The nuclear pore complex: structure and function


Vincent Duheron, Birthe Fahrenkrog

Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium

Corresponding author: Birthe Fahrenkrog; phone: +32 2 650 9951; fax: +32 2 650 9950.


October 2014



Nuclear pore complexes (NPCs) are large multi-protein complexes, which are embedded in the nuclear envelope and which are regulating the molecular exchange between the nucleus and the cytoplasm. While electron microscopy and cryo-electron tomography studies have provided high-resolution pictures of the NPC structure as entity, the challenge nowadays is to elucidate the organization and the functions of nuclear pore proteins (nucleoporins or Nups) inside and outside the NPC. Nucleoporins are not only involved in nucleocytoplasmic transport, but in an increasing number of other cellular processes, such as kinetochore organization, cell cycle regulation, DNA repair, and gene expression. The implication of nucleoporins in these diverse processes links them also to a wide variety of human diseases, such as cancer and autoimmune diseases. Here we review the progress made in defining the molecular arrangement of nucleoporins within the NPC and use the example of Nup153 to illustrate the versatility of individual nucleoporins and their implication in various human diseases.

Keywords: nucleus, nuclear pore complex; nucleoporins, FG repeats, nucleocytoplasmic transport, Nup153, disease, HIV-1

1. Introduction

Nuclear and cytoplasmic compartments of interphase eukaryotic cell are separated by the nuclear envelope (NE), which is formed from two closely juxtaposed membranes, the outer nuclear membrane (ONM) and the inner nuclear membrane (INM), respectively. The ONM is continuous with the rough endoplasmic reticulum, whereas the INM contains unique transmembrane proteins, which establish contacts with chromatin and the nuclear lamina. Large multi-protein complexes known as nuclear pore complexes (NPCs) perforated the NE to allow molecular trafficking between the cytoplasm and the nucleus. Nucleocytoplasmic transport comprises passive diffusion of small molecules and ions, as well as signal- and receptor-mediated translocation of proteins and ribonucleoprotein complexes that are larger than ~40 kDa (Görlich et al., 1995; Melchior et al., 1993; Moroianu and Blobel, 1995; Moroianu et al., 1995a; Moroianu et al., 1995b; Radu et al., 1995a; Radu et al., 1995b; Rexach and Blobel, 1995; Sweet and Gerace 1995; Kehlenbach et al., 1998; Chook et al., 1999; Keminer and Peters, 1999; for review see: Görlich and Kutay, 1999). Nuclear transport receptors are collectively known as karyopherins and they comprise importins and exportins. Karyopherins recognize signal sequences within their cognate cargoes: nuclear localization signals (NLSs) for cargo destined for the nucleus and nuclear export signals (NESs) for cargo that is exported from the nucleus (Moroianu and Blobel, 1995; Moroianu et al., 1995a; Moroianu et al., 1995b; Moroianu et al., 1996; Wen et al., 1995; Conti et al., 1998; Feng et al., 1999). The directionality of nucleocytoplasmic transport is determined by the small GTPase Ran, which is switching between its GDP- and GTP-bound states (Melchior et al., 1993; Moore and Blobel, 1993; Weis et al., 1996; Izaurralde et al., 1997; Görlich and Kutay, 1999). RanGTP is predominantly found in the nucleus and its binding to importins displaces import cargo from the receptor (Görlich et al., 1996; Izaurralde et al., 1997). The RanGTP-importin complex is directed to the cytoplasm, where the cytoplasmic GTPase-activating protein RanGAP1 catalyzes GTP hydrolysis, together with the Ran-binding proteins RanBP1 and RanBP2. GTP hydrolysis results in the disassembly of the RanGTP-importin complex and the subsequent recycling of the importin for a new round of nuclear import (Kutay et al., 1997a; for review see: Görlich and Kutay, 1999). RanGTP furthermore forms trimeric complexes with exportins and export cargoes to stabilize their interaction during nuclear export (Arts et al., 1998; Fornerod et al., 1997; Kaffman et al., 1998; Kutay et al., 1997a; Kutay et al., 1998). After translocation through the NPC, cytoplasmic GTP hydrolysis allows the dissociation of the trimeric complex and the redirection of the exportin to the nucleus. RanGDP is reimported by its own nuclear import receptor, NTF2 (Ribbeck et al., 1998; Bayliss et al., 1999; Chaillan-Huntington et al., 2000), and the GDP on Ran becomes exchanged to GTP by the action of the chromatin-bound Ran guanine nucleotide exchange RCC1, which is critical to maintain the intracellular Ran gradient (Görlich et al., 1996; Boche and Fanning, 1997; Izaurralde et al., 1997). Cargo translocation through NPCs is a fast process with hundreds of proteins, RNA particles, and metabolites passing through each NPC every second (Peters et al., 1986; Schulz and Peters, 1987; Peters et al., 1990; Middeler et al., 1997; Ribbeck and Görlich, 2001; Yang et al., 2004; Kubitscheck et al., 2005; Dange et al., 2008; Siebrasse et al., 2012).

2. Nucleoporins

The NPC is composed of approximately 30 different proteins, termed nucleoporins (Nups), which are broadly conserved between yeast, vertebrates and plants (Rout et al., 2000; Cronshaw et al., 2002; Neumann et al., 2010). Secondary structure predictions of nucleoporins allowed their classification into three groups (Schwartz, 2005; Devos et al., 2006): the first group of nucleoporins is characterized by the presence of transmembrane α-helices and cadherin-like domains, which mediate the anchoring of NPCs to the NE and which stabilize the interaction between the INM and the ONM. The second group is composed of nucleoporins containing α-solenoid and β-propeller folds, which may optimize interactions between nucleoporins as these particular structures are mainly found in architectural, scaffold nucleoporins. This scaffold nucleoporins connect the transmembrane nucleoporins to nucleoporins containing phenylalanine-glycine (FG)-repeats, i.e. the third group of nucleoporins (Schwartz, 2005; Devos et al., 2006).

FG nucleoporins represent about one third of the nucleoporins and they are characterized by the presence of repeated clusters of FG motifs that fall into three predominant classes: FxFG (x refers to any residue), GLFG (L refers to leucine) and FG. Other less frequent motifs are PAFG, PSFG and SAFG (Devos et al., 2006; Denning and Rexach, 2007). FG motifs are separated by linker sequences, which are typically enriched in charged and polar amino acids and are "disorder"-associated (Dunker et al., 2001; Denning and Rexach, 2007). The linker sequences lack hydrophobic, "order"-associated amino acids, so that this particular amino acid distribution renders FG domains natively unfolded with an absence of secondary structure (Denning et al., 2002; Denning et al., 2003; Fahrenkrog et al., 2002; Lim et al., 2006a).

The extend of charged amino acids varies between individual nucleoporins and two subgroups appear to exist: FG domains with low content of charged amino acids, which are capable of low affinity interactions among each other, whereas FG domains with a high content of charged amino acids abolish interactions with each other (Patel et al., 2007; Yamada et al., 2010; Xu and Powers, 2013). In this context, GLFG motifs are more susceptible to interact with each other than other motifs (Patel et al., 2007). The cohesiveness of FG domains and the spacing between the FG motifs is further dependent on the amino acid composition of the linker sequences (Patel et al., 2007; Dolker et al., 2010). An interaction between FG domains may contribute to a cohesive barrier that hinders diffusion of small proteins through the NPC (Shulga et al., 2000; Ribeck and Görlich, 2001; Hülsmann et al., 2012). FG nucleoporins are located throughout the NPC (Rout et al., 2000; Fahrenkrog et al., 2002; Walther et al., 2002; Paulillo et al., 2005; Schwarz-Herion et al., 2007; Chatel and Fahrenkrog, 2012) and they are mediating the interaction to nuclear transport receptors. Crystal structures have shown that the interaction between FG repeats and transport receptors mainly involves the Phe residues of the FG repeats, together with the flanking Gly residues that provide conformational flexibility, and hydrophobic residues of the receptor (Quimby et al., 2001; Fribourg et al., 2001; Bayliss et al., 2002a; Bayliss et al., 2002b; Liu and Stewart, 2005; Vognsen et al., 2013). Karyopherins possess several FG-binding sites and their translocation through the NPC is accomplished due to multiple and rapid binding events to the FG-nucleoporins (Rexach and Blobel, 1995; Kutay et al., 1997; Bayliss et al., 2000; Allen et al., 2001; Gilchrist et al., 2002; Tetenbaum-Novatt et al., 2012). While originally it was assumed that an "affinity gradient" between karyopherins and nucleoporins determines translocation from the cytoplasmic filaments to the nuclear basket (Ben-Efraim and Gerace, 2001; Pyhtila and Rexach, 2003), it has now been shown that only FG-nucleoporins that are symmetrically localized to both sides of the NPC are essential for translocation and cell viability, whereas the asymmetric FG-nucleoporins are dispensable for transport (Strawn et al., 2004). Yeast NPCs can accommodate the loss of 50% of their FG-repeats with only little effect on nucleocytoplasmic transport or NPC permeability. Moreover, Zeitler et al. were able to alter or invert the asymmetric distribution of FG-nucleoporins without altering nucleocytoplasmic transport (Zeitler et al., 2004).

The disordered configuration of FG-nucleoporins and the transient, dynamic interactions within the NPC make the elucidation of the nucleocytoplasmic transport mechanisms difficult. Numerous translocation models have been elaborated, such as the Brownian affinity/virtual gating/polymer brush model (Rout et al., 2000; Rout et al., 2003; Lim et al., 2006; Lim et al., 2007), the selective phase/hydrogel model (Ribbeck and Görlich, 2002; Frey et al., 2006; Frey et al., 2007), the reduction of dimensionality model (Peters, 2005; Moussavi-Baygi et al., 2011), and the forest model (Yamada et al., 2010). Details of the models are discussed in depth in several excellent recent review articles (Tetenbaum-Novatt and Rout, 2010; Wente and Rout, 2010; Lim and Deng, 2009).

3. NPC architecture

Nucleoporins assemble into distinct subcomplexes (Fig. 1A), which can be isolated as such from interphase NPCs and frequently from disassembled mitotic NPCs as well. These nucleoporin subcomplexes serve as building blocks for the NPC (Matsuoka et al., 1999; Allen et al., 2002; Suntharalingam and Wente, 2003; Schwartz, 2005). Electron microscopic and tomographic analyses of NPCs from different species, such as yeast, Xenopus, and human, have demonstrated that, despite the large evolutionary distance between these species, the basic structural organization of the NPC is evolutionary conserved (Xenopus: Hinshaw et al., 1992; Akey and Radermacher, 1993; Stoffler et al., 2003; Frenkiel-Krispin et al., 2010; human: Maimon et al., 2012; Bui et al., 2013; yeast: Fahrenkrog et al., 1998; Rout et al., 2000; Kiseleva et al., 2004; Dictyoselium: Beck et al., 2004; Beck et al., 2007; Grossman et al., 2012). Accordingly, the NPC consists of an eight-fold symmetric central framework, eight cytoplasmic filaments and a nuclear basket (Fig. 1B). The central framework has an hourglass-like shape and is composed of three connected rings: a central spoke ring sandwiched between a cytoplasmic ring and a nuclear ring. The spoke ring resides within the NE and is anchored to the region where the inner and outer nuclear membranes fuse. Eight cytoplasmic filaments are attached to the cytoplasmic ring, while the nuclear ring is also decorated with eight filaments that join into a distal ring, thereby forming the NPC's nuclear basket (Fahrenkrog and Aebi, 2003; Beck and Medalia, 2008; Grossman et al., 2012; Maimon et al., 2012).

Figure 1. Architecture of the nuclear pore complex (NPC) and nucleoporin (Nup) localization. (A) Schematic overview of the subcomplex organization of the NPC in human (left) and yeast (right). Nups can be subdivided into different subgroups depending on their localization: transmembrane Nups (white), cytoplasmic filaments and associated Nups (blue), outer rings Nups (green), adaptator Nups (yellow), channel Nups (pink) and nuclear basket Nups (red). (B) Schematic representation of the NPC architecture and (C) dimensions in Xenopus oocytes, human and yeast cells.

Among the NPC subcomplexes, the Nup107-160 complex is the most studied and best characterized one due to its pivotal role for NPC assembly. The Nup107-160 complex is composed of nine nucleoporins, i.e. Nup160, Nup133, Nup107, Nup96, Nup85, Nup43, Nup37, Sec13, and Seh1 (Belgareh et al., 2001; Vasu et al., 2001) and it is usually associated with the putative transcription factor Elys/Mel-28 (Rasala et al., 2006; Szymborska et al., 2013). Depletion of any member of the Nup107-160 complex leads to defects in NPC assembly (Boehmer et al., 2003; Harel et al., 2003; Walther et al., 2003). The Nup107-160 complex is symmetrically located to both sides of the NPC (Belgareh et al., 2001; Vasu et al., 2001; Bui et al., 2013; Szymborska et al., 2013) and EM analysis of the isolated Nup107-160 complex and its yeast homologue, the Nup84p complex, has revealed that the complex adopts a Y-shaped architecture (Fig. 2A) (Siniossoglou et al., 1996; Siniossoglou et al., 2000; Lutzmann et al., 2002; Kampmann and Blobel, 2009; Bui et al., 2013). The relative positions of each nucleoporin within the Y complex are known (Kampmann and Blobel, 2009; Bui et al., 2013), whereas its orientation within the NPC is not ultimately clear. Three main models are discussed: (1) the fence model predicts that 32 copies of the Nup84p complex are organized in four octameric rings, which are packed in antiparallel orientation, and which are linked by vertical hetero-octamers of either Nup85p-Seh1p or Nup145p-Sec13p (Fig. 2B) (Debler et al., 2008); (2) the lattice model predicts that the Nup84p complex resides on the cytoplasmic and nuclear side of the NPC, sandwiching the Nic96p complex (see below), with the long axis of Nup84p complex positioned almost parallel to the nucleocytoplasmic transport axis (Fig. 2C) (Brohawn and Schwartz, 2009b); (3) the head-to-tail model suggests that Nup84p complexes are arranged head-to-tail into two antiparallel rings on the cytoplasmic and nuclear face of the NPC (Fig. 2D) (Alber et al., 2007a; Seo et al., 2009). Recent advances in light microscopy confirmed the head-to-tail octameric ring arrangement of the Nup107-160 complex directly in cells (Szymborska et al., 2013) and electron tomography data indicate that Nup107-160 complexes assemble at both faces of the NPC as paired octameric rings with a shift of about 11 nm towards each other, which in turn appears to be important for the structural plasticity of the NPC (Bui et al., 2013).

Figure 2. Position of the human Nup107-160 complex within the 3D architecture of the NPC. (A) Schematic representation of the organization of the human Nup107-160 complex. (B) Schematic representation of the fence model. (C) Schematic representation of the lattice model. (D) Schematic representation of two possible orientations of the head-to-tail model. (E) Position of the two hNup107-160 octameric rings in the cytoplasmic ring. (A-D are reproduced from Szymborska et al. 2013; E is reproduced from Bui et al. 2013).

Sandwiched between the Nup107-160 complex and the cytoplasmic and nuclear ring is the Nup93 complex, which is composed of five nucleoporins, i.e. Nup93, Nup205, Nup188, Nup155 and Nup35/53, and it is evolutionary conserved (Grandi et al., 1995; Schlaich et al., 1997; Grandi et al., 1997; Miller et al., 2000; Galy et al., 2003; Hawryluk-Gara et al., 2005; Hawryluk-Gara et al., 2008; Theerthagiri et al., 2010; Amlacher et al., 2011; Sachdev et al., 2012; Vollmer and Antonin, 2014). It occupies a central position in the NPC architecture, serving as a link between the different nucleoporin subcomplexes within the NPC scaffold. Hence the Nup93 complex can potentially link the NPC to the NE via Nup35/53 and Nup155: both interact with the transmembrane nucleoporin Ndc1 and Nup155 additionally with Pom121 (Mansfeld et al., 2006; Onischenko et al., 2009; Mitchell et al., 2010; Eisenhardt et al., 2014). No direct interaction between the Nup107-160 and the Nup93 complex has been demonstrated in vertebrates, but for the yeast complexes (Lutzmann et al., 2005), suggesting that their vertebrate homologues bind each other as well.

The Nup93 complex is also interacting with nucleoporins of the Nup62 complex via the N-terminal region of Nup93 and Nup62 (Grandi et al., 1997; Sachdev et al., 2012), which links the Nup93 complex to the channel nucleoporins Nup62, Nup58, Nup54 and Nup45 (Finlay et al., 1991; Guan et al., 1995; Vasu and Forbes, 2001; Xenopus homologues: Macaulay et al., 1995; yeast homologues: Grandi et al., 1993). The FG-nucleoporins of the Nup62 complex are believed to project their FG-domains towards the center of the NPC channel thereby contributing to nucleocytoplasmic transport and the NPC permeability barrier (Finlay et al., 1991; Paschal and Gerace, 1995; Clarkson et al., 1996; Hu et al., 1996; Yoshimura et al., 2013). How the peripheral NPC structures, the cytoplasmic filaments and the nuclear basket, are exactly linked to the NPC scaffold remains to be seen.

While the comparison of NPCs from different organisms revealed a shared global architecture, variations especially in the height of the central framework were observed (Fig. 1C). For instance, the central framework of NPCs from Xenopus laevis are ~ 95 nm high with an outer diameter of ~ 125 nm (Frenkiel-Krispin et al., 2010; Stoffler et al., 2003), while human NPCs have a central framework with a height of ~ 85 nm and an outer diameter of ~ 120 nm (Maimon et al., 2012; Bui et al., 2013). NPCs from yeast and Dictyoselium discoideum are more compact with a central framework of ~ 60 nm in height and an outer diameter of ~ 120 nm (Fahrenkrog et al., 1998; Yang et al., 1998; Beck et al., 2004; Beck et al., 2007; Kiseleva et al., 2004; Frenkiel-Krispin et al., 2010). Closer analyses of the central spoke ring revealed a similar thickness (~ 35 nm) of this ring in different species, indicating that the size differences within the central framework arise from species-specific variations in the arrangements of the cytoplasmic and nuclear rings (Frenkiel-Krispin et al., 2010). Despite these differences in the dimensions of the central framework, the diameter of the central pore in the mid plane of the NE is about 40 and 50 nm (Fahrenkrog et al., 1998; Yang et al., 1998; Stoffler et al., 2003; Beck et al., 2007, Fiserova et al., 2009; Frenkiel-Krispin et al., 2010; Bui et al., 2013), which is close to the size limit of 39 nm in diameter for cargo translocation (Panté and Kann, 2002). Besides the central pore, metazoan NPCs exhibit peripheral channels of ~ 5-10 nm in diameter (Hinshaw et al., 1992; Akey and Radermacher, 1993; Yang et al., 1998; Stoffler et al., 2003; Beck et al., 2007; Maimon et al., 2013). These peripheral channels seem to be absent in yeast NPCs likely due to the smaller size of the central spoke complex (Yang et al., 1998). As of today, the function of these peripheral channels is not ultimately clear and controversially discussed (Hinshaw et al., 1992; Akey, 1995; Soullam and Worman, 1995; Kiseleva et al., 1998; Danker et al., 1999; Shahin et al., 2001; Stoffler et al., 2003; Ohba et al., 2004; Frenkiel-Krispin et al., 2010).

4. The nucleoporin Nup153: domain organization and localization

The nucleoporin Nup153 is a constituent of the NPC's nuclear basket (Pante et al., 1994; Pante et al., 2000; Walther et al., 2001; Fahrenkrog et al., 2002; Hase and Cordes, 2003), and it is, based on its amino acid sequence, comprised of roughly three major domains: (i) a N-terminal domain, which further includes a nuclear envelope targeting cassette (NETC; amino acids 1-144), a nuclear pore association region (NPAR; amino acids 39-339) and a RNA binding domain (RBD; amino acids 250-400) (Bastos et al., 1996; Enarson et al., 1998; Ball et al., 2004), (ii) a central zinc finger domain and (iii) a FG-rich C-terminal domain (for review see: Ball and Ullman, 2005) (Fig. 3A). The zinc-finger domain of Nup153 binds DNA in vitro (Sukegawa and Blobel, 1993) as well as RanGDP and RanGTP, albeit with a preference for the GDP-bound form (Higa et al., 2007, Schrader et al., 2008; Partridge et al., 2009). The cellular functions of these interactions have thus far remained elusive. Important for NE breakdown in reconstituted nuclei from Xenopus egg extracts, however, is the recruitment of the coatomer COPI complex, a major participant of membrane remodeling, to NPCs via Nup153's zinc-finger domain (Liu et al., 2003; Prunuske et al., 2006). The FG-domain of Nup153 is known to bind several nuclear transport factors, such as importin β, transportin and NXF1, which is important for Nup153's role in nucleocytoplasmic transport (Shah et al., 1998; Moroianu et al., 1995; Moroianu et al., 1997; Nakielny et al., 1999; Bachi et al., 2000; Brownawell and Macara, 2002; Kuersten et al., 2002; Walther et al., 2003). The FG domain of Nup153 is natively unfolded and has a length of about 800 nm, when fully extended (Lim et al., 2006). The actual conformation of the FG domain within the NPC is unknown: it might adapt the form of a polymer brush that acts as entropic barrier, which transiently collapses to a more compact conformation upon interaction with transport receptors, such as importin β (Lim et al., 2006; Lim et al., 2007). Alternatively, Nup153's FG-domain might form a hydrogel as seen at high concentrations in vitro (Milles et al., 2011; Milles et al., 2013), in which only transport receptors and transport complexes remain soluble (Ribbeck and Görlich, 2002; Frey et al., 2006; Frey and Görlich, 2007). Or a combination of both (Milles and Lemke, 2011), as it has been shown for the yeast nucleoporin Nsp1p (Ader et al., 2010).

The association of Nup153 with the nuclear basket of the NPC (Cordes et al., 1993; Pante et al., 1994) is rather complex, which became evident from the application of domain-specific antibodies against Nup153 in combination with immuno-EM analyses. Accordingly, the N-terminal domain locates to the nuclear ring moiety of the nuclear basket (Pante et al., 2000; Walther et al., 2001; Fahrenkrog et al., 2002), whereas the zinc-finger domain is found at the distal ring (Fahrenkrog et al., 2002). Nup153's FG-domain was detected all over the nuclear basket and occasionally on the cytoplasmic side of the NPC, suggesting a high mobility of this domain (Nakielny et al., 1999; Fahrenkrog et al., 2002; Paulillo et al., 2005; Paulillo et al., 2006; Lim et al., 2007) (Fig. 3B). Not only the FG-domain of Nup153 appears to be mobile, but the entire protein: fluorescent recovery after photobleaching (FRAP) experiments have revealed that GFP-tagged Nup153 is highly dynamic and shuffles between a NPC-associated and a nucleoplasmic population (Daigle et al., 2001; Rabut et al., 2004; Griffis et al., 2004). Nup153's mobility is dependent on active transcription, which suggests that Nup153 may associate with mRNA cargoes to facilitate their recruitment to the NPC (Griffis et al., 2004). Binding to mRNA might occur either directly via the N-terminal RNA binding domain (Ball et al., 2004) or via the mRNA export factor NXF1, which binds the C-terminal FG-domain of Nup153 (Bachi et al., 2000).

Figure 3. Nup153 domain organization and localization. (A) Schematic representation of Nup153 domain architecture with the N-terminal domain (red), the zinc finger domain (blue) and the C-terminal FG-rich domain (green). The N-terminal domain contains the nuclear envelope targeting cassette (NETC; amino acids 1-144; purple), the nuclear pore association region (NPAR; amino acids 39-339; yellow) and the RNA binding domain (RBD; amino acids 250-400; orange). Some of the known interaction partners of Nup153 are represented near the region of Nup153 they are described to interact with. (B) Domain localization of Nup153 with the N-terminal domain localized at the ring moiety of the basket, the zinc finger domain localized to the distal ring of the basket and the FG-rich C-terminal domain was detected at the nuclear ring moiety and the distal ring of the basket, but also occasionally at the cytoplasmic side of the NPC, showing its high mobility. c:cytoplasm; n: nucleus. (B is reproduced from Fahrenkrog et al., 2002).

5. Nup153 assembly into nuclear pores

The NE of eukaryotic cells disassembles at the end of mitotic prophase, which is accompanied with NPC disassembly. NPC reassembly starts in late anaphase/early telophase in a highly ordered process during which Nup153 belongs to the early recruited nucleoporins (Bodoor et al., 1999; Haraguchi et al., 2000; Daigle et al., 2001; Dultz et al., 2008). Nup153 incorporation in the reforming NPC requires the Nup107-160 complex and depletion of this complex impairs Nup153 recruitment to NPCs (Boehmer et al., 2003; Walther et al., 2003; Harel et al., 2003; Krull et al., 2004). Nup153 recruitment to the newly reforming NPC might occur in two phases: a first pool of Nup153 accumulates at the periphery of chromosomes at the end of anaphase (Bodoor et al., 1999; Haraguchi et al., 2000; Dultz et al., 2008), shortly after Nup107-160 recruitment (Dultz et al., 2008), while a second and major pool of Nup153 associates with the NPC later in telophase (Dultz et al., 2008), at the same time as the nuclear lamina (Smythe et al., 2000). The assembly and stable association of Nup153 with the NE and NPCs is in fact dependent on the lamina and mutations in lamin A have been shown to displace Nup153 from NPCs (Smythe et al., 2000, Hübner et al., 2006). NPCs lacking Nup153 are more mobile within the NE (Walther et al., 2001), suggesting that a Nup153-lamina interaction is important for NPC anchoring in the NE. Consistently, Nup153 was found to bind lamin B3 (also known as lamin LIII) from Xenopus egg extracts (Smythe et al., 2000) and recombinant human lamin A and lamin B1 (Al Haboubi et al., 2011). Moreover, Nup153 depletion from HeLa cells altered the localization of lamin A/C and Sun1, an INM protein that binds to lamin A (Zhou and Pante, 2010), which coincided with a rearrangement of the cytoskeleton and a modified cell morphology (Zhou and Pante, 2010).

The early recruited pool of Nup153 might be important for the reformation of a functional NPC and the correct recruitment of other nucleoporins to the NPC. Along this line depletion of Nup153 from Xenopus egg extracts resulted in the loss of several nucleoporins from the nuclear basket, amongst others Tpr (Walther et al., 2001). Tpr is thought to be the central architectural element of the nuclear basket (Krull et al., 2004) and is lately recruited during NPC reassembly (Bodoor et al., 1999; Haraguchi et al., 2000). Consistently, Nup153 localization to the NPC is not Tpr dependent (Frosst et al., 2002; Hase and Cordes, 2003), whereas the importance of Nup153 for Tpr recruitment is controversial: Nup153 depletion lead to a complete absence of Tpr from the NE on the one hand (Hase and Cordes, 2003), but not in other cases (Lussi et al., 2010; Mackay et al., 2010; Umlauf et al., 2013). In contrast to that, it is without any doubt that the association of Nup50 with NPCs necessitates the presence of Nup153 (Hase and Cordes, 2003; Mackay et al., 2010). Nup50 is a mobile nucleoporin associated with the nuclear basket (Guan et al., 2000; Smitherman et al., 2000) and its recruitment to reforming NPCs is closely associated with Nup153's with a similar, biphasic recruitment in ana- and telophase (Dultz et al., 2008).

6. Versatile functions of Nup153

Nup153 participates in nucleocytoplasmic transport via its FG domain, which interacts with numerous transport receptors such as importin β (Moroianu et al., 1995; Shah et al., 1998), transportin (Shah and Forbes, 1998), importin-5 (Yaseen and Blobel, 1997) and importin-7 (Walther et al., 2003), as well as with the nuclear export receptors CRM1 (Nakielny et al., 1999), exportin-5 (Brownawell and Macara, 2002), exportin-t (Kuersten et al., 2002) and NXF1 (Bachi et al., 2000). Moreover, Nup153 binds import adapter proteins, such as importin α (Moroianu et al., 1997) and the specialized nuclear import receptor for Ran, NTF2 (Cushman et al., 2004), suggesting that Nup153 is a decisive player in many transport pathways. The high mobility of Nup153's FG domain and its spread distribution throughout the NPC (Fahrenkrog et al., 2002; Paulillo et al., 2005; Lim et al., 2006; Lim et al., 2007) may promote the translocation of nuclear import complexes to the nuclear side of the NPC (Ogawa et al., 2012) and/or promote the entry of nuclear export complexes to the NPC (Soop et al., 2005).

Because of the key position of the NPC at the interface between the cytoplasm and the nucleus, it became evident that nucleoporins either directly or indirectly participate in numerous cellular processes, both in interphase and mitosis. Not surprisingly, Nup153 is therefore essential for cell viability (Harborth et al., 2001; Galy et al., 2003) and alterations in Nup153 expression impair numerous cellular pathways by altering the localization of a large number of factors. For example, Nup153 contributes to gene expression via micro RNAs and small interfering RNAs, as it is important for the nuclear localization of Dicer1, the protein that cuts double stranded RNAs (Ando et al., 2011). Moreover, in Drosophila melanogaster and in human cells Nup153 is required for correct dosage compensation of the X-chromosome (Mendjan et al., 2006; Vaquerizas et al., 2010). Nup153 directly binds chromatin on large nucleoporin-associated regions, which probably promotes the formation of an open chromatin environment (Vaquerizas et al., 2010).

Nup153 is critical for the nuclear localization of 53BP1, a mediator protein in DNA damage response (DDR), to DNA double strand breaks (DSBs) (Wang et al., 2002). Cells depleted for Nup153 have an increased sensitivity to DSB inducing drugs, which is in part due to a cytoplasmic mislocalization of 53BP1 (Lemaitre et al., 2012; Moudry et al., 2012). Furthermore, Nup153 depletion compromised the phosphorylation of the two cell cycle checkpoint kinases CHK1 and CHK2, suggesting an improper activation of the G2/M checkpoint, and it promotes the use of the homologous recombination pathway over non-homologous end joining to repair DSBs (Lemaitre et al., 2012). Nup153 becomes phosphorylated by the Ataxia telangiectasia mutated (ATM) kinase, a key kinase during DSB repair (Wan at al., 2013). ATM-mediated phosphorylation of Nup153 provokes the interaction between Nup153 and exportin-5, which in turn promotes the nuclear export of pre-miRNAs in response to DNA damage (Zhang et al., 2011; Wan at al., 2013). The implication of miRNAs in DDR is still poorly understood on a mechanistic level, but it is known that a loss of Dicer and miRNAs resulted in increased levels of DNA damage (Wan et al., 2011).

Nup153 is not only impacting cellular processes due to its central role in nucleocytoplasmic transport, but also due to direct interactions with numerous partners, such as transcription factors (Zhong et al., 2005; Xu et al., 2002), signaling molecules (Nybakken et al., 2005), membrane remodeling proteins (Liu et al., 2003; Prunuske et al., 2006), and SUMO specific proteases (Chow et al., 2012). SUMOylation is a post-translational modification characterized by the addition of a small ubiquitin-like peptide on target proteins to modulate their activity (for review see: Wang and Dasso, 2009). Like ubiquitination, SUMOylation occurs through a three-step enzymatic cascade, which requires the action of an ATP-dependent E1 activating enzyme, an E2 conjugating enzyme and a SUMO-specific E3 ligase. SUMOylation is a reversible process and SUMO removal is catalyzed by SUMO-specific isopeptidases SENPs, two of which, SENP1 and SENP2, are located at the NE and NPCs (Hang and Dasso, 2002; Zhang et al., 2002; Bailey and O'Hare, 2004; Chow et al., 2012; Cubenas-Potts et al., 2013). SENP1 and SENP2 directly interact with Nup153, suggesting that Nup153 is responsible for their NE localization and that it might be implicated in the deSUMOylation of proteins (Hang and Dasso, 2002; Chow et al., 2012; Cubenas-Potts and Matunis, 2013).

Nup153 not only has functions in interphase, but also in mitosis. Its role in mitosis might be at least in part due to its direct interaction with the spindle assembly checkpoint (SAC) protein Mad1 (Lussi et al., 2010). The SAC assures correct chromosome segregation at the metaphase-anaphase transition (see review Lara-Gonzalez et al., 2012) and overexpression of Nup153 leads to a SAC override and partial mislocalization of Mad1, which coincides with chromosome mis-segregation, multipolar spindle formation, multinucleation and cytokinesis failure (Lussi et al., 2010). Cytokinesis, the final step of mitosis, is also hampered by siRNA-mediated depletion of Nup153 (Mackay et al., 2009; Lussi et al., 2010). Nup153 depletion causes mislocalization of Aurora B kinase, which is regulating many mitotic processes (see review van der Waal et al., 2012), during cytokinesis. This mislocalization of Aurora B leads to the activation of the so-called abscission checkpoint and consequently abscission delay and an increased number of cells in cytokinesis (Mackay et al., 2009; Mackay et al., 2010; Lussi et al., 2010). The underlying molecular mechanism that leads to the activation of the abscission checkpoint remains to be elucidated.

7. Nup153-related disorders

Because of the pivotal role of NPCs for nucleocytoplasmic exchange, alterations in NPC components and/or nucleocytoplasmic transport have a strong impact on cell growth and survival. Therefore, it is not surprising that nucleoporins and likewise Nup153 are implicated in a large number of disorders, such as cancer and autoimmune disease (Table 1). Increased expression of Nup153 due to a 6p22 genomic translocation was detected in urothelial carcinoma and retinoblastoma (Orlic et al., 2006; Heidenblad et al., 2008). Moreover, in a screen for pancreatic cancer genes, Nup153 was found amplified in the pancreatic cell line PL5 (Shain et al., 2013). This study suggested an oncogenic function for Nup153 by modulating the TGF-β signaling pathway. Nup153 is known to regulate the intracellular distribution of the TGF-β signal transducer SMAD2 (Xu et al., 2002). It stoichiometrically competes with FAST1, a nuclear retention factor for SMAD2, and Nup153 up-regulation leads to an increased cytoplasmic localization of SMAD2, which disrupts TGF-β signaling and may enforce proliferation (Shain et al., 2013). Nup153 is furthermore important for tumor cell migration (Zhou and Pante, 2010). Depletion of Nup153 from HeLa cells and the breast cancer cell line MDA-231, respectively, induced rearrangements of the actin cytoskeleton and microtubules. The alterations of the cytoskeleton led to impaired cell migration and polarization of MDA-231 cells and fibrosarcoma HT1080 cells (Zhou and Pante, 2010). Further work is necessary to address the molecular details of Nup153's role in cancer biology.

Small nucleotide polymorphisms (SNPs) in NUP153 were found associated with disorders due to hyperbilirubinemia (Datta et al., 2012) and schizophrenia (Lin et al., 2009). The transport of biliverdin reductase, an important enzyme for bilirubin conjugation, is affected by a SNP near the NUP153 locus on chromosome 6. This leads to increased levels of unconjugated bilirubin, which in turn is associated with severe disorders, such as bilirubin encephalopathy and Gilbert's syndrome (Datta et al., 2012).

Autoantibodies against Nup153 were found in sera from patients suffering from various autoimmune diseases, such as systemic lupus erythematosis, autoimmune thyroiditis, hepatitis B and hepatitis C virus (HBV and HCV, respectively) infections (Nesher et al., 2001; Enarson et al., 2004). To explain the presence of these Nup153 autoantibodies some investigators suggested a molecular mimicry mechanism. Sera from patients with various autoimmune diseases possess antibodies against HBV DNA polymerase subtype adr (Gregorio et al., 1999). Surprisingly, sera from patients with chronic HBV infection react with the peptide 827-846 of Nup153. This peptide sequence of Nup153 presents similarities to residues 57-76 of HBV DNA polymerase, which may lead to cross-reactions between the Nup153 peptide 827-846 and antibodies directed against the HBV DNA polymerase peptide 57-76 (Gregorio et al., 1999).

As mentioned earlier, Nup153 can directly interact with the Ig-fold domain of nuclear lamins (Smythe et al., 2000; Al Haboubi et al., 2011). Laminopathies are disorders caused by mutations in the LMNA gene, often localized in the Ig-fold domain of the lamin A protein (Goldman et al., 2004; Worman and Bonne, 2007). These mutations reduce the population of Nup153 present at the NE maybe by impairing Nup153-lamin interaction or by promoting accumulation of Nup153 at mutated lamin A aggregates (Hübner et al., 2006). This lack of Nup153 at the nuclear periphery might contribute to a compromised nuclear protein import (Busch et al., 2009).

Table 1. Summary of human disorders involving nucleoporins.

8. Nup153 and HIV

Nup153 is furthermore a target for viruses to enable their replication. Thereby viruses utilize different strategies to take advantage of Nup153's central function in nucleocytoplasmic transport. Polioviruses or rhinoviruses, for example, express a proteinase enzyme that is causing the cleavage and degradation of Nup153, Nup98 and Nup62, which consequently inhibits nucleocytoplasmic transport (Belov et al., 2000) and increases the permeability of the NPC. This increased permeability promotes passive diffusion and the re-localization of host cell nuclear proteins that take part in viral replication (Meerovitch et al., 1993; McBride et al., 1996; Gustin and Sarnow, 2001; Gustin and Sarnow, 2002; Park at al., 2008; Fitzgerald et al., 2013). Inhibition of nucleocytoplasmic transport might reduce the export of host mRNAs to the cytoplasm, which in turn is reducing the competition for the translation machinery and which is promoting viral protein synthesis.

Other viruses, such as human immunodeficiency virus 1 (HIV-1), need to enter the nucleus for their replication, and therefore to pass through the NPC. It is accepted that the HIV-1 nuclear import is an active and energy-dependent process (Suzuki and Craigie, 2007), which requires the help of import receptors (Konig et al., 2008). Numerous nuclear transport factors were identified that are implicated in HIV-1 replication (Brass et al., 2008; Konig et al., 2008) and among the best characterized are Nup153 and Nup358. Both nucleoporins are required for HIV-1 nuclear entry as their depletion decreases HIV-1 integration into the host genome (Konig et al., 2008; Di Nunzio et al., 2012). Nup153 and Nup358 can interact with the HIV-1 capsid (Schaller et al., 2011; Di Nunzio et al., 2013b; Matreyek et al., 2013) and Nup358 may serve as a docking site for the HIV-1 pre-integration complex (PIC) at the nuclear pore, while Nup153 might play a role in the nuclear entry of the PIC (Lee et al., 2010; Matreyek and Engelman, 2011). Nup153 may interact with PICs docked on Nup358 and facilitate their transport through the NPC. Nup153 depletion does not only decrease HIV-1 nuclear entry, but also reduces the number of HIV-1 integration sites into transcriptionally active regions (Koh et al., 2013; Di Nunzio et al., 2013). It has been proposed that Nup153 is directly guiding the PIC to the genomic integration regions. Besides the interaction with the PIC, Nup153 also interacts with HIV-1 integrase in vitro when both proteins are produced in recombinantly in bacteria (Woodward et al., 2009), but this interaction was not detected when both proteins were co-expressed in mammalian cells (Di Nunzio et al., 2013), suggesting that the HIV-1 capsid is the viral determinant for the requirement of Nup153 and that this interaction is critical for HIV-1 nuclear import (Matreyek and Engelman, 2011; Di Nunzio et al., 2013). Future investigations are required to further support this notion.

9. Conclusion

Progress in imaging techniques in recent years, both on the light and electron microscopic level, in combination with X-ray crystallography has provided novel insights into the overall structure of the NPC as well as into the organization and localization of individual nucleoporins within the NPC architecture. While the structural roles of nucleoporins and their functions in nucleocytoplasmic transport have been appreciated for a long time, new functions for nucleoporins - direct and indirect - are regularly discovered. The more we learn about this multifunctional usage of nucleoporins it becomes apparent that they are central for many cellular functions and processes, both in interphase and mitosis. Many of these processes, such as the regulation of gene expression, have direct relevance for human health and dysfunction of nucleoporins is not surprisingly frequently associated with human malignancies and viral infections. How defects in nucleoporins alter cellular pathways precisely and how this leads to a particular disease, however, has remained largely elusive. Future investigations in this context are urgently needed.


This work was supported by grants from the Fonds de la Recherche Scientifique-FNRS Belgium (grants T.0237.13, 1.5019.12, and F.6006.10), the Fonds Brachet and the Fonds Van Buuren.


Interactions and three-dimensional localization of a group of nuclear pore complex proteins.
Pante N, Bastos R, McMorrow I, Burke B, Aebi U.
J Cell Biol. 1994 Aug;126(3):603-17.
PMID 8045926
Nuclear envelope permeability.
Paine PL, Moore LC, Horowitz SB.
Nature. 1975 Mar 13;254(5496):109-14.
PMID 1117994
Intracellular migration of nuclear proteins in Xenopus oocytes.
De Robertis EM, Longthorne RF, Gurdon JB.
Nature. 1978 Mar 16;272(5650):254-6.
PMID 564468
Mechanism of met oncogene activation.
Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG, Vande Woude GF.
Cell. 1986 Jun 20;45(6):895-904.
PMID 2423252
Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility.
Peters R.
Biochim Biophys Acta. 1986 Dec 22;864(3-4):305-59. (REVIEW)
PMID 3539193
Nucleocytoplasmic protein traffic in single mammalian cells studied by fluorescence microphotolysis.
Schulz B, Peters R.
Biochim Biophys Acta. 1987 Oct 1;930(3):419-31.
PMID 3651509
tpr homologues activate met and raf.
King HW, Tempest PR, Merrifield KR, Rance AJ.
Oncogene. 1988 Jun;2(6):617-9.
PMID 3387099
Transients of perforin pore formation observed by fluorescence microscopic single channel recording.
Peters R, Sauer H, Tschopp J, Fritzsch G.
EMBO J. 1990 Aug;9(8):2447-51.
PMID 1695147
A complex of nuclear pore proteins required for pore function.
Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ.
J Cell Biol. 1991 Jul;114(1):169-83.
PMID 2050741
High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores.
Goldberg MW, Allen TD.
J Cell Biol. 1992 Dec;119(6):1429-40.
PMID 1469043
TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas.
Greco A, Pierotti MA, Bongarzone I, Pagliardini S, Lanzi C, Della Porta G.
Oncogene. 1992 Feb;7(2):237-42.
PMID 1532241
Architecture and design of the nuclear pore complex.
Hinshaw JE, Carragher BO, Milligan RA.
Cell. 1992 Jun 26;69(7):1133-41.
PMID 1617726
Translocation t(6;9) in acute non-lymphocytic leukaemia results in the formation of a DEK-CAN fusion gene.
von Lindern M, Fornerod M, Soekarman N, van Baal S, Jaegle M, Hagemeijer A, Bootsma D, Grosveld G.
Baillieres Clin Haematol. 1992 Oct;5(4):857-79. (REVIEW)
PMID 1308167
Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3' half to different genes: characterization of the set gene.
von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G.
Mol Cell Biol. 1992 Aug;12(8):3346-55.
PMID 1630450
Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy.
Akey CW, Radermacher M.
J Cell Biol. 1993 Jul;122(1):1-19.
PMID 8314837
Intranuclear filaments containing a nuclear pore complex protein.
Cordes VC, Reidenbach S, Kohler A, Stuurman N, van Driel R, Franke WW.
J Cell Biol. 1993 Dec;123(6 Pt 1):1333-44.
PMID 8253834
Purification of NSP1 reveals complex formation with 'GLFG' nucleoporins and a novel nuclear pore protein NIC96.
Grandi P, Doye V, Hurt EC.
EMBO J. 1993 Aug;12(8):3061-71.
PMID 7688296
Purification of NSP1 reveals complex formation with 'GLFG' nucleoporins and a novel nuclear pore protein NIC96.
Grandi P, Doye V, Hurt EC.
EMBO J. 1993 Aug;12(8):3061-71.
PMID 7688296
La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate.
Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EK, Agol VI, Keene JD, Sonenberg N.
J Virol. 1993 Jul;67(7):3798-807.
PMID 8389906
Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor.
Melchior F, Paschal B, Evans J, Gerace L.
J Cell Biol. 1993 Dec;123(6 Pt 2):1649-59.
PMID 8276887
The GTP-binding protein Ran/TC4 is required for protein import into the nucleus.
Moore MS, Blobel G.
Nature. 1993 Oct 14;365(6447):661-3.
PMID 8413630
A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm.
Sukegawa J, Blobel G.
Cell. 1993 Jan 15;72(1):29-38.
PMID 8422679
A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic.
Wente SR, Blobel G.
J Cell Biol. 1993 Oct;123(2):275-84.
PMID 7691829
Pores for thought: nuclear pore complex proteins.
Rout MP, Wente SR.
Trends Cell Biol. 1994 Oct;4(10):357-65.
PMID 14731624
Structural plasticity of the nuclear pore complex.
Akey CW.
J Mol Biol. 1995 Apr 28;248(2):273-93.
PMID 7739040
Distinct functions for the two importin subunits in nuclear protein import.
Gorlich D, Vogel F, Mills AD, Hartmann E, Laskey RA.
Nature. 1995 Sep 21;377(6546):246-8.
PMID 7675110
A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p.
Grandi P, Emig S, Weise C, Hucho F, Pohl T, Hurt EC.
J Cell Biol. 1995 Sep;130(6):1263-73.
PMID 7559750
Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p.
Grandi P, Schlaich N, Tekotte H, Hurt EC.
EMBO J. 1995 Jan 3;14(1):76-87.
PMID 7828598
Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex.
Guan T, Muller S, Klier G, Pante N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L.
Mol Biol Cell. 1995 Nov;6(11):1591-603.
PMID 8589458
Differential mitotic phosphorylation of proteins of the nuclear pore complex.
Macaulay C, Meier E, Forbes DJ.
J Biol Chem. 1995 Jan 6;270(1):254-62.
PMID 7814383
Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis.
Moroianu J, Blobel G.
Proc Natl Acad Sci U S A. 1995 May 9;92(10):4318-22.
PMID 7753805
Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes.
Moroianu J, Blobel G, Radu A.
Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2008-11.
PMID 7892216
Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins.
Moroianu J, Hijikata M, Blobel G, Radu A.
Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6532-6.
PMID 7604027
Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62.
Paschal BM, Gerace L.
J Cell Biol. 1995 May;129(4):925-37.
PMID 7744965
Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins.
Radu A, Blobel G, Moore MS.
Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1769-73.
PMID 7878057
The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex.
Radu A, Moore MS, Blobel G.
Cell. 1995 Apr 21;81(2):215-22.
PMID 7736573
Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins.
Rexach M, Blobel G.
Cell. 1995 Dec 1;83(5):683-92.
PMID 8521485
Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane.
Soullam B, Worman HJ.
J Cell Biol. 1995 Jul;130(1):15-27.
PMID 7790369
Identification of a signal for rapid export of proteins from the nucleus.
Wen W, Meinkoth JL, Tsien RY, Taylor SS.
Cell. 1995 Aug 11;82(3):463-73.
PMID 7634336
Targeting and function in mRNA export of nuclear pore complex protein Nup153.
Bastos R, Lin A, Enarson M, Burke B.
J Cell Biol. 1996 Sep;134(5):1141-56.
PMID 8794857
Separate binding sites on nuclear transport factor 2 (NTF2) for GDP-Ran and the phenylalanine-rich repeat regions of nucleoporins p62 and Nsp1p.
Clarkson WD, Kent HM, Stewart M.
J Mol Biol. 1996 Nov 8;263(4):517-24.
PMID 8918934
Identification of different roles for RanGDP and RanGTP in nuclear protein import.
Gorlich D, Pante N, Kutay U, Aebi U, Bischoff FR.
EMBO J. 1996 Oct 15;15(20):5584-94.
PMID 8896452
Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins.
Hu T, Guan T, Gerace L.
J Cell Biol. 1996 Aug;134(3):589-601.
PMID 8707840
Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells.
McBride AE, Schlegel A, Kirkegaard K.
Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2296-301.
PMID 8637866
The binding site of karyopherin alpha for karyopherin beta overlaps with a nuclear localization sequence.
Moroianu J, Blobel G, Radu A.
Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6572-6.
PMID 8692858
A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores.
Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC.
Cell. 1996 Jan 26;84(2):265-75.
PMID 8565072
Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities.
Weis K, Dingwall C, Lamond AI.
EMBO J. 1996 Dec 16;15(24):7120-8.
PMID 9003787
Autoantibodies against nucleoporin p62 constitute a novel marker of primary biliary cirrhosis.
Wesierska-Gadek J, Hohenuer H, Hitchman E, Penner E.
Gastroenterology. 1996 Mar;110(3):840-7.
PMID 8608894
Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex.
Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B.
J Cell Biol. 1997 Jun 2;137(5):989-1000.
PMID 9166401
Nucleocytoplasmic recycling of the nuclear localization signal receptor alpha subunit in vivo is dependent on a nuclear export signal, energy, and RCC1.
Boche I, Fanning E.
J Cell Biol. 1997 Oct 20;139(2):313-25.
PMID 9334337
CRM1 is an export receptor for leucine-rich nuclear export signals.
Fornerod M, Ohno M, Yoshida M, Mattaj IW.
Cell. 1997 Sep 19;90(6):1051-60.
PMID 9323133
Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly.
Grandi P, Dang T, Pane N, Shevchenko A, Mann M, Forbes D, Hurt E.
Mol Biol Cell. 1997 Oct;8(10):2017-38.
PMID 9348540
A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p.
Iovine MK, Wente SR.
J Cell Biol. 1997 May 19;137(4):797-811.
PMID 9151683
The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus.
Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D.
EMBO J. 1997 Nov 3;16(21):6535-47.
PMID 9351834
Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor.
Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D.
Cell. 1997 Sep 19;90(6):1061-71.
PMID 9323134
Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex.
Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Gorlich D.
EMBO J. 1997 Mar 17;16(6):1153-63.
PMID 9135132
A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2.
Mahajan R, Delphin C, Guan T, Gerace L, Melchior F.
Cell. 1997 Jan 10;88(1):97-107.
PMID 9019411
The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited.
Middeler G, Zerf K, Jenovai S, Thulig A, Tschodrich-Rotter M, Kubitscheck U, Peters R.
Oncogene. 1997 Mar 27;14(12):1407-17.
PMID 9136984
RanGTP-mediated nuclear export of karyopherin alpha involves its interaction with the nucleoporin Nup153.
Moroianu J, Blobel G, Radu A.
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9699-704.
PMID 9275187
In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.
Schlaich NL, Haner M, Lustig A, Aebi U, Hurt EC.
Mol Biol Cell. 1997 Jan;8(1):33-46.
PMID 9017593
Cloning and characterization of human karyopherin beta3.
Yaseen NR, Blobel G.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4451-6.
PMID 9114010
Perinuclear localization of chromatin facilitates transcriptional silencing.
Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R.
Nature. 1998 Aug 6;394(6693):592-5.
PMID 9707122
Identification of a nuclear export receptor for tRNA.
Arts GJ, Fornerod M, Mattaj IW.
Curr Biol. 1998 Mar 12;8(6):305-14.
PMID 9512417
Nup116p and nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor gle2p.
Bailer SM, Siniossoglou S, Podtelejnikov A, Hellwig A, Mann M, Hurt E.
EMBO J. 1998 Feb 16;17(4):1107-19.
PMID 9463388
Functional characterization of a Nup159p-containing nuclear pore subcomplex.
Belgareh N, Snay-Hodge C, Pasteau F, Dagher S, Cole CN, Doye V.
Mol Biol Cell. 1998 Dec;9(12):3475-92.
PMID 9843582
Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha.
Conti E, Uy M, Leighton L, Blobel G, Kuriyan J.
Cell. 1998 Jul 24;94(2):193-204.
PMID 9695948
Amino-terminal sequences that direct nucleoporin nup153 to the inner surface of the nuclear envelope.
Enarson P, Enarson M, Bastos R, Burke B.
Chromosoma. 1998 Sep;107(4):228-36.
PMID 9745047
Molecular architecture of the yeast nuclear pore complex: localization of Nsp1p subcomplexes.
Fahrenkrog B, Hurt EC, Aebi U, Pante N.
J Cell Biol. 1998 Nov 2;143(3):577-88.
PMID 9813081
The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus.
Kaffman A, Rank NM, O'Neill EM, Huang LS, O'Shea EK.
Nature. 1998 Dec 3;396(6710):482-6.
PMID 9853758
Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro.
Kehlenbach RH, Dickmanns A, Gerace L.
J Cell Biol. 1998 May 18;141(4):863-74.
PMID 9585406
Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export.
Kiseleva E, Goldberg MW, Allen TD, Akey CW.
J Cell Sci. 1998 Jan;111 ( Pt 2):223-36.
PMID 9405308
Identification of a tRNA-specific nuclear export receptor.
Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Gorlich D.
Mol Cell. 1998 Feb;1(3):359-69.
PMID 9660920
NTF2 mediates nuclear import of Ran.
Ribbeck K, Lipowsky G, Kent HM, Stewart M, Gorlich D.
EMBO J. 1998 Nov 16;17(22):6587-98.
PMID 9822603
Separate nuclear import pathways converge on the nucleoporin Nup153 and can be dissected with dominant-negative inhibitors.
Shah S, Forbes DJ.
Curr Biol. 1998 Dec 17-31;8(25):1376-86.
PMID 9889100
Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr.
Shah S, Tugendreich S, Forbes D.
J Cell Biol. 1998 Apr 6;141(1):31-49.
PMID 9531546
Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications.
Yang Q, Rout MP, Akey CW.
Mol Cell. 1998 Jan;1(2):223-34.
PMID 9659919
Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP.
Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Gorlich D, Stewart M.
J Mol Biol. 1999 Oct 29;293(3):579-93.
PMID 10543952
Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis.
Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B.
J Cell Sci. 1999 Jul;112 ( Pt 13):2253-64.
PMID 10362555
Nuclear hourglass technique: an approach that detects electrically open nuclear pores in Xenopus laevis oocyte.
Danker T, Schillers H, Storck J, Shahin V, Kramer B, Wilhelmi M, Oberleithner H.
Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13530-5.
PMID 10557355
Antagonistic effects of NES and NLS motifs determine S. cerevisiae Rna1p subcellular distribution.
Feng W, Benko AL, Lee JH, Stanford DR, Hopper AK.
J Cell Sci. 1999 Feb;112 ( Pt 3):339-47.
PMID 9885287
Transport between the cell nucleus and the cytoplasm.
Gorlich D, Kutay U.
Annu Rev Cell Dev Biol. 1999;15:607-60. (REVIEW)
PMID 10611974
Mimicry between the hepatitis B virus DNA polymerase and the antigenic targets of nuclear and smooth muscle antibodies in chronic hepatitis B virus infection.
Gregorio GV, Choudhuri K, Ma Y, Vegnente A, Mieli-Vergani G, Vergani D.
J Immunol. 1999 Feb 1;162(3):1802-10.
PMID 9973445
Permeability of single nuclear pores.
Keminer O, Peters R.
Biophys J. 1999 Jul;77(1):217-28.
PMID 10388751
Nup192p is a conserved nucleoporin with a preferential location at the inner site of the nuclear membrane.
Kosova B, Pante N, Rollenhagen C, Hurt E.
J Biol Chem. 1999 Aug 6;274(32):22646-51.
PMID 10428845
Identification and characterization of nuclear pore subcomplexes in mitotic extract of human somatic cells.
Matsuoka Y, Takagi M, Ban T, Miyazaki M, Yamamoto T, Kondo Y, Yoneda Y.
Biochem Biophys Res Commun. 1999 Jan 19;254(2):417-23.
PMID 9918853
Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain.
Nakielny S, Shaikh S, Burke B, Dreyfuss G.
EMBO J. 1999 Apr 1;18(7):1982-95.
PMID 10202161
Variation in the composition and pore function of major outer membrane pore protein P2 of Haemophilus influenzae from cystic fibrosis patients.
Regelink AG, Dahan D, Moller LV, Coulton JW, Eijk P, Van Ulsen P, Dankert J, Van Alphen L.
Antimicrob Agents Chemother. 1999 Feb;43(2):226-32.
PMID 9925510
Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport.
Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A.
Nature. 1999 Mar 4;398(6722):39-46.
PMID 10078529
The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates.
Bachi A, Braun IC, Rodrigues JP, Pante N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Gorlich D, Carmo-Fonseca M, Izaurralde E.
RNA. 2000 Jan;6(1):136-58.
PMID 10668806
Crystallization and initial X-ray diffraction characterization of complexes of FxFG nucleoporin repeats with nuclear transport factors.
Bayliss R, Kent HM, Corbett AH, Stewart M.
J Struct Biol. 2000a Sep;131(3):240-7.
PMID 11052897
Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking.
Bayliss R, Littlewood T, Stewart M.
Cell. 2000b Jul 7;102(1):99-108.
PMID 10929717
Early alteration of nucleocytoplasmic traffic induced by some RNA viruses.
Belov GA, Evstafieva AG, Rubtsov YP, Mikitas OV, Vartapetian AB, Agol VI.
Virology. 2000 Sep 30;275(2):244-8.
PMID 10998323
Dissecting the interactions between NTF2, RanGDP, and the nucleoporin XFXFG repeats.
Chaillan-Huntington C, Braslavsky CV, Kuhlmann J, Stewart M.
J Biol Chem. 2000 Feb 25;275(8):5874-9.
PMID 10681579
Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export.
Guan T, Kehlenbach RH, Schirmer EC, Kehlenbach A, Fan F, Clurman BE, Arnheim N, Gerace L.
Mol Cell Biol. 2000 Aug;20(15):5619-30.
PMID 10891499
The morphology of apoptosis.
Hacker G.
Cell Tissue Res. 2000 Jul;301(1):5-17. (REVIEW)
PMID 10928277
Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes.
Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y.
J Cell Sci. 2000 Mar;113 ( Pt 5):779-94.
PMID 10671368
Assembly and preferential localization of Nup116p on the cytoplasmic face of the nuclear pore complex by interaction with Nup82p.
Ho AK, Shen TX, Ryan KJ, Kiseleva E, Levy MA, Allen TD, Wente SR.
Mol Cell Biol. 2000 Aug;20(15):5736-48.
PMID 10891509
Identification of a new vertebrate nucleoporin, Nup188, with the use of a novel organelle trap assay.
Miller BR, Powers M, Park M, Fischer W, Forbes DJ.
Mol Biol Cell. 2000 Oct;11(10):3381-96.
PMID 11029043
Recombinant Nup153 incorporates in vivo into Xenopus oocyte nuclear pore complexes.
Pante N, Thomas F, Aebi U, Burke B, Bastos R.
J Struct Biol. 2000 Apr;129(2-3):306-12.
PMID 10806081
The yeast nuclear pore complex: composition, architecture, and transport mechanism.
Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT.
J Cell Biol. 2000 Feb 21;148(4):635-51.
PMID 10684247
Yeast nucleoporins involved in passive nuclear envelope permeability.
Shulga N, Mosammaparast N, Wozniak R, Goldfarb DS.
J Cell Biol. 2000 May 29;149(5):1027-38.
PMID 10831607
Structure and assembly of the Nup84p complex.
Siniossoglou S, Lutzmann M, Santos-Rosa H, Leonard K, Mueller S, Aebi U, Hurt E.
J Cell Biol. 2000 Apr 3;149(1):41-54.
PMID 10747086
Characterization and targeted disruption of murine Nup50, a p27(Kip1)-interacting component of the nuclear pore complex.
Smitherman M, Lee K, Swanger J, Kapur R, Clurman BE.
Mol Cell Biol. 2000 Aug;20(15):5631-42.
PMID 10891500
Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs.
Smythe C, Jenkins HE, Hutchison CJ.
EMBO J. 2000 Aug 1;19(15):3918-31.
PMID 10921874
Mutant WD-repeat protein in triple-A syndrome.
Tullio-Pelet A, Salomon R, Hadj-Rabia S, Mugnier C, de Laet MH, Chaouachi B, Bakiri F, Brottier P, Cattolico L, Penet C, Begeot M, Naville D, Nicolino M, Chaussain JL, Weissenbach J, Munnich A, Lyonnet S.
Nat Genet. 2000 Nov;26(3):332-5.
PMID 11062474
Proteomic analysis of nucleoporin interacting proteins.
Allen NP, Huang L, Burlingame A, Rexach M.
J Biol Chem. 2001 Aug 3;276(31):29268-74. Epub 2001 May 31.
PMID 11387327
An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells.
Belgareh N, Rabut G, Bai SW, van Overbeek M, Beaudouin J, Daigle N, Zatsepina OV, Pasteau F, Labas V, Fromont-Racine M, Ellenberg J, Doye V.
J Cell Biol. 2001 Sep 17;154(6):1147-60.
PMID 11564755
Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import.
Ben-Efraim I, Gerace L.
J Cell Biol. 2001 Jan 22;152(2):411-7.
PMID 11266456
Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells.
Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J.
J Cell Biol. 2001 Jul 9;154(1):71-84.
PMID 11448991
Intrinsically disordered protein.
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z.
J Mol Graph Model. 2001;19(1):26-59. (REVIEW)
PMID 11381529
Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis.
Ferrando-May E, Cordes V, Biller-Ckovric I, Mirkovic J, Gorlich D, Nicotera P.
Cell Death Differ. 2001 May;8(5):495-505.
PMID 11423910
Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor.
Fribourg S, Braun IC, Izaurralde E, Conti E.
Mol Cell. 2001 Sep;8(3):645-56.
PMID 11583626
Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition.
Gustin KE, Sarnow P.
EMBO J. 2001 Jan 15;20(1-2):240-9.
PMID 11226174
Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene.
Handschug K, Sperling S, Yoon SJ, Hennig S, Clark AJ, Huebner A.
Hum Mol Genet. 2001 Feb 1;10(3):283-90.
PMID 11159947
Identification of essential genes in cultured mammalian cells using small interfering RNAs.
Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K.
J Cell Sci. 2001 Dec;114(Pt 24):4557-65.
PMID 11792820
Anti-nuclear envelope antibodies: Clinical associations.
Nesher G, Margalit R, Ashkenazi YJ.
Semin Arthritis Rheum. 2001 Apr;30(5):313-20. (REVIEW)
PMID 11303304
Functional analysis of the hydrophobic patch on nuclear transport factor 2 involved in interactions with the nuclear pore in vivo.
Quimby BB, Leung SW, Bayliss R, Harreman MT, Thirumala G, Stewart M, Corbett AH.
J Biol Chem. 2001 Oct 19;276(42):38820-9. Epub 2001 Aug 6.
PMID 11489893
Kinetic analysis of translocation through nuclear pore complexes.
Ribbeck K, Gorlich D.
EMBO J. 2001 Mar 15;20(6):1320-30.
PMID 11250898
Evidence for Ca2+- and ATP-sensitive peripheral channels in nuclear pore complexes.
Shahin V, Danker T, Enss K, Ossig R, Oberleithner H.
FASEB J. 2001 Sep;15(11):1895-901.
PMID 11532969
Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export.
Vasu S, Shah S, Orjalo A, Park M, Fischer WH, Forbes DJ.
J Cell Biol. 2001 Oct 29;155(3):339-54. Epub 2001 Oct 29.
PMID 11684705
Nuclear pores and nuclear assembly.
Vasu SK, Forbes DJ.
Curr Opin Cell Biol. 2001 Jun;13(3):363-75. (REVIEW)
PMID 11343909
The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins.
Walther TC, Fornerod M, Pickersgill H, Goldberg M, Allen TD, Mattaj IW.
EMBO J. 2001 Oct 15;20(20):5703-14.
PMID 11598013
Deciphering networks of protein interactions at the nuclear pore complex.
Allen NP, Patel SS, Huang L, Chalkley RJ, Burlingame A, Lutzmann M, Hurt EC, Rexach M.
Mol Cell Proteomics. 2002 Dec;1(12):930-46.
PMID 12543930
Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats.
Bayliss R, Leung SW, Baker RP, Quimby BB, Corbett AH, Stewart M.
EMBO J. 2002a Jun 17;21(12):2843-53.
PMID 12065398
GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.
Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M.
J Biol Chem. 2002b Dec 27;277(52):50597-606. Epub 2002 Oct 7.
PMID 12372823
Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins.
Brownawell AM, Macara IG.
J Cell Biol. 2002 Jan 7;156(1):53-64. Epub 2002 Jan 3.
PMID 11777942
Proteomic analysis of the mammalian nuclear pore complex.
Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ.
J Cell Biol. 2002 Sep 2;158(5):915-27. Epub 2002 Aug 26.
PMID 12196509
The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein.
Denning DP, Uversky V, Patel SS, Fink AL, Rexach M.
J Biol Chem. 2002 Sep 6;277(36):33447-55. Epub 2002 Jun 13.
PMID 12065587
Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex.
Fahrenkrog B, Maco B, Fager AM, Koser J, Sauder U, Ullman KS, Aebi U.
J Struct Biol. 2002 Oct-Dec;140(1-3):254-67.
PMID 12490173
Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export.
Frosst P, Guan T, Subauste C, Hahn K, Gerace L.
J Cell Biol. 2002 Feb 18;156(4):617-30. Epub 2002 Feb 11.
PMID 11839768
Accelerating the rate of disassembly of karyopherin.cargo complexes.
Gilchrist D, Mykytka B, Rexach M.
J Biol Chem. 2002 May 17;277(20):18161-72. Epub 2002 Feb 26.
PMID 11867631
Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis.
Gould VE, Orucevic A, Zentgraf H, Gattuso P, Martinez N, Alonso A.
Hum Pathol. 2002 May;33(5):536-44.
PMID 12094380
Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus.
Gustin KE, Sarnow P.
J Virol. 2002 Sep;76(17):8787-96.
PMID 12163599
Association of the human SUMO-1 protease SENP2 with the nuclear pore.
Hang J, Dasso M.
J Biol Chem. 2002 May 31;277(22):19961-6. Epub 2002 Mar 14.
PMID 11896061
Steady-state nuclear localization of exportin-t involves RanGTP binding and two distinct nuclear pore complex interaction domains.
Kuersten S, Arts GJ, Walther TC, Englmeier L, Mattaj IW.
Mol Cell Biol. 2002 Aug;22(16):5708-20.
PMID 12138183
Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins.
Lutzmann M, Kunze R, Buerer A, Aebi U, Hurt E.
EMBO J. 2002 Feb 1;21(3):387-97.
PMID 11823431
Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm.
Pante N, Kann M.
Mol Biol Cell. 2002 Feb;13(2):425-34.
PMID 11854401
The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion.
Ribbeck K, Gorlich D.
EMBO J. 2002 Jun 3;21(11):2664-71.
PMID 12032079
The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import.
Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M.
J Cell Biol. 2002 Jul 8;158(1):63-77. Epub 2002 Jul 8.
PMID 12105182
53BP1, a mediator of the DNA damage checkpoint.
Wang B, Matsuoka S, Carpenter PB, Elledge SJ.
Science. 2002 Nov 15;298(5597):1435-8. Epub 2002 Oct 3.
PMID 12364621
Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus.
Xu L, Kang Y, Col S, Massague J.
Mol Cell. 2002 Aug;10(2):271-82.
PMID 12191473
Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex.
Zhang H, Saitoh H, Matunis MJ.
Mol Cell Biol. 2002 Sep;22(18):6498-508.
PMID 12192048
Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex.
Boehmer T, Enninga J, Dales S, Blobel G, Zhong H.
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):981-5. Epub 2003 Jan 27.
PMID 12552102
The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome.
Cronshaw JM, Matunis MJ.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5823-7. Epub 2003 May 2.
PMID 12730363
Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.
Denning DP, Patel SS, Uversky V, Fink AL, Rexach M.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2450-5. Epub 2003 Feb 25.
PMID 12604785
Clinicopathological significance of Nup88 expression in patients with colorectal cancer.
Emterling A, Skoglund J, Arbman G, Schneider J, Evertsson S, Carstensen J, Zhang H, Sun XF.
Oncology. 2003;64(4):361-9.
PMID 12759533
The nuclear pore complex: nucleocytoplasmic transport and beyond.
Fahrenkrog B, Aebi U.
Nat Rev Mol Cell Biol. 2003 Oct;4(10):757-66. (REVIEW)
PMID 14570049
Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo.
Galy V, Mattaj IW, Askjaer P.
Mol Biol Cell. 2003 Dec;14(12):5104-15. Epub 2003 Aug 22.
PMID 12937276
Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes.
Griffis ER, Xu S, Powers MA.
Mol Biol Cell. 2003 Feb;14(2):600-10.
PMID 12589057
Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores.
Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmerman E, Elbaum M, Forbes DJ.
Mol Cell. 2003 Apr;11(4):853-64.
PMID 12718872
Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex.
Hase ME, Cordes VC.
Mol Biol Cell. 2003 May;14(5):1923-40.
PMID 12802065
The COPI complex functions in nuclear envelope breakdown and is recruited by the nucleoporin Nup153.
Liu J, Prunuske AJ, Fager AM, Ullman KS.
Dev Cell. 2003 Sep;5(3):487-98.
PMID 12967567
Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor.
Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, Zuppan C, Bridge JA.
Genes Chromosomes Cancer. 2003 May;37(1):98-105.
PMID 12661011
A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.
Pyhtila B, Rexach M.
J Biol Chem. 2003 Oct 24;278(43):42699-709. Epub 2003 Aug 12.
PMID 12917401
Virtual gating and nuclear transport: the hole picture.
Rout MP, Aitchison JD, Magnasco MO, Chait BT.
Trends Cell Biol. 2003 Dec;13(12):622-8. (REVIEW)
PMID 14624840
Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport.
Stoffler D, Feja B, Fahrenkrog B, Walz J, Typke D, Aebi U.
J Mol Biol. 2003 Apr 18;328(1):119-30.
PMID 12684002
Peering through the pore: nuclear pore complex structure, assembly, and function.
Suntharalingam M, Wente SR.
Dev Cell. 2003 Jun;4(6):775-89. (REVIEW)
PMID 12791264
The conserved Nup107-160 complex is critical for nuclear pore complex assembly.
Walther TC, Alves A, Pickersgill H, Loiodice I, Hetzer M, Galy V, Hulsmann BB, Kocher T, Wilm M, Allen T, Mattaj IW, Doye V.
Cell. 2003 Apr 18;113(2):195-206.
PMID 12705868
Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1.
Bailey D, O'Hare P.
J Biol Chem. 2004 Jan 2;279(1):692-703. Epub 2003 Oct 16.
PMID 14563852
The RNA binding domain within the nucleoporin Nup153 associates preferentially with single-stranded RNA.
Ball JR, Dimaano C, Ullman KS.
RNA. 2004 Jan;10(1):19-27.
PMID 14681581
Nuclear pore complex structure and dynamics revealed by cryoelectron tomography.
Beck M, Forster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O.
Science. 2004 Nov 19;306(5700):1387-90. Epub 2004 Oct 28.
PMID 15514115
Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export.
Bernad R, van der Velde H, Fornerod M, Pickersgill H.
Mol Cell Biol. 2004 Mar;24(6):2373-84.
PMID 14993277
The nuclear pore complex: disease associations and functional correlations.
Cronshaw JM, Matunis MJ.
Trends Endocrinol Metab. 2004 Jan-Feb;15(1):34-9. (REVIEW)
PMID 14693424
Computational and biochemical identification of a nuclear pore complex binding site on the nuclear transport carrier NTF2.
Cushman I, Bowman BR, Sowa ME, Lichtarge O, Quiocho FA, Moore MS.
J Mol Biol. 2004 Nov 19;344(2):303-10.
PMID 15522285
Autoantigens of the nuclear pore complex.
Enarson P, Rattner JB, Ou Y, Miyachi K, Horigome T, Fritzler MJ.
J Mol Med (Berl). 2004 Jul;82(7):423-33. Epub 2004 Jun 3. (REVIEW)
PMID 15175862
Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome.
Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS.
Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8963-8. Epub 2004 Jun 7.
PMID 15184648
Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia.
Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, Vermeesch JR, Stul M, Dutta B, Boeckx N, Bosly A, Heimann P, Uyttebroeck A, Mentens N, Somers R, MacLeod RA, Drexler HG, Look AT, Gilliland DG, Michaux L, Vandenberghe P, Wlodarska I, Marynen P, Hagemeijer A.
Nat Genet. 2004 Oct;36(10):1084-9. Epub 2004 Sep 12.
PMID 15361874
Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility.
Griffis ER, Craige B, Dimaano C, Ullman KS, Powers MA.
Mol Biol Cell. 2004 Apr;15(4):1991-2002. Epub 2004 Jan 12.
PMID 14718558
Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments.
Kiseleva E, Allen TD, Rutherford S, Bucci M, Wente SR, Goldberg MW.
J Struct Biol. 2004 Mar;145(3):272-88.
PMID 14960378
Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.
Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC.
Mol Biol Cell. 2004 Sep;15(9):4261-77. Epub 2004 Jun 30.
PMID 15229283
Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore.
Ohba T, Schirmer EC, Nishimoto T, Gerace L.
J Cell Biol. 2004 Dec 20;167(6):1051-62.
PMID 15611332
Mapping the dynamic organization of the nuclear pore complex inside single living cells.
Rabut G, Doye V, Ellenberg J.
Nat Cell Biol. 2004 Nov;6(11):1114-21. Epub 2004 Oct 24.
PMID 15502822
Dynamics of nuclear pore complex organization through the cell cycle.
Rabut G, Lenart P, Ellenberg J.
Curr Opin Cell Biol. 2004 Jun;16(3):314-21. (REVIEW)
PMID 15145357
Minimal nuclear pore complexes define FG repeat domains essential for transport.
Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR.
Nat Cell Biol. 2004 Mar;6(3):197-206. Epub 2004 Feb 22.
PMID 15039779
Imaging of single-molecule translocation through nuclear pore complexes.
Yang W, Gelles J, Musser SM.
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12887-92. Epub 2004 Aug 11.
PMID 15306682
The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo.
Zeitler B, Weis K.
J Cell Biol. 2004 Nov 22;167(4):583-90.
PMID 15557115
The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation.
Antonin W, Franz C, Haselmann U, Antony C, Mattaj IW.
Mol Cell. 2005 Jan 7;17(1):83-92.
PMID 15629719
Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153.
Ball JR, Ullman KS.
Chromosoma. 2005 Nov;114(5):319-30. Epub 2005 Nov 12. (REVIEW)
PMID 16133350
Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex.
Hawryluk-Gara LA, Shibuya EK, Wozniak RW.
Mol Biol Cell. 2005 May;16(5):2382-94. Epub 2005 Feb 9.
PMID 15703211
Nuclear transport of single molecules: dwell times at the nuclear pore complex.
Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R.
J Cell Biol. 2005 Jan 17;168(2):233-43.
PMID 15657394
Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p.
Liu SM, Stewart M.
J Mol Biol. 2005 Jun 10;349(3):515-25. Epub 2005 Apr 19.
PMID 15878174
Reconstitution of Nup157 and Nup145N into the Nup84 complex.
Lutzmann M, Kunze R, Stangl K, Stelter P, Toth KF, Bottcher B, Hurt E.
J Biol Chem. 2005 May 6;280(18):18442-51. Epub 2005 Mar 1.
PMID 15741174
A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway.
Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N.
Nat Genet. 2005 Dec;37(12):1323-32. Epub 2005 Nov 20.
PMID 16311596
Nucleoporin domain topology is linked to the transport status of the nuclear pore complex.
Paulillo SM, Phillips EM, Koser J, Sauder U, Ullman KS, Powers MA, Fahrenkrog B.
J Mol Biol. 2005 Aug 26;351(4):784-98.
PMID 16045929
Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality.
Peters R.
Traffic. 2005 May;6(5):421-7. (REVIEW)
PMID 15813752
Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.
Reverter D, Lima CD.
Nature. 2005 Jun 2;435(7042):687-92.
PMID 15931224
Modularity within the architecture of the nuclear pore complex.
Schwartz TU.
Curr Opin Struct Biol. 2005 Apr;15(2):221-6. (REVIEW)
PMID 15837182
Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export.
Soop T, Ivarsson B, Bjorkroth B, Fomproix N, Masich S, Cordes VC, Daneholt B.
Mol Biol Cell. 2005 Dec;16(12):5610-20. Epub 2005 Sep 29.
PMID 16195343
Carrier-independent nuclear import of the transcription factor PU.1 via RanGTP-stimulated binding to Nup153.
Zhong H, Takeda A, Nazari R, Shio H, Blobel G, Yaseen NR.
J Biol Chem. 2005 Mar 18;280(11):10675-82. Epub 2005 Jan 4.
PMID 15632149
Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis.
Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, Walsh CA, Magal N, Taub E, Drasinover V, Shalev H, Attia R, Rechavi G, Simon AJ, Shohat M.
Ann Neurol. 2006 Aug;60(2):214-22.
PMID 16786527
Simple fold composition and modular architecture of the nuclear pore complex.
Devos D, Dokudovskaya S, Williams R, Alber F, Eswar N, Chait BT, Rout MP, Sali A.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2172-7. Epub 2006 Feb 6.
PMID 16461911
FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties.
Frey S, Richter RP, Gorlich D.
Science. 2006 Nov 3;314(5800):815-7.
PMID 17082456
Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates.
Hubner S, Eam JE, Hubner A, Jans DA.
Exp Cell Res. 2006 Jan 15;312(2):171-83. Epub 2005 Nov 14.
PMID 16289535
From the trap to the basket: getting to the bottom of the nuclear pore complex.
Lim RY, Aebi U, Stoffler D.
Chromosoma. 2006 Feb;115(1):15-26. Epub 2006 Jan 10.
PMID 16402261
The nuclear pore complex up close.
Lim RY, Fahrenkrog B.
Curr Opin Cell Biol. 2006 Jun;18(3):342-7. Epub 2006 May 2. (REVIEW)
PMID 16631361
Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport.
Lim RY, Huang NP, Koser J, Deng J, Lau KH, Schwarz-Herion K, Fahrenkrog B, Aebi U.
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9512-7. Epub 2006 Jun 12.
PMID 16769882
The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells.
Mansfeld J, Guttinger S, Hawryluk-Gara LA, Pante N, Mall M, Galy V, Haselmann U, Muhlhausser P, Wozniak RW, Mattaj IW, Kutay U, Antonin W.
Mol Cell. 2006 Apr 7;22(1):93-103.
PMID 16600873
Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila.
Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A.
Mol Cell. 2006 Mar 17;21(6):811-23.
PMID 16543150
Expression analysis of 6p22 genomic gain in retinoblastoma.
Orlic M, Spencer CE, Wang L, Gallie BL.
Genes Chromosomes Cancer. 2006 Jan;45(1):72-82.
PMID 16180235
Changes in nucleoporin domain topology in response to chemical effectors.
Paulillo SM, Powers MA, Ullman KS, Fahrenkrog B.
J Mol Biol. 2006 Oct 13;363(1):39-50. Epub 2006 Aug 12.
PMID 16962132
Nuclear envelope breakdown is coordinated by both Nup358/RanBP2 and Nup153, two nucleoporins with zinc finger modules.
Prunuske AJ, Liu J, Elgort S, Joseph J, Dasso M, Ullman KS.
Mol Biol Cell. 2006 Feb;17(2):760-9. Epub 2005 Nov 28.
PMID 16314393
ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division.
Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17801-6. Epub 2006 Nov 10.
PMID 17098863
Determining the architectures of macromolecular assemblies.
Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Rout MP, Sali A.
Nature. 2007a Nov 29;450(7170):683-94.
PMID 18046405
The molecular architecture of the nuclear pore complex.
Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP.
Nature. 2007b Nov 29;450(7170):695-701.
PMID 18046406
Snapshots of nuclear pore complexes in action captured by cryo-electron tomography.
Beck M, Lucic' V, Forster F, Baumeister W, Medalia O.
Nature. 2007 Oct 4;449(7162):611-5. Epub 2007 Sep 12.
PMID 17851530
Transcriptional regulation at the nuclear pore complex.
Brown CR, Silver PA.
Curr Opin Genet Dev. 2007 Apr;17(2):100-6. Epub 2007 Feb 20. (REVIEW)
PMID 17317147
Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins.
Denning DP, Rexach MF.
Mol Cell Proteomics. 2007 Feb;6(2):272-82. Epub 2006 Nov 1.
PMID 17079785
A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes.
Frey S, Gorlich D.
Cell. 2007 Aug 10;130(3):512-23.
PMID 17693259
Molecular characterization of the Ran-binding zinc finger domain of Nup153.
Higa MM, Alam SL, Sundquist WI, Ullman KS.
J Biol Chem. 2007 Jun 8;282(23):17090-100. Epub 2007 Apr 10.
PMID 17426026
Nanomechanical basis of selective gating by the nuclear pore complex.
Lim RY, Fahrenkrog B, Koser J, Schwarz-Herion K, Deng J, Aebi U.
Science. 2007 Oct 26;318(5850):640-3. Epub 2007 Oct 4.
PMID 17916694
Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex.
Patel SS, Belmont BJ, Sante JM, Rexach MF.
Cell. 2007 Apr 6;129(1):83-96.
PMID 17418788
Domain topology of the p62 complex within the 3-D architecture of the nuclear pore complex.
Schwarz-Herion K, Maco B, Sauder U, Fahrenkrog B.
J Mol Biol. 2007 Jul 20;370(4):796-806. Epub 2007 May 18.
PMID 17544442
The road to chromatin - nuclear entry of retroviruses.
Suzuki Y, Craigie R.
Nat Rev Microbiol. 2007 Mar;5(3):187-96. (REVIEW)
PMID 17304248
"Laminopathies": a wide spectrum of human diseases.
Worman HJ, Bonne G.
Exp Cell Res. 2007 Jun 10;313(10):2121-33. Epub 2007 Mar 30. (REVIEW)
PMID 17467691
Structural and functional insights into nucleocytoplasmic transport.
Beck M, Medalia O.
Histol Histopathol. 2008 Aug;23(8):1025-33. (REVIEW)
PMID 18498078
Identification of host proteins required for HIV infection through a functional genomic screen.
Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ.
Science. 2008 Feb 15;319(5865):921-6. doi: 10.1126/science.1152725. Epub 2008 Jan 10.
PMID 18187620
Structural evidence for common ancestry of the nuclear pore complex and vesicle coats.
Brohawn SG, Leksa NC, Spear ED, Rajashankar KR, Schwartz TU.
Science. 2008 Nov 28;322(5906):1369-73. doi: 10.1126/science.1165886. Epub 2008 Oct 30.
PMID 18974315
Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study.
Dange T, Grunwald D, Grunwald A, Peters R, Kubitscheck U.
J Cell Biol. 2008 Oct 6;183(1):77-86. doi: 10.1083/jcb.200806173. Epub 2008 Sep 29.
PMID 18824568
A fence-like coat for the nuclear pore membrane.
Debler EW, Ma Y, Seo HS, Hsia KC, Noriega TR, Blobel G, Hoelz A.
Mol Cell. 2008 Dec 26;32(6):815-26. doi: 10.1016/j.molcel.2008.12.001.
PMID 19111661
Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells.
Dultz E, Zanin E, Wurzenberger C, Braun M, Rabut G, Sironi L, Ellenberg J.
J Cell Biol. 2008 Mar 10;180(5):857-65. doi: 10.1083/jcb.200707026. Epub 2008 Mar 3.
PMID 18316408
Nup53 is required for nuclear envelope and nuclear pore complex assembly.
Hawryluk-Gara LA, Platani M, Santarella R, Wozniak RW, Mattaj IW.
Mol Biol Cell. 2008 Apr;19(4):1753-62. doi: 10.1091/mbc.E07-08-0820. Epub 2008 Feb 6.
PMID 18256286
Tiling resolution array CGH and high density expression profiling of urothelial carcinomas delineate genomic amplicons and candidate target genes specific for advanced tumors.
Heidenblad M, Lindgren D, Jonson T, Liedberg F, Veerla S, Chebil G, Gudjonsson S, Borg A, Mansson W, Hoglund M.
BMC Med Genomics. 2008 Jan 31;1:3. doi: 10.1186/1755-8794-1-3.
PMID 18237450
Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication.
Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK.
Cell. 2008 Oct 3;135(1):49-60. doi: 10.1016/j.cell.2008.07.032.
PMID 18854154
Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease.
Nousiainen HO, Kestila M, Pakkasjarvi N, Honkala H, Kuure S, Tallila J, Vuopala K, Ignatius J, Herva R, Peltonen L.
Nat Genet. 2008 Feb;40(2):155-7. doi: 10.1038/ng.2007.65. Epub 2008 Jan 20.
PMID 18204449
Differential targeting of nuclear pore complex proteins in poliovirus-infected cells.
Park N, Katikaneni P, Skern T, Gustin KE.
J Virol. 2008 Feb;82(4):1647-55. Epub 2007 Nov 28.
PMID 18045934
The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex.
Schrader N, Koerner C, Koessmeier K, Bangert JA, Wittinghofer A, Stoll R, Vetter IR.
Structure. 2008 Jul;16(7):1116-25. doi: 10.1016/j.str.2008.03.014.
PMID 18611384
Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death.
Zhang X, Chen S, Yoo S, Chakrabarti S, Zhang T, Ke T, Oberti C, Yong SL, Fang F, Li L, de la Fuente R, Wang L, Chen Q, Wang QK.
Cell. 2008 Dec 12;135(6):1017-27. doi: 10.1016/j.cell.2008.10.022.
PMID 19070573
Genome-scale RNAi screen for host factors required for HIV replication.
Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS.
Cell Host Microbe. 2008 Nov 13;4(5):495-504. doi: 10.1016/j.chom.2008.10.004. Epub 2008 Oct 30.
PMID 18976975
The nuclear pore complex has entered the atomic age.
Brohawn SG, Partridge JR, Whittle JR, Schwartz TU.
Structure. 2009 Sep 9;17(9):1156-68. doi: 10.1016/j.str.2009.07.014. (REVIEW)
PMID 19748337
Molecular architecture of the Nup84-Nup145C-Sec13 edge element in the nuclear pore complex lattice.
Brohawn SG, Schwartz TU.
Nat Struct Mol Biol. 2009a Nov;16(11):1173-7. doi: 10.1038/nsmb.1713. Epub 2009 Oct 25.
PMID 19855394
A lattice model of the nuclear pore complex.
Brohawn SG, Schwartz TU.
Commun Integr Biol. 2009b May;2(3):205-7.
PMID 19641729
Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants.
Busch A, Kiel T, Heupel WM, Wehnert M, Hubner S.
Exp Cell Res. 2009 Aug 15;315(14):2373-85. doi: 10.1016/j.yexcr.2009.05.003. Epub 2009 May 12.
PMID 19442658
Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells.
Fiserova J, Kiseleva E, Goldberg MW.
Plant J. 2009 Jul;59(2):243-55. doi: 10.1111/j.1365-313X.2009.03865.x. Epub 2009 Apr 11.
PMID 19392704
Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex.
Kampmann M, Blobel G.
Nat Struct Mol Biol. 2009 Jul;16(7):782-8. doi: 10.1038/nsmb.1618. Epub 2009 Jun 7.
PMID 19503077
Interaction forces and reversible collapse of a polymer brush-gated nanopore.
Lim RY, Deng J.
ACS Nano. 2009 Oct 27;3(10):2911-8. doi: 10.1021/nn900152m.
PMID 19728698
Clustering by neurocognition for fine mapping of the schizophrenia susceptibility loci on chromosome 6p.
Lin SH, Liu CM, Liu YL, Shen-Jang Fann C, Hsiao PC, Wu JY, Hung SI, Chen CH, Wu HM, Jou YS, Liu SK, Hwang TJ, Hsieh MH, Chang CC, Yang WC, Lin JJ, Chou FH, Faraone SV, Tsuang MT, Hwu HG, Chen WJ.
Genes Brain Behav. 2009 Nov;8(8):785-94. doi: 10.1111/j.1601-183X.2009.00523.x. Epub 2009 Jul 21.
PMID 19694819
Nuclear pore complex organization and nucleoporin functions
Lussi YC, Fahrenkrog B.
Nuclear transport, Landes Bioscience. 2009: 19-37.
The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis.
Mackay DR, Elgort SW, Ullman KS.
Mol Biol Cell. 2009 Mar;20(6):1652-60. doi: 10.1091/mbc.E08-08-0883. Epub 2009 Jan 21.
PMID 19158386
Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis.
Nakahara J, Kanekura K, Nawa M, Aiso S, Suzuki N.
J Clin Invest. 2009 Jan;119(1):169-81. doi: 10.1172/JCI35440. Epub 2008 Dec 22.
PMID 19104151
Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance.
Onischenko E, Stanton LH, Madrid AS, Kieselbach T, Weis K.
J Cell Biol. 2009 May 4;185(3):475-91. doi: 10.1083/jcb.200810030.
PMID 19414609
Crystallographic and biochemical analysis of the Ran-binding zinc finger domain.
Partridge JR, Schwartz TU.
J Mol Biol. 2009 Aug 14;391(2):375-89. doi: 10.1016/j.jmb.2009.06.011. Epub 2009 Jun 6.
PMID 19505478
Translocation through the nuclear pore: Kaps pave the way.
Peters R.
Bioessays. 2009 Apr;31(4):466-77. doi: 10.1002/bies.200800159.
PMID 19274657
Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex.
Seo HS, Ma Y, Debler EW, Wacker D, Kutik S, Blobel G, Hoelz A.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14281-6. doi: 10.1073/pnas.0907453106. Epub 2009 Aug 11.
PMID 19706512
SUMOylation and deSUMOylation at a glance.
Wang Y, Dasso M.
J Cell Sci. 2009 Dec 1;122(Pt 23):4249-52. doi: 10.1242/jcs.050542. (REVIEW)
PMID 19923268
Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1.
Woodward CL, Prakobwanakit S, Mosessian S, Chow SA.
J Virol. 2009 Jul;83(13):6522-33. doi: 10.1128/JVI.02061-08. Epub 2009 Apr 15.
PMID 19369352
Amyloid-like interactions within nucleoporin FG hydrogels.
Ader C, Frey S, Maas W, Schmidt HB, Gorlich D, Baldus M.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6281-5. doi: 10.1073/pnas.0910163107. Epub 2010 Mar 18.
PMID 20304795
Hydrophilic linkers and polar contacts affect aggregation of FG repeat peptides.
Dolker N, Zachariae U, Grubmuller H.
Biophys J. 2010 Jun 2;98(11):2653-61. doi: 10.1016/j.bpj.2010.02.049.
PMID 20513410
Structural analysis of a metazoan nuclear pore complex reveals a fused concentric ring architecture.
Frenkiel-Krispin D, Maco B, Aebi U, Medalia O.
J Mol Biol. 2010 Jan 22;395(3):578-86. doi: 10.1016/j.jmb.2009.11.010. Epub 2009 Nov 11.
PMID 19913035
SQSTM1-NUP214: a new gene fusion in adult T-cell acute lymphoblastic leukemia.
Gorello P, La Starza R, Di Giacomo D, Messina M, Puzzolo MC, Crescