and thereby form a distinct nuclear basket (Fig. 1). The overall 3D model of the NPC is conserved from yeast to higher eukaryotes, except for variations in linear dimensions among species (Fahrenkrog et al., 1998; Cohen et al., 2002; Stoffler et al., 2003).

Figure 1: 3D consensus model of the NPC.

The main structural components of the NPC include the central framework embedded in NE membrane, the cytoplasmic ring moiety and cytoplasmic filaments, the nuclear ring moiety and the nuclear basket. Figure was modelled with a visual programming environment (ViPEr) at the Scripps Research Institute (http://www.scripps.edu).

Reproduced, with permission (http://www.nature.com/nrm), from Fahrenkrog and Aebi (2003).

 

 


2. Nucleoporins: the Molecular Components of the Nuclear Pore Complex

Based on their molecular mass of ~125 MDa (Reichelt et al., 1990) and the high degree of 822 symmetry of their central framework, it is assumed that both vertebrate  and yeast  NPCs are composed of multiple copies of ~30 different proteins, called nucleoporins (Nups) (Panté and Aebi, 1996; Stoffler et al., 1999; Fahrenkrog and Aebi, 2002). Up to date, ~30 yeast (Table 1) and ~26 vertebrate (Table 2) nucleoporins have been identified and characterized (Rout et al., 2000; Cronshaw et al., 2002).

Table 1: Saccharomyces cerevisiae nucleoporins

Name

Homologues

Motifs

Location

Properties and function

 Snl1p (18 kDa)

transmembrane

NE and ER

stabilizing role in NPC structure and function

 Sec13p (32 kDa)

Sec13

WD

cytoplasmic and nuclear periphery of the central pore

member of Nup84 complex; vesicular transport from ER to Golgi

Ylr018p/Pom34p

transmembrane

cytoplasmic and nuclear face of the NPC core

anchors NPC to the NE

 Yrb2p/Nup36p

h RanBP3

FXFG      Ran binding

unknown

Ran binding protein

 Seh1p (39kDa)

Seh1

WD

cytoplasmic and nuclear periphery of the central pore

member of Nup84 complex; vesicular transport from ER to Golgi

 Gle2p (40 kDa)

Sp Rae1p

cytoplasmic and nuclear periphery of the central pore

role in mRNA export

 Rip1p (42 kDa)/      Nup42p

h Rip1/Rab

FG

cytoplasmic filaments; nuclear basket; nucleus

essential for export of heat shock RNA

Nup2 p (78 kDa)

Nup50

FXFG      coiled coil     Ran binding

nuclear; NPC

role in Srp1p/Kap60p export pathway

Nup49p

r Nup58/Nup45        Sp Nup49

GLFG        coiled coil

cytoplasmic and nuclear periphery of the central pore

role in protein import and RNA export

Nup53p

X MP44

FG            coiled coil

cytoplasmic and nuclear face of the NPC core

role in import of ribosomal proteins; phosphorylated during mitosis

Nup57p

r Nup54   Sp Nup57

GLFG        coiled coil

cytoplasmic and nuclear periphery of the central pore

role in protein import and RNA export

Nup59p

X MP44

FG            coiled coil

cytoplasmic and nuclear face of the NPC core

member of Nup170 complex;

Nup60p

FXF        Ran binding

nuclear basket

tethering of Nup2 to the NPC

Gle1p (62 kDa)

h Gle1

NES

cytoplasmic filaments; cytoplasm

role in mRNA export

Npl4 (64 kDa)

degenerated repeat motifs: GSXS, GSSX, GSXF, GFXS

unknown

role in protein import, RNA export and biogenesis

Ndc1 (74 kDa)

Sp Cut11p

transmembrane

NPC; SPB

required for proper SPB duplication; NPC assembly?

Nup82p

Nup88

coiled coil

cytoplasmic periphery of the central pore

docking site for Nsp1-Nup159 complex; role in RNA export

Nup84p a

r Nup107

cytoplasmic filaments and nuclear periphery of the NPC

member of Nup84 complex; role in RNA export

Nup85p

Nup85

cytoplasmic and nuclear periphery of the NPC

member of Nup84 complex

Nsp1p b (86 kDa)

r, h, X Nup62

FXFG        coiled coil

cytoplasmic and nuclear periphery of the central pore; nuclear basket

member of Nsp1 complex; C-terminal domain essential; role in protein import in complex with Nup82, Nic96, Nup159

Nic96p

r, h, X Nup93 Sp Npp106

coiled coil

cytoplasmic and nuclear periphery of the central pore; nuclear basket

anchors Nsp1complex into the NPC; N-terminal domain essential; role in NPC assembly; role in mRNA export

Nup100p

r, h, X Nup98

GLFG

biased towards cytoplasmic face of the NPC

role in nuclear protein import and mRNA export; interaction with Kap95p and Mex67p

Nup116p

r, h, X Nup98

GLFG

biased towards cytoplasmic face of the NPC

C-terminus necessary for targeting and association with the NPC; role in mRNA export; recycling of Kap95p

Nup120p

Nup160

cytoplasmic and nuclear face of the NPC core

member of Nup84 complex; role in mRNA export

Nup1p  (133 kDa)

C-terminus of Nup153

FXFG

nuclear basket

role in nuclear protein import, mRNA export and NPC morphology

Nup133p

Nup133

cytoplasmic and nuclear face of the NPC core

role in mRNA export, and NPC morphology

Nup145p

r, h, X Nup98

GLFG

C-terminus at the cytoplasmic filaments; N-terminus at the nuclear basket

In vivo cleavage; C-terminal domain is part of Nup84 complex and essential for mRNA export and NPC morphology

POM152

transmembrane

cytoplasmic and nuclear face of the NPC core

anchors NPC to the NE

Nup157p

r Nup155,      D Nup154

cytoplasmic and nuclear face of the NPC core

member of Nup170 complex; NPC core protein

Nup159p

Nup214

FG            coiled coil

cytoplasmic periphery of the central pore

in complex with Nsp1p-Nup82p; C-terminus essential; N-terminus involved in mRNA export

Nup170pc

r Nup155

cytoplasmic and nuclear face of the NPC core

member of Nup170 complex; NPC core protein

Nup188p

Nup188

cytoplasmic and nuclear face of the NPC core

member of Nup170 complex; NPC core protein

Nup192p

r, h Nup205

cytoplasmic and nuclear face of the NPC core;  nuclear basket filaments

Necessary for assembly of Nup49p, Nup57p, Nup82p, and Nic96 into the NPC

Mlp1p/Mlp2p

D, X, r, h,  Tpr

coiled coil     P/F-rich region

nuclear basket and intranuclear filaments

C-terminal of Mlp1p responsible for nuclear localization; Mlp1p prevents export of unspliced mRNAs protein import; tethering of telomers to the NPC

aNup84 complex: C-Nup145, Nup120, Nup85, Nup84, Sec13p, Seh1p
bNsp1 complex: Nsp1, Nup49, Nup57, Nic96
cNup170 complex: Nup188, Nup170, Nup157, Nup59

Abbreviations: D, Drosophila melanogaster; h, human; r, rat; Sp, Saccharomyces pombe; SPB, spindle pole body; X, Xenopus

For more details see references: Stoffler et al. (1999); Rout et al. (2000); Fahrenkrog et al. (2001).

 

Table 2: Vertebrate nucleoporins

Name

Homologues

Motifs

Location

Properties and function

Nup37

WD

member of Nup107-160 complex

Seh1

Sc Seh1

WD

cytoplasmic and nuclear periphery of the central pore

member of Nup107-160 complex

Sec13

Sc  Sec13

WD

cytoplasmic and nuclear periphery of the central pore

member of Nup107-160 complex; interacts with Nup96

RAE1

Sc Gle2p

WD

nucleoplasmic face of NPC

in complex with Nup98 contributes to nuclear export of mRNAs

Nup45

Sc Nup49p

FG              coiled coil

cytoplasmic and nuclear periphery of the central pore

generated by alternative splicing of Nup58; member of Nup62 complex;  role in nuclear protein import

Nup50

Sc Nup2

FG, Ran binding

nucleoplasmic face of the NPC

in complex with Nup153

Nup54

 Sc Nup57p

FG, PA        coiled coil

cytoplasmic and nuclear periphery of the central pore

member of Nup62 complex; role in nuclear protein import

ALADIN

WD

cytoplasmic side of the NE (immunofluorescence data)

triple A syndrome

Nup58

Sc Nup49p

FG, PA        coiled coil

cytoplasmic and nuclear periphery of the central pore

member of Nup62 complex; role in nuclear protein import

Nup62a

Sc Nsp1p,                        Hv Nup62

FXFG          coiled coil

cytoplasmic and nuclear periphery of the central pore; nuclear basket

member of Nup62 complex; role in nuclear protein import; PBC autoantibodies, in complex with CAN/Nup214

PBC68

nucleoplasmic face of NPC

colocalizes to mitotic spindle; involved in PBC

Nup85

Sc Nup85

central pore

member of Nup107-160 complex;

Nup88

r Nup84

coiled coil

cytoplasmic face of the NPC

C-terminal domain contains CAN/Nup214 binding site; upregulated in some tumors; in complex with CAN/Nup214

Nup93

Sc Nic96p,              Sp Npp106

coiled coil

nuclear periphery of the central pore; nuclear basket

role in NPC assembly; in complex with Nup205/Nup188 and Nup62 complex

Nup96

Sc C-Nup145p

nucleoplasmic face of the NPC

member of Nup107-160 complex; generated by autoproteolytic in vivo cleavage of a Nup98-Nup96 precursor; in complex with Nup98 and Nup153

Nup98

Sc Nup100p, Nup116p, and N-Nup145p

FXFG, GLFG, FG

cytoplasmic periphery of the central pore; nuclear basket and nucleus

role in export of snRNAs, 5S RNA, rRNA, and mRNA, but not tRNA; role in import and export of HIV proteins; role im AMLs; in complex with RAE1 and Nup7 complex

Nup107b

Sc Nup84p

leucine zipper

cytoplasmic and nuclear periphery of the central pore

member of Nup107-160 complex; in complex with Nup98 and Nup153

POM121

FXFG, transmembrane

NPC core

anchors NPC to the NE; N-terminal domain required for nuclear targeting, N-terminal and transmembrane domain required for NPC targeting; in complex with gp210

Nup133

Sc Nup133

cytoplasmic and nuclear periphery of the central pore

member of Nup107-160 complex; in complex with Nup98 and Nup153

Nup153

Sc Nup1p

FXFG, 4 (in Xenopus 5) Zn-fingers             

nuclear basket

termination site for nuclear protein import; N-terminus contains targeting and assembly information; C-terminus highly mobile; in complex with Nup107-160 complex

Nup155

D Nup154p, Sc Nup157p, and Nup170p

cytoplasmic and nuclear face of the NPC

role in mRNA export (interaction with Gle1p)

Nup160

Sc Nup120

cytoplasmic and nuclear periphery of the central pore

member of Nup107-160 complex; in complex with Nup98 and Nup153

Nup188

Sc Nup188

in complex with Nup205/Nup93

gp210

transmembrane

lumen of the NE

anchors NPC to the NE; related to autoimmune diseases; PCB autoantibodies; in complex with POM121

Nup205

Sc Nup192

leucine zipper

in complex with Nup188/Nup93

CAN/Nup214

Nup159

FXFG, FG   leucine zipper

cytoplasmic periphery of the central pore

role in nuclear protein import, mRNA export and cell cycle; involved in AMLs; in complex with Nup88 and Nup62

Tpr  (265 kDa)

Sc Mlp1p,     Sc Mlp2p

coiled coil, leucine zipper

nuclear basket

C-terminus essential for nuclear import; N-terminus required for NPC association; possible role in mRNA export or recycling of transport factors; appears in oncogenic fusions with the oncogenes met, trk, and raf

RanBP2/Nup358

Ran binding, FXFG, FG,         8 Zn-fingers

cytoplasmic filaments

nucleocytoplsmic transport

aNup62 complex: Nup62, Nup58, Nup54, Nup45
bNup107-160 complex: Nup160, Nup133, Nup107, Nup96, Nup85, Nup43, Nup37, Sec13, Seh1

Abbreviations: D, Drosophila melanogaster; Hv, Hydra vulgaris; r, rat; Sc, Saccharomyces cerevisiae; Sp, Saccaromyces pombe; AMLs, acute myeloid leukemias; PBC, primary biliary cirrhosis

For more details se references: Stoffler et al. (1999); Fahrenkrog and Aebi (2002); Cronshaw et al. (2002).

 

Many nucleoporins contain characteristic distinct domains of phenylalanine-glycine (FG) containing repeats. These repeat motifs are not required for targeting nucleoporins to the NPC but they play an important role in interactions between nucleoporins and soluble transport receptors (Table 1 and 2) (Rexach and Blobel, 1995). Recent experiments analyzing the role of FG repeats for nucleocytoplasmic transport have shown that the asymmetric localized FG repeats are dispensable, whereas certain symmetric ones are crucial for nucleocytoplasmic transport and cell viability (Strawn et al., 2004; Zeitler and Weis, 2004). In vitro pulldown assays employing Xenopus egg extracts, isolated rat liver nuclei or lysates from yeast nuclei demonstrate specific interactions between nucleoporins and the transport factors importin α, importin β and RanGTP (Iovine and Wente, 1997; Shah et al., 1998; Shah and Forbes, 1998; Marelli et al., 1998; Stochaj et al., 1998; Seedorf et al., 1999). FG repeats might function as docking sites for transport receptor molecules which in turn, interact with cargo. Additionally, the FG repeats might not only function as docking sites but also as parking sites to keep receptor-cargo complexes in a waiting position at the NPC for later subsequent passage through the central pore.

Precise localization of the nucleoporins in the NPC is essential for understanding their functions in nucleocytoplasmic transport and in NPC assembly at the molecular level. Immunolocalization of nucleoporins using immunogold EM has shown that most nucleoporins are symmetrically localized at both the cytoplasmic and nuclear periphery of the NPC and only few of them being located asymmetrically to either the cytoplasmic or nuclear periphery in both yeast and vertebrate NPC (Panté et al., 1994; Fahrenkrog et al., 1998; Rout et al., 2000; Fahrenkrog and Aebi, 2002; Cronshaw et al., 2002). Interestingly, many nucleoporins are organized into distinct subcomplexes within the NPC structure (Finlay et al., 1991; Panté et al., 1994; Belgareh et al., 2001; Walther et al., 2003). Some of these subcomplexes like the Nup107-160 complex and the Nup62 complex even stay intact during mitosis and might represent elementar building blocks of the NPC.

Despite the conserved structural features of NPCs among different species as yeast and vertebrates there have been some reports about cell-type specific expression of certain nucleoporins (Wang et al., 1994; Hu and Gerace, 1998; Nothwang et al., 1998; Cai et al., 2002; Coy et al., 2002; Olsson et al., 2004). For example, RanBP2L1, and POMFIL1 represent cell-type specific expressed proteins with homology to the nucleoporins RanBP2/Nup358 and POM121 which are coded by different genes (Wang et al., 1994; Nothwang et al., 1998; Cai et al., 2002; Coy et al., 2002). In contrast, the differentially expressed nucleoporins Nup45 and Nup58, both constituents of the Nup62 NPC subcomplex, seem to be generated by alternative splicing from the same gene (Hu and Gerace, 1998). The most recent report concerns the restricted expression of the transmembrane nucleoporin gp210: the mRNA as well as the expressed protein seem to be specific for cultured embryonic stem cells and certain polarized epithelial cells, whereas no expression could be detected in several cultured cell lines of fibroblastic and epithelial origin (Olsson et al., 2004). This result is of special importance since there seem to be only two transmembrane nucleoporins, gp210 and POM121, to anchor the entire 125 MDa NPC to the nuclear envelope, pointing towards a crucial role for POM121 in the architectural design of this multiprotein assembly.

 

 

3. Nuclear pore complex: static versus dynamic structure

3.1. Nucleoporin domain flexibility and nucleoporin turnover at the NPC

Contrary to the assumption that the NPC is a rather static structure, a number of recent studies have provided evidence that some of the nucleoporins are mobile within the NPC. For example, it has been shown that the vertebrate nucleoporin Nup98, originally localized to the nuclear basket (Radu et al., 1995), can also be found on the cytoplasmic face of the NPC (Griffis et al., 2003). Nup98 can dynamically associate with the nuclear pore and shuttlebetween the NPC and intranuclear bodies and additionally between the nucleus and the cytoplasm in a transcription-dependent manner (Zolotukhin and Felber, 1999; Griffis et al., 2002 and 2004). Because Nup98 plays a role in RNA export (Powers et al., 1997), its mobility proposes that Nup98 might associate with RNA close to its transcription site and then further accompany the processed RNA through the NPC into the cytoplasm.

Nup153 plays a role in the import of proteins into the nucleus as well as in the export of RNAs and proteins into the cytoplasm (Bastos et al., 1996; Shah and Forbes, 1998). Nup153 associated with export cargo shuttles between the nuclear and cytoplasmic faces of the NPC (Nakielny et al., 1999). Initially the vertebrate Nup153 had been localized to the distal ring of the nuclear basket (Panté et al., 1994) and close to or at the nuclear ring of the NPC (Walther et al., 2001). Immunogold EM with domain-specific antibodies against Nup153, in combination with recombinantly expressed epitope-tagged Nup153 in the Xenopus oocytes, has revealed a domain-specific topology within the NPC (Fahrenkrog et al., 2002). Nup153 seems to be anchored through its N-terminal domain to the nuclear ring moiety and its central Zn-finger domain to the distal ring of the NPC. By contrast, the C-terminal domain which harbors ~40 FG repeats (about 700 amino acids), appears to be highly mobile, as it has been localized throughout the nuclear basket and even at the cytoplasmic periphery of the central pore of the NPC (Fig. 2; Fahrenkrog et al. (2002 and 2004); Fahrenkrog and Aebi (2003)). In their native state FG-repeats are unfolded and highly unstructured (Bayliss et al., 2000; Allen et al., 2002; Denning et al., 2002 and 2003) so that the C-terminal domain of Nup153 could extend up to ~200 nm if completely stretched out, meaning that the C-terminal domain can reach all the way from the distal ring of the nuclear basket through the central pore into the cytoplasmic periphery of the NPC. This high mobility and structural flexibility of the FG repeats which act as binding/docking sites for cargo complexes might significantly increase the efficiency of cargo translocation through the NPC.

Figure 2: Localization of the N-terminal, Zn-finger, and C-terminal domain of Nup153 in the 3D architecture of the NPC.

Isolated Xenopus nuclei were preimmunolabeled with the respective anti-Nup153-domain antibody directly conjugated to 8-nm colloidal gold and prepared for EM by Epon embedding and thin-sectioning (a) and by quick-freeze/freeze-drying/rotary metal-shadowing (b).

(a) Shown are a crosssectioned NE stretch with labeled NPCs, together with a gallery of selected examples of gold-labeled NPC in cross sections. c, cytoplasm; n, nucleus. Scale bars: 100 nm

(b) Stereo images of selected examples of the nuclear face of Xenopus oocyte NPCs labeled with colloidal gold-tagged domain-specific anti-Nup153 antibodies. Scale bars: 50 nm.

(c) Schematic representation of the epitope distribution using domain-specific antibodies against Nup153 and epitope-tagged His–Nup153–myc that had been incorporated into Xenopus NPCs. The N-terminal (red) and Zn-finger (blue) domains of Nup153 have a stationary location at the nuclear ring moiety and the distal ring, respectively. The C-terminal, FG-repeat domain (yellow) of Nup153 is highly flexible and mobile and can be mapped to the nuclear ring moiety (left), the distal ring (middle) and even the cytoplasmic periphery (right) of the central pore.

“Part a and b was modified and reprinted from J. Struct. Biol. 140, Fahrenkrog et al.: Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex, 254-267, © (2002), with permission from Elsevier” and part c reproduced, with permission (http://www.nature.com/nrm), from Fahrenkrog and Aebi (2003).

 

In addition to this structural flexibility, the association of Nup153 with the NPC exhibits remarkable dynamics: fluorescence recovery after photobleaching (FRAP) experiments have demonstrated that on average Nup153 stays associated with the NPC for no longer than about 40 seconds (Daigle et al., 2001; Griffis et al., 2004; for an overview of the turn over times of individual Nups at the NPC see Rabut et al., 2004a). This is interesting since Nup153 has been documented to be crucial for the formation of structurally intact NPCs. If nuclear envelopes are assembled in vitro from meiotic Xenopus laevis egg extracts depletion of Nup153 from this extract abolishes the incorporation of Tpr, Nup93 and Nup98 into the NPCs (Walther et al., 2001). In an attempt to combine these two findings into a model, two distinct Nup153 pools have been proposed to co-exist at the NPC: a stably associated one which has an architectural function, and a dynamic one exhibiting a high turnover rate (Griffis et al., 2004). Further investigations revealed that similar to Nup98, the mobility of Nup153 is also governed by transcriptional activity, in a way that transcription decreases the dissociation rate from the NPC by a factor of 10 so that  a considerable amount of either protein does not exchange any more, i.e. stably associated with the NPC (Griffis et al., 2004). Dissection of Nup98 and Nup153 demonstrated that RNA polymerase I and RNA polymerase II exert distinct effects on the mobility of these two nucleoporins via distinct domains within the two proteins. As might be expected, these domains are the respective NPC interacting domains that have been described previously (Griffis et al., 2004). However, as yet nothing is known about the mediators of this transcription-dependent mobility nor about the exact molecular modifications of Nup98 and Nup153 that are responsible for their mobile behaviour.

 

3.2. Mitosis, cellular stress and apoptosis    

Another aspect of NPC dynamics is revealed by the fact that the NE of higher eukaryotes disintegrates and NPCs disassemble into distinct subcomplexes during mitosis. Although the functional significance of this mitotic disassembly of NPCs is not known, the molecular mechanism leading to this phenomenon appears to be governed by the phosphorylation/dephosphorylation of nucleoporins as has been shown for the transmembrane nucleoporin gp210, as well as for Nup62, Nup153, CAN/Nup214 and RanBP2/Nup358 (Macaulay et al., 1995; Favreau et al., 1996). Examples of nucleoporin subcomplexes that stay intact during mitosis are the Nup107-160 subcomplex, the Nup62 complex, and the CAN/Nup88 subcomplex (Macaulay et al., 1995; Bodoor et al., 1999; Matsuoka et al., 1999; Belgareh et al., 2001). Towards the end of anaphase, NPCs sequentially reassemble around chromatin, and while one would expect this process to be initiated by transmembrane nucleoporins, there are also indications that the association of the Nup107-160 complex with chromatin might be the first step in the reassembly of the NPC after mitosis (Fig. 3; Walther et al. (2003); see also Bodoor et al. (1999)). In the near future the use of defined biochemical fractions or even recombinantly expressed nucleoporins in combination with in vitro assembly reactions and ultrastructural analysis by TEM and SEM will yield further insights into the distinct assembly steps that eventually yield functional NPCs (Finlay et al., 1991; Walther et al., 2001, 2002 and 2003; Liu et al., 2003).

Late Anaphase

Telophase

Telo/G1

Nup153

Nup62 complex

CAN/Nup214

gp210

Nup107-160 complex

Nup84

Tpr

Pom121

Figure 3: Schematic representation of the appearance of nucleoporins at the nuclear periphery towards the end of mitosis.

The diagram summarizes results from immunofluorescence staining and GFP-labeling experiments. (accoding to Bodoor et al., 1999; Daigle et al., 2001; Walther et al., 2003). The Nup62 complex consists of the nucleoporins Nup62, Nup58, Nup54 and Nup45 with cell type specific variations (Hu et al., 1996). The Nup107-160 complex is a huge NPC subcomplex which accounts for nearly one third of the NPCs total mass and is assembled from at least nine different proteins Nup160 (hNup120), Nup133, Nup107, Nup96, Nup85 (Nup75), Nup43, Nup37, Seh1 and Sec13 (Loïodice et al., 2004). 

 

In addition to this reassembly after mitosis, a second mechanism for the de novo formation of NPCs in pre-existing nuclear membranes must take place in lower eukaryotes that go through closed mitosis and therefore never disassemble their NEs. Furthermore, morphometric analysis and FRAP experiments on cells cultured from higher eukaryotes demonstrate that NPCs can also assemble into preformed NEs (Maul et al., 1972; Winey et al., 1997; Daigle et al., 2001). Hence, here we have the interesting situation that two distinct molecular events lead to the formation the same large supramolecular assembly (see also Rabut et al., 2004b). Finally, it should be mentioned that NPCs and nucleoporins might play a more active role in the progression of mitosis than believed earlier. To this end, it has been shown that the giant nucleoporin RanBP2/Nup358 plays an important role in mitotic progression and that the RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions during mitosis (Salina et al., 2003; Joseph et al., 2004). Moreover, the Nup107-160 complex localizes in part to kinetochores during mitosis, and depletion of some members of the homologous complexes in yeast and C. elegans leads to defects in cell division (Galy et al., 2003; Baï et al., 2004; Loïodice et al., 2004).

As mentioned above, yeasts and other lower eukaryotes undergo a closed mitosis so that their NEs and NPCs stay intact during this process. Recently however, it could be shown that even in these cells NPCs exhibit cell cycle-dependent dynamics. For example, the yeast nucleoporin Nup53p is associated with Nup170p during interphase but following changes at the onset of mitosis it becomes associated with another nucleoporin, Nic96p (Makhnevych et al., 2003). This change presumably leads to the exposure of a binding site for the transport factor Kap121p, which after association with Nic96p, prematurely releases its cargo and thereby prevents efficient nuclear import. Hence, this is a good example how physiological changes in nuclear transport activity can be regulated at the level of NPC architecture. Stress-induced structural reorganization of NPCs in yeast cells and the proteolytic breakdown of certain nucleoporins during apoptosis in higher eukaryotes are further examples of dynamic NPC modifications (Ferrando-May et al., 2001; Shulga and Goldfarb, 2003; Kihlmark et al., 2004; Loïodice et al., 2004). In yeast, for example, an increase in NPC permeability is observed under certain stress situations such as high concentrations of aliphatic alcohols, the presence of deoxyglucose, or during chilling of the yeast cultures (Shulga and Goldfarb, 2003). If yeast cells depleted of the nucleoporin Nup170p are treated with increasing concentrations of certain alcohols, dissociation of several other nucleoporins, both centrally and peripherally located ones, is observed. Whilst no dissociation of any nucleoporin was observed in wild-type cells, the above mentioned results still may be taken as an indicator for rearrangements occurring in NPC architecture following stress treatment of the yeast cells (Shulga and Goldfarb, 2003).

One hallmark of apoptotic cells is the condensation of their chromatin followed by the fragmentation of their DNA. Recent studies investigated the question of a possible link between these apoptotic features and changes in the structure and function of NPCs (Ferrando-May et al., 2001; Kihlmark et al., 2004; Loïodice et al., 2004). During apoptosis nucleoporins are sequentially cleaved, amongst the first ones being the transmembrane nucleoporin POM121 and RanBP2/Nup358, followed by Nup153, Nup62 and the NE-associated lamins. Concomitant with these later steps clustering of the NPCs is observed, while an increased permeability of the nucleus, the redistribution of nuclear transport factors and the nuclear accumulation of mRNAs are hallmarks of earlier stages of apoptosis (Ferrando-May et al., 2001; Kihlmark et al., 2004; Loïodice et al., 2004). To date, the debate is still on whether these observed changes in NPC architecture and nuclear transport are causally linked to the later apoptotic program occurring in the nucleus.

 

 

4. Nucleocytoplasmic transport

Whereas ions and small molecules move in and out of the nucleus by passive diffusion, transport of proteins, RNAs, ribonucleoprotein  particles (RNPs), and ribosomal subunits is an energy-dependent and receptor-mediated process. Because many excellent reviews about nucleocytoplasmic transport have been published in the last few years (c.f. Corbett and Silver, 1997; Mattaj and Englmeier, 1998; Görlich and Kutay, 1999; Kaffman and O'Shea, 1999; Conti and Izaurralde, 2001; Komeili and O'Shea, 2001; Macara, 2001; Weis, 2002; Quimby and Dasso, 2003; Fried and Kutay, 2003; Johnson et al., 2004; Xu and Massagué, 2004), we describe here only the best characterized classical receptor-mediated nucleocytoplasmic transport (Fig. 4a). Accordingly, cargo to be transported in or out of the nucleus harbors a nuclear localization signal (NLS) for nuclear import or a nuclear export signal (NES) for nuclear export. NLS and NES are recognized by soluble transport receptors known as importins and exportins, also called karyopherins. These receptors facilitate transport through the NPC by interaction with FG repeats that many nucleoporins harbor. The key regulator of the directionality of nucleocytoplasmic transport is Ran, a member of the Ras-related GTPase superfamily, by switching between its GDP- and GTP-bound form. The nucleotide exchange factor, RanGEF (or RCCI) is bound to DNA and facilitates RanGTP formation in the nucleus, whereas the GTPase activating protein, RanGAP, that is excluded from the nucleus, assures depletion of the cytoplasm of RanGTP in combination with Ran binding protein RanBP1 and RanBP2. Hence, interaction of Ran with its compartmentalized regulatory proteins RanGEF and RanGAP generates a gradient across the NE with a high RanGTP concentration in the nucleus and a low level in the cytoplasm, and vice versa for RanGDP (Fig. 4b).

Figure 4: Scheme of import (left) and export (right) of proteins (a) and control of the nucleocytoplasmic transport by Ran (b).

(a) In the cytoplasm an importin binds to cargo molecules containing a nuclear localization signal and mediate interactions with the NPC to translocate the complex into the nucleus. Nuclear RanGTP binds to the importin and induces cargo release from the complex. The importin–RanGTP complex is then recycled to the cytoplasm, where RanGTP is displaced from the importin by RanBP1 and/or RanBP2 and subsequently hydrolyzed by RanGAP. In the case of export, cargo with a nuclear export signal binds to an exportin induced by RanGTP in the nucleus and the trimeric complex is then translocated through the NPC to the cytoplasm, where RanGTP is removed from the complex by GTP hydrolysis and the exportin dissociates from the cargo. The exportin recycles back to the nucleus and is ready for the next round of the export cycle.

(b) Directionality of the nucleocytoplasmic transport by the RanGTPase system. Chromatin-bound RCC1 is the nucleotide exchange factor for Ran (RanGEF) and promotes exchange from RanGDP to RanGTP. This results in a high concentration of RanGTP in the nucleus. After translocation of importin-RanGTP complex back to the cytoplasm, RanGTP becomes hydrolyzed by cooperation of RanGTP-binding proteins (RanBP1 and RanBP2) and Ran GTPase-activating protein (RanGAP). This prevents the accumulation of RanGTP and results in its low concentration in the cytoplasm.

 

 

5. NPCs and diseases

NPCs via the nucleoporins have been implicated in several malignancies such as leukemias and others cancers, as well as in certain autoimmune diseases. Furthermore, as gateways between the cytoplasm and the nucleus they also play a pivotal role in viral infections.

Several autoimmune diseases are caused by autoantibodies recognizing nuclear antigens resulting in such divers illnesses as systemic lupus erythematosus, rheumatoid arthritis and primary biliary cirrhosis (PBC). Anti-NPC autoantibodies identified so far react with the nucleoporins Nup62, Nup153, Tpr, Nup358/RanBP2 and the transmembrane nucleoporin gp210 (reviewed in Nesher et al., 2001; Enarson et al., 2004). The epitopes of several of these antibodies have been mapped but the exact mode of action is unknown. Often, these anti-nucleoporin antibodies co-exist with other autoantibodies so that their relevance for disease progression is unclear. Interestingly, anti-gp210 autoantibodies are often found in PBC which are negative for anti-mitochondrial antibodies which gives them a potential diagnostic relevance. In addition, these antibodies are often associated with more severe forms of the disease thus also being a possible prognostic marker.

Nucleoporins are involved in several cases of acute myeloid leukemia and a few other hematological malignancies as well as rare cases of other tumors (Table 3) (Cronshaw and Matunis, 2004). For Nup88, its overexpression is associated with malignant tumors (Gould et al., 2000 and 2002; Emterling et al., 2003; Agudo et al., 2004), whereas in most other cases the role of Nups in tumorigenesis stems from chromosomal rearrangements that result in oncogenic fusion proteins. With the exception of the RanBP2/Nup358-ALK fusion protein which localizes to the NPC, in all other known examples the oncogenic fusion protein does not involve the NPC-interacting domain(s) of the nucleoporin and thus is no longer associated with the NPC. The most common oncogenic fusions involve a segment of the gene encoding the FG-repeat domain of the nucleoporin Nup98 which, in turn, becomes linked to genes of the homeobox family of transcription factors. It was found that the Nup98 derived FG-repeat segments of the resulting oncogene interact with the transcriptional coactivators CBP (CREB binding protein) and p300 thereby leading to increased gene transcription (Kasper et al., 1999). Interestingly, FG-repeat segments of two other nucleoporins, Nup153 and CAN/Nup214, could substitute for the Nup98 segment in the oncogenic fusion protein (Kasper et al., 1999). It will be interesting to see if there is a link between this observed transactivation activity and the previously mentioned transcription-dependent mobility of Nup98 within the nucleus and at the NPC. Similarly, leukemias involving CAN/Nup214 chromosomal translocations, the FG-repeat domain of this nucleoporin gets fused to the DNA-binding proteins SET and DEK (von Lindern et al., 1992a and 1992b). In the case of chromosomal rearrangements involving the nucleoporin Tpr, the N-terminal coiled-coil domain of this protein is fused to the protein kinases MET, RAF and TRK and thereby yielding oncogenic dimerization of these kinases (Hays and Watowich, 2003).

Table 3: Oncogenic nucleoporin chromosal rearrangements

Rearrangement

Nucleoporin/partner gene

Partner gene features

Disease

t(7;11)(p15;p15)

NUP98/HOXA9

Homeodomain

AML, CML, MDS, MDS/AML

t(2;11)(q31;p15)

NUP98/HOXD13

Homeodomain

AML, MDS/AML

t(1;11)(q23;p15)

NUP98/PMX1

Homeodomain

MDS/AML

t(7;11)(p15;p15)

NUP98/HOXA11

Homeodomain

CML, AML

t(11;12)(p15;q13)

NUP98/HOXC11

Homeodomain

AML

t(7;11)(p15;p15)

NUP98/HOXA13

Homeodomain

AML

t(2;11)(q31;p15)

NUP98/HOXD11

Homeodomain

AML

t(11;12)(p15;q13)

NUP98/HOXC13

Homeodomain

AML

inv11(p15;q22)

NUP98/DDX10

RNA helicase

AML, MDS/AML

t(11;20)(p15;q11)

NUP98/TOP1

DNA topoisomerase

AML, MDS/AML

t(4;11)(q21;p15)

NUP98/RAP1GDS1

Nucleotide exchange factor

T-ALL

t(9;11)(p22;p15)

NUP98/LEDGF

Transcription factors

AML

t(5;11)(q35;p15)

NUP98/NSD1

SET domain

AML

t(8;11)(p11.2;p15)

NUP98/NSD3

SET domain

AML

t(6;9)(p23;q34)

NUP214/DEK

DNA binding

AML, MDS

t(9;9)(q34;q34)

NUP214/SET

Nuclear, DNA associated (?)

AML

t(1;7)(q25;q21-31)

TPR/MET

Protein kinase

Osteosarcoma

Tpr/RAF

TPR/RAF

Protein kinase

Adenocarcinoma, fibroblastoma

Inv(1q)

TPR/TRK

Protein kinase

Papillary thyroid carcinoma

t(2;2)(p23;q13)

NUP358/ALK

Protein kinase

IMT

Summary of oncogenic chromosomal rearrangements involving nucleoporin genes. Given are the involved nucleoporin genes and the fusion partner as well as its function and the resulting disease. Most known examples of chromosomal rearrangements involve the nucleoporin Nup98, others the nucleoporins CAN/Nup214, Tpr and RanBP2/Nup358. For references on the individual oncogenes see Cronshaw and Matunis (2004).

Abbreviations: AML, acute myeloid leukemia; CML, chronic myeloid leukemia; IMT, inflammatory myofibroblastic tumor; MDS, myelodysplastic syndrome; SET,Su(var)3-9, enhancer-of-zeste, trithorax; T-ALL, T-cell acute lymphoblastic leukemia.

“Reprinted from Trends Endocrinol. Metab. 15, Cronshaw and Matunis: The nuclear pore complex: disease associations and functional correlations, 34-39, © (2004), with permission from Elsevier”

Significant progress has been achieved in recent years in the elucidation of the mechanisms that viruses use to deliver their genetic material to the nucleus for replication (Fig. 5; reviewed in Greber and Fassati (2003) and Gustin (2003)). After fusion at the plasma membrane or endocytotic uptake the virus particles are in the cytoplasm where they encounter different fates. The problem for entry of the genetic material into the nuclear compartment is the limited diameter of the NPC. Recent experiments employing protein covered colloidal gold particles showed that objects up to 39 nm diameter are able to travers the NPC (Panté and Kann, 2002). Thus smaller viruses like the parvovirus MVM (minute virus of mouse, 25 nm capsid diameter) or HBV (hepatitis B virus, 32-36 nm capsid diameter) are able to cross the NPC without the need for capsid disassembly. In vivo in the case of HBV, however, passage through the NPC is facilitated by the phosphorylation of HBV capsids during maturation which makes nuclear localization signals accessible for the nuclear transport receptors importin-α and -β (Rabe et al., 2003). After passage through the central pore of the NPC virus particles then reach the nuclear basket where immature capsids are apparently trapped, whereas capsid protein and DNA from matured viruses are released into the nucleoplasm (Fig. 5a and 6; Rabe et al. (2003)).

In contrast to the situation for HBV, herpes simplex virus (HSV, 125 nm capsid diameter) or adenovirus particles (90 nm diameter) in the cytoplasm are too large to travers the NPC. In a first step these virus particles dock at the cytoplasmic side of the NPC. This docking of HSV particles at the NPC is dependent on the presence of importin-β, whereas adenovirus capsids directly associate with the cytoplasmically localized nucleoporin CAN/Nup214 (Wisnivesky et al., 1999; Ojala et al., 2000; Trotman et al., 2001). HSV then releases its DNA through the NPC into the nucleoplasm, whereas adenovirus particles first trap cytosolic factors like Hsc70, together with histone H1 and transport factors which are necessary for the subsequent capsid disassembly prior to viral DNA-translocation into the nucleus (Fig. 5b and c; Trotman et al. (2001)).

Figure 5: Schematic representation of different strategies for nuclear import of viral genomes.

Cytosolic capsids mediate the nuclear import of the viral genomes by at least three different mechanisms: (a) importin α- and β-mediated nuclear import of whole capsids; (b) importin β- mediated docking at the NPC and DNA injection into the nucleus, and (c) direct docking and disassembly at the NPC.

(a) Parvoviruses and HBV have a diameter close to the physical opening of the central pore of the NPC. In the cytoplasm, capsids undergo conformational changes leading to exposure of the NLSs and subsequent interaction with importins. The small capsid size allows the translocation of whole viral capsids through the NPC into the nucleus where the capsids are disassembled by a still unknown mechanism.

(b) Tegument-free capsid of the HSV docks at cytoplasmic filaments of the NPC via importin β. Capsids are not completely disassembled, but partially opened and the linear double-strand DNA genome is injected to the nucleus.

(c) Partially uncoated and fiberless capsids of adenoviruses are delivered to the NPC where they directly dock to the FG repeats of Nup214/CAN at the cytoplasmic filaments of the NPC. Subsequently series of disassembly factors are activated which facilitate capsid disassembly and are required for import of the viral DNA-protein core.

 

Figure 6: Maturation-dependent nuclear entry of HBV capsids.

(a) Localization of hepatitis B capsids in digitonin-permeabilized HuH-7cells by confocal laser scanning microscopy after immunofluorescence labeling. Capsids (green, Left) and NPCs (red, Center) were stained by indirect immunofluorescence. Merged images are shown in the last column (Right). Recombinant capsids, devoid of viral polymerase (P-C) do not bind to cellular structures, immature capsids (ImmatC) show nuclear binding, whereas mature capsids (MatC) generate intranuclear capsids. Scale bar: 10 µm.

(b) Views of nuclear envelope cross sections with adjacent cytoplasm (c) and nucleoplasm (n) from a Xenopus laevis oocyte that has been microinjected with ImmatC. Arrowheads point to capsids associated with the nuclear face of the NPC. Scale bar: 100 nm.

“Fig was modified and reprinted from Proc. Natl. Acad. Sci. U.S.A. 100, Rabe et al.: Nuclear import of hepatitis B virus capsids and release of the viral genome, 9849-9854, © (2003), with permission from National Academy of Sciences, U.S.A."

 

Certain RNA viruses like picornaviruses (e.g. poliovirus or rhinovirus) and rhabdoviruses replicate in the cytoplasm of host cells and thus do not have to cross the NE. However also in cells infected with these viruses, NPC structure and nucleocytplasmic transport are often severely disturbed (Gustin, 2003). It has been shown that the infection of cells with polioviruses or rhinoviruses results in the cytoplasmic accumulation of certain nuclear proteins like La, Sam68 or nucleolin which then interact with the viral RNA and might aid in their replication. This is achieved by inhibiting active nucleocytoplasmic transport via the proteolytic degradation of nucleoporins like Nup62 and CAN/Nup214 (and possibly others as well) (Gustin and Sarnow, 2001 and 2002). Another strategy is used by the vesicular stomatitis virus (VSV). Its most abundant virion component, the M protein, causes cell rounding, inhibits transcription and also blocks nuclear export of U snRNAs, rRNAs and mRNAs as well as snRNP and classical nuclear import. As one cellular protein interacting with M protein the nucleoporin Nup98 could be identified which binds transport receptors and has been shown to be crucial for nuclear export of mRNAs (von Kobbe et al., 2000). Interestingly during antiviral response via interferon signaling Nup98 gets upregulated and this upregulation releases the M protein induced mRNA export block (Enninga et al., 2002).

 

 

6. Nucleoporins and transcriptional control

Already by 1985 a “gene-gating” hypothesis was proposed (Blobel, 1985) suggesting an interaction of the NPC with genes as a means of transcriptional regulation. In recent years experimental evidence for such interactions arised from studies in yeast. In this context, the interaction of telomeric chromatin with the NPC, especially Nup145C, Nup60p, Mlp1p and Mlp2p result in transcriptional silencing (Feuerbach et al., 2002), whereas tethering of chromosomes to the nucleoporin Nup2p lead to a block in heterochromatin spreading, i.e. Nup2p exhibits chromatin boundary activity, thus leading to gene activation (Ishii et al., 2002). In the most recent report genes interacting with several nucleoporins and transport factors were identified (Casolari et al., 2004). This was achieved by chromatin immunoprecipitation using certain nucleoporins and transport factors as baits and analysis of the precipitated gene sequences by microarray hybridization analysis (Casolari et al., 2004). It turned out that more frequently transcribed genes were clearly associated with certain nucleoporins (amongst others Mlp1p, Mlp2p, Nup2p and Nup60p) and transport factors, whereas the RanGEF Prp20p was found to interact mainly with infrequently transcribed genes (Fig. 7). Future in vivo chromosomal painting and nucleoporin labeling studies together with high resolution light microscopy under gene inducing conditions will clarify the significance of these observations.

In this review we have described the involvement of the NPC in various physiological events and hope to leave the reader with a dynamic impression of that complex and fascinating structure.

Figure 7: Correlation between genome occupancy and transcriptional frequency.

The interaction of several nucleoporins and transport factors with genomic sequences was analyzed by chromatin immunoprecipitation followed by microarray-anlysis of the bound sequences in comparison to whole-cell extract signals. Each blue diamond indicates an individual spot on the microarray (i.e. an individual gene) where the position on the  x-axis is determined by the ratio (bound copies of a gene):(copies of a gene in the whole cell culture extract) and the position on the y-axis gives the experimentally determined transcriptional frequency for that gene (see Damelin and Silver (2002), Casolari et al. (2004) and references therein). (a) diamonds represent individual genes interacting with Nic96p whereas the the coloured curves give the overall binding trends for the indicated nucleoporins and transport factors. (b) diamonds represent individual genes interacting with Nup100p whereas the the coloured curves give the overall trends for the indicated nucleoporins. (c) diamonds represent individual genes interacting with the RanGDP exchange factor Prp20, the general trend is represented by the purple curve. 

“Fig was modified and reprinted from Cell 117, Casolari et al.: Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization, 427-439, © (2004), with permission from Elsevier”

 



Acknowledgements:

This work was supported by the Human Frontier Science Program (U.A), by the Swiss National Science Foundation (B.F.), and by the National Center of Competence in Research (NCCR) program “Nanoscale Science” (UA). Additional funds were provided by the Maurice E. Müller Foundation and by the Kanton Basel Stadt.

Bibliography

Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer.
Agudo D, Gómez-Esquer F, Martínez-Arribas F, Nez-Villar MJ, Poll´n M, Schneider J
International journal of cancer. Journal international du cancer. 2004 ; 109 (5) : 717-720.
PMID 14999780
 
Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy.
Akey CW, Radermacher M
The Journal of cell biology. 1993 ; 122 (1) : 1-19.
PMID 8314837
 
Deciphering networks of protein interactions at the nuclear pore complex.
Allen NP, Patel SS, Huang L, Chalkley RJ, Burlingame A, Lutzmann M, Hurt EC, Rexach M
Molecular & cellular proteomics : MCP. 2002 ; 1 (12) : 930-946.
PMID 12543930
 
The fission yeast Nup107-120 complex functionally interacts with the small GTPase Ran/Spi1 and is required for mRNA export, nuclear pore distribution, and proper cell division.
Baï SW, Rouquette J, Umeda M, Faigle W, Loew D, Sazer S, Doye V
Molecular and cellular biology. 2004 ; 24 (14) : 6379-6392.
PMID 15226438
 
Targeting and function in mRNA export of nuclear pore complex protein Nup153.
Bastos R, Lin A, Enarson M, Burke B
The Journal of cell biology. 1996 ; 134 (5) : 1141-1156.
PMID 8794857
 
Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking.
Bayliss R, Littlewood T, Stewart M
Cell. 2000 ; 102 (1) : 99-108.
PMID 10929717
 
Nuclear pore complex structure and dynamics revealed by cryoelectron tomography.
Beck M, Förster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O
Science (New York, N.Y.). 2004 ; 306 (5700) : 1387-1390.
PMID 15514115
 
An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells.
Belgareh N, Rabut G, Baï SW, van Overbeek M, Beaudouin J, Daigle N, Zatsepina OV, Pasteau F, Labas V, Fromont-Racine M, Ellenberg J, Doye V
The Journal of cell biology. 2001 ; 154 (6) : 1147-1160.
PMID 11564755
 
Gene gating: a hypothesis.
Blobel G
Proceedings of the National Academy of Sciences of the United States of America. 1985 ; 82 (24) : 8527-8529.
PMID 3866238
 
Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis.
Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B
Journal of cell science. 1999 ; 112 ( Pt 13) : 2253-2264.
PMID 10362555
 
Characterization and potential function of a novel testis-specific nucleoporin BS-63.
Cai Y, Gao Y, Sheng Q, Miao S, Cui X, Wang L, Zong S, Koide SS
Molecular reproduction and development. 2002 ; 61 (1) : 126-134.
PMID 11774384
 
Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization.
Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA
Cell. 2004 ; 117 (4) : 427-439.
PMID 15137937
 
Transmission electron microscope studies of the nuclear envelope in Caenorhabditis elegans embryos.
Cohen M, Tzur YB, Neufeld E, Feinstein N, Delannoy MR, Wilson KL, Gruenbaum Y
Journal of structural biology. 2002 ; 140 (1-3) : 232-240.
PMID 12490171
 
Nucleocytoplasmic transport enters the atomic age.
Conti E, Izaurralde E
Current opinion in cell biology. 2001 ; 13 (3) : 310-319.
PMID 11343901
 
Nucleocytoplasmic transport of macromolecules.
Corbett AH, Silver PA
Microbiology and molecular biology reviews : MMBR. 1997 ; 61 (2) : 193-211.
PMID 9184010
 
Pore membrane and/or filament interacting like protein 1 (POMFIL1) is predominantly expressed in the nervous system and encodes different protein isoforms.
Coy JF, Wiemann S, Bechmann I, Bächner D, Nitsch R, Kretz O, Christiansen H, Poustka A
Gene. 2002 ; 290 (1-2) : 73-94.
PMID 12062803
 
Proteomic analysis of the mammalian nuclear pore complex.
Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ
The Journal of cell biology. 2002 ; 158 (5) : 915-927.
PMID 12196509
 
The nuclear pore complex: disease associations and functional correlations.
Cronshaw JM, Matunis MJ
Trends in endocrinology and metabolism: TEM. 2004 ; 15 (1) : 34-39.
PMID 14693424
 
Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells.
Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J
The Journal of cell biology. 2001 ; 154 (1) : 71-84.
PMID 11448991
 
In situ analysis of spatial relationships between proteins of the nuclear pore complex.
Damelin M, Silver PA
Biophysical journal. 2002 ; 83 (6) : 3626-3636.
PMID 12496130
 
Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.
Denning DP, Patel SS, Uversky V, Fink AL, Rexach M
Proceedings of the National Academy of Sciences of the United States of America. 2003 ; 100 (5) : 2450-2455.
PMID 12604785
 
The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein.
Denning DP, Uversky V, Patel SS, Fink AL, Rexach M
The Journal of biological chemistry. 2002 ; 277 (36) : 33447-33455.
PMID 12065587
 
Clinicopathological significance of Nup88 expression in patients with colorectal cancer.
Emterling A, Skoglund J, Arbman G, Schneider J, Evertsson S, Carstensen J, Zhang H, Sun XF
Oncology. 2003 ; 64 (4) : 361-369.
PMID 12759533
 
Autoantigens of the nuclear pore complex.
Enarson P, Rattner JB, Ou Y, Miyachi K, Horigome T, Fritzler MJ
Journal of molecular medicine (Berlin, Germany). 2004 ; 82 (7) : 423-433.
PMID 15175862
 
Role of nucleoporin induction in releasing an mRNA nuclear export block.
Enninga J, Levy DE, Blobel G, Fontoura BM
Science (New York, N.Y.). 2002 ; 295 (5559) : 1523-1525.
PMID 11809937
 
The nuclear pore complex: nucleocytoplasmic transport and beyond.
Fahrenkrog B, Aebi U
Nature reviews. Molecular cell biology. 2003 ; 4 (10) : 757-766.
PMID 14570049
 
The vertebrate nuclear pore complex: from structure to function.
Fahrenkrog B, Aebi U
Results and problems in cell differentiation. 2002 ; 35 : 25-48.
PMID 11791407
 
The nuclear pore complex: a jack of all trades?
Fahrenkrog B, Köser J, Aebi U
Trends in biochemical sciences. 2004 ; 29 (4) : 175-182.
PMID 15082311
 
Nuclear pore complex architecture and functional dynamics.
Fahrenkrog B, Stoffler D, Aebi U
Current topics in microbiology and immunology. 2001 ; 259 : 95-117.
PMID 11417129
 
Molecular architecture of the yeast nuclear pore complex: localization of Nsp1p subcomplexes.
Fahrenkrog B, Hurt EC, Aebi U, Panté N
The Journal of cell biology. 1998 ; 143 (3) : 577-588.
PMID 9813081
 
Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex.
Fahrenkrog B, Maco B, Fager AM, Köser J, Sauder U, Ullman KS, Aebi U
Journal of structural biology. 2002 ; 140 (1-3) : 254-267.
PMID 12490173
 
Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210.
Favreau C, Worman HJ, Wozniak RW, Frappier T, Courvalin JC
Biochemistry. 1996 ; 35 (24) : 8035-8044.
PMID 8672508
 
Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis.
Ferrando-May E, Cordes V, Biller-Ckovric I, Mirkovic J, Görlich D, Nicotera P
Cell death and differentiation. 2001 ; 8 (5) : 495-505.
PMID 11423910
 
Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast.
Feuerbach F, Galy V, Trelles-Sticken E, Fromont-Racine M, Jacquier A, Gilson E, Olivo-Marin JC, Scherthan H, Nehrbass U
Nature cell biology. 2002 ; 4 (3) : 214-221.
PMID 11862215
 
A complex of nuclear pore proteins required for pore function.
Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ
The Journal of cell biology. 1991 ; 114 (1) : 169-183.
PMID 2050741
 
Nucleocytoplasmic transport: taking an inventory.
Fried H, Kutay U
Cellular and molecular life sciences : CMLS. 2003 ; 60 (8) : 1659-1688.
PMID 14504656
 
Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo.
Galy V, Mattaj IW, Askjaer P
Molecular biology of the cell. 2003 ; 14 (12) : 5104-5115.
PMID 12937276
 
A novel, nuclear pore-associated, widely distributed molecule overexpressed in oncogenesis and development.
Gould VE, Martinez N, Orucevic A, Schneider J, Alonso A
The American journal of pathology. 2000 ; 157 (5) : 1605-1613.
PMID 11073820
 
Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis.
Gould VE, Orucevic A, Zentgraf H, Gattuso P, Martinez N, Alonso A
Human pathology. 2002 ; 33 (5) : 536-544.
PMID 12094380
 
Transport between the cell nucleus and the cytoplasm.
Görlich D, Kutay U
Annual review of cell and developmental biology. 1999 ; 15 : 607-660.
PMID 10611974
 
Nuclear import of viral DNA genomes.
Greber UF, Fassati A
Traffic (Copenhagen, Denmark). 2003 ; 4 (3) : 136-143.
PMID 12656986
 
Nup98 is a mobile nucleoporin with transcription-dependent dynamics.
Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA
Molecular biology of the cell. 2002 ; 13 (4) : 1282-1297.
PMID 11950939
 
Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility.
Griffis ER, Craige B, Dimaano C, Ullman KS, Powers MA
Molecular biology of the cell. 2004 ; 15 (4) : 1991-2002.
PMID 14718558
 
Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes.
Griffis ER, Xu S, Powers MA
Molecular biology of the cell. 2003 ; 14 (2) : 600-610.
PMID 12589057
 
Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: targeting the nuclear pore complex.
Gustin KE
Virus research. 2003 ; 95 (1-2) : 35-44.
PMID 12921994
 
Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition.
Gustin KE, Sarnow P
The EMBO journal. 2001 ; 20 (1-2) : 240-249.
PMID 11226174
 
Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus.
Gustin KE, Sarnow P
Journal of virology. 2002 ; 76 (17) : 8787-8796.
PMID 12163599
 
Oligomerization-induced modulation of TPR-MET tyrosine kinase activity.
Hays JL, Watowich SJ
The Journal of biological chemistry. 2003 ; 278 (30) : 27456-27463.
PMID 12711601
 
Architecture and design of the nuclear pore complex.
Hinshaw JE, Carragher BO, Milligan RA
Cell. 1992 ; 69 (7) : 1133-1141.
PMID 1617726
 
cDNA cloning and analysis of the expression of nucleoporin p45.
Hu T, Gerace L
Gene. 1998 ; 221 (2) : 245-253.
PMID 9795236
 
Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins.
Hu T, Guan T, Gerace L
The Journal of cell biology. 1996 ; 134 (3) : 589-601.
PMID 8707840
 
A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p.
Iovine MK, Wente SR
The Journal of cell biology. 1997 ; 137 (4) : 797-811.
PMID 9151683
 
Chromatin boundaries in budding yeast: the nuclear pore connection.
Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK
Cell. 2002 ; 109 (5) : 551-562.
PMID 12062099
 
Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors.
Johnson HM, Subramaniam PS, Olsnes S, Jans DA
BioEssays : news and reviews in molecular, cellular and developmental biology. 2004 ; 26 (9) : 993-1004.
PMID 15351969
 
The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo.
Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M
Current biology : CB. 2004 ; 14 (7) : 611-617.
PMID 15062103
 
Regulation of nuclear localization: a key to a door.
Kaffman A, O'Shea EK
Annual review of cell and developmental biology. 1999 ; 15 : 291-339.
PMID 10611964
 
CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity.
Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM
Molecular and cellular biology. 1999 ; 19 (1) : 764-776.
PMID 9858599
 
Correlation between nucleocytoplasmic transport and caspase-3-dependent dismantling of nuclear pores during apoptosis.
Kihlmark M, Rustum C, Eriksson C, Beckman M, Iverfeldt K, Hallberg E
Experimental cell research. 2004 ; 293 (2) : 346-356.
PMID 14729472
 
New perspectives on nuclear transport.
Komeili A, O'Shea EK
Annual review of genetics. 2001 ; 35 : 341-364.
PMID 11700287
 
The COPI complex functions in nuclear envelope breakdown and is recruited by the nucleoporin Nup153.
Liu J, Prunuske AJ, Fager AM, Ullman KS
Developmental cell. 2003 ; 5 (3) : 487-498.
PMID 12967567
 
The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis.
Loïodice I, Alves A, Rabut G, Van Overbeek M, Ellenberg J, Sibarita JB, Doye V
Molecular biology of the cell. 2004 ; 15 (7) : 3333-3344.
PMID 15146057
 
Transport into and out of the nucleus.
Macara IG
Microbiology and molecular biology reviews : MMBR. 2001 ; 65 (4) : 570-594.
PMID 11729264
 
Differential mitotic phosphorylation of proteins of the nuclear pore complex.
Macaulay C, Meier E, Forbes DJ
The Journal of biological chemistry. 1995 ; 270 (1) : 254-262.
PMID 7814383
 
Cell cycle regulated transport controlled by alterations in the nuclear pore complex.
Makhnevych T, Lusk CP, Anderson AM, Aitchison JD, Wozniak RW
Cell. 2003 ; 115 (7) : 813-823.
PMID 14697200
 
Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p.
Marelli M, Aitchison JD, Wozniak RW
The Journal of cell biology. 1998 ; 143 (7) : 1813-1830.
PMID 9864357
 
Identification and characterization of nuclear pore subcomplexes in mitotic extract of human somatic cells.
Matsuoka Y, Takagi M, Ban T, Miyazaki M, Yamamoto T, Kondo Y, Yoneda Y
Biochemical and biophysical research communications. 1999 ; 254 (2) : 417-423.
PMID 9918853
 
Nucleocytoplasmic transport: the soluble phase.
Mattaj IW, Englmeier L
Annual review of biochemistry. 1998 ; 67 : 265-306.
PMID 9759490
 
Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle.
Maul GG, Maul HM, Scogna JE, Lieberman MW, Stein GS, Hsu BY, Borun TW
The Journal of cell biology. 1972 ; 55 (2) : 433-447.
PMID 5076782
 
Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain.
Nakielny S, Shaikh S, Burke B, Dreyfuss G
The EMBO journal. 1999 ; 18 (7) : 1982-1995.
PMID 10202161
 
Anti-nuclear envelope antibodies: Clinical associations.
Nesher G, Margalit R, Ashkenazi YJ
Seminars in arthritis and rheumatism. 2001 ; 30 (5) : 313-320.
PMID 11303304
 
Identification of a novel Ran binding protein 2 related gene (RANBP2L1) and detection of a gene cluster on human chromosome 2q11-q12.
Nothwang HG, Rensing C, Kübler M, Denich D, Brandl B, Stubanus M, Haaf T, Kurnit D, Hildebrandt F
Genomics. 1998 ; 47 (3) : 383-392.
PMID 9480752
 
Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro.
Ojala PM, Sodeik B, Ebersold MW, Kutay U, Helenius A
Molecular and cellular biology. 2000 ; 20 (13) : 4922-4931.
PMID 10848617
 
Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans.
Olsson M, Schéele S, Ekblom P
Experimental cell research. 2004 ; 292 (2) : 359-370.
PMID 14697343
 
Molecular dissection of the nuclear pore complex.
Panté N, Aebi U
Critical reviews in biochemistry and molecular biology. 1996 ; 31 (2) : 153-199.
PMID 8740526
 
Interactions and three-dimensional localization of a group of nuclear pore complex proteins.
Panté N, Bastos R, McMorrow I, Burke B, Aebi U
The Journal of cell biology. 1994 ; 126 (3) : 603-617.
PMID 8045926
 
Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm.
Panté N, Kann M
Molecular biology of the cell. 2002 ; 13 (2) : 425-434.
PMID 11854401
 
The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways.
Powers MA, Forbes DJ, Dahlberg JE, Lund E
The Journal of cell biology. 1997 ; 136 (2) : 241-250.
PMID 9015297
 
The small GTPase Ran: interpreting the signs.
Quimby BB, Dasso M
Current opinion in cell biology. 2003 ; 15 (3) : 338-344.
PMID 12787777
 
Nuclear import of hepatitis B virus capsids and release of the viral genome.
Rabe B, Vlachou A, Panté N, Helenius A, Kann M
Proceedings of the National Academy of Sciences of the United States of America. 2003 ; 100 (17) : 9849-9854.
PMID 12909718
 
Mapping the dynamic organization of the nuclear pore complex inside single living cells.
Rabut G, Doye V, Ellenberg J
Nature cell biology. 2004 ; 6 (11) : 1114-1121.
PMID 15502822
 
Dynamics of nuclear pore complex organization through the cell cycle.
Rabut G, Lén´ P, Ellenberg J
Current opinion in cell biology. 2004 ; 16 (3) : 314-321.
PMID 15145357
 
The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex.
Radu A, Moore MS, Blobel G
Cell. 1995 ; 81 (2) : 215-222.
PMID 7736573
 
Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components.
Reichelt R, Holzenburg A, Buhle EL Jr, Jarnik M, Engel A, Aebi U
The Journal of cell biology. 1990 ; 110 (4) : 883-894.
PMID 2324201
 
Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins.
Rexach M, Blobel G
Cell. 1995 ; 83 (5) : 683-692.
PMID 8521485
 
The yeast nuclear pore complex: composition, architecture, and transport mechanism.
Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT
The Journal of cell biology. 2000 ; 148 (4) : 635-651.
PMID 10684247
 
Nup358 integrates nuclear envelope breakdown with kinetochore assembly.
Salina D, Enarson P, Rattner JB, Burke B
The Journal of cell biology. 2003 ; 162 (6) : 991-1001.
PMID 12963708
 
Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.
Seedorf M, Damelin M, Kahana J, Taura T, Silver PA
Molecular and cellular biology. 1999 ; 19 (2) : 1547-1557.
PMID 9891088
 
Separate nuclear import pathways converge on the nucleoporin Nup153 and can be dissected with dominant-negative inhibitors.
Shah S, Forbes DJ
Current biology : CB. 1998 ; 8 (25) : 1376-1386.
PMID 9889100
 
Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr.
Shah S, Tugendreich S, Forbes D
The Journal of cell biology. 1998 ; 141 (1) : 31-49.
PMID 9531546
 
Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating.
Shulga N, Goldfarb DS
Molecular and cellular biology. 2003 ; 23 (2) : 534-542.
PMID 12509452
 
The small GTPase Gsp1p binds to the repeat domain of the nucleoporin Nsp1p.
Stochaj U, Héjazi M, Belhumeur P
The Biochemical journal. 1998 ; 330 ( Pt 1) : 421-427.
PMID 9461539
 
The nuclear pore complex: from molecular architecture to functional dynamics.
Stoffler D, Fahrenkrog B, Aebi U
Current opinion in cell biology. 1999 ; 11 (3) : 391-401.
PMID 10395558
 
Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport.
Stoffler D, Feja B, Fahrenkrog B, Walz J, Typke D, Aebi U
Journal of molecular biology. 2003 ; 328 (1) : 119-130.
PMID 12684002
 
Minimal nuclear pore complexes define FG repeat domains essential for transport.
Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR
Nature cell biology. 2004 ; 6 (3) : 197-206.
PMID 15039779
 
Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1.
Trotman LC, Mosberger N, Fornerod M, Stidwill RP, Greber UF
Nature cell biology. 2001 ; 3 (12) : 1092-1100.
PMID 11781571
 
A large particle associated with the perimeter of the nuclear pore complex.
Unwin PN, Milligan RA
The Journal of cell biology. 1982 ; 93 (1) : 63-75.
PMID 7068761
 
Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98.
von Kobbe C, van Deursen JM, Rodrigues JP, Sitterlin D, Bachi A, Wu X, Wilm M, Carmo-Fonseca M, Izaurralde E
Molecular cell. 2000 ; 6 (5) : 1243-1252.
PMID 11106761
 
The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA.
von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, Grosveld G
Molecular and cellular biology. 1992 ; 12 (4) : 1687-1697.
PMID 1549122
 
Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3' half to different genes: characterization of the set gene.
von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G
Molecular and cellular biology. 1992 ; 12 (8) : 3346-3355.
PMID 1630450
 
The conserved Nup107-160 complex is critical for nuclear pore complex assembly.
Walther TC, Alves A, Pickersgill H, Loïodice I, Hetzer M, Galy V, Hülsmann BB, Köcher T, Wilm M, Allen T, Mattaj IW, Doye V
Cell. 2003 ; 113 (2) : 195-206.
PMID 12705868
 
The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins.
Walther TC, Fornerod M, Pickersgill H, Goldberg M, Allen TD, Mattaj IW
The EMBO journal. 2001 ; 20 (20) : 5703-5714.
PMID 11598013
 
The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import.
Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M
The Journal of cell biology. 2002 ; 158 (1) : 63-77.
PMID 12105182
 
An unusual nucleoporin-related messenger ribonucleic acid is present in the germ cells of rat testis.
Wang ZQ, Akmal KM, Kim KH
Biology of reproduction. 1994 ; 51 (5) : 1022-1030.
PMID 7849178
 
Nucleocytoplasmic transport: cargo trafficking across the border.
Weis K
Current opinion in cell biology. 2002 ; 14 (3) : 328-335.
PMID 12067655
 
Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes.
Winey M, Yarar D, Giddings TH Jr, Mastronarde DN
Molecular biology of the cell. 1997 ; 8 (11) : 2119-2132.
PMID 9362057
 
Specific binding of the adenovirus capsid to the nuclear envelope.
Wisnivesky JP, Leopold PL, Crystal RG
Human gene therapy. 1999 ; 10 (13) : 2187-2195.
PMID 10498250
 
Nucleocytoplasmic shuttling of signal transducers.
Xu L, Massagué J
Nature reviews. Molecular cell biology. 2004 ; 5 (3) : 209-219.
PMID 14991001
 
Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications.
Yang Q, Rout MP, Akey CW
Molecular cell. 1998 ; 1 (2) : 223-234.
PMID 9659919
 
The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo.
Zeitler B, Weis K
The Journal of cell biology. 2004 ; 167 (4) : 583-590.
PMID 15557115
 
Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev.
Zolotukhin AS, Felber BK
Journal of virology. 1999 ; 73 (1) : 120-127.
PMID 9847314
 
Written2005-03Joachim Köser, Bohumil Maco, Ueli Aebi, Birthe Fahrenkrog
Mueller Institute, Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland

Citation

This paper should be referenced as such :
Köser, J ; Maco, B ; Aebi, U ; Fahrenkrog, B
The nuclear pore complex becomes alive: new insights into its dynamics, involvement in different cellular processes
Atlas Genet Cytogenet Oncol Haematol. 2005;9(2):187-205.
Free journal version : [ pdf ]   [ DOI ]
On line version : http://AtlasGeneticsOncology.org/Deep/NuclearPoreComplID20048.htm

Citation

Atlas of Genetics and Cytogenetics in Oncology and Haematology

The nuclear pore complex becomes alive: new insights into its dynamics and involvement in different cellular processes

Online version: http://atlasgeneticsoncology.org/deep-insight/20048/the-nuclear-pore-complex-becomes-alive-new-insights-into-its-dynamics-and-involvement-in-different-cellular-processes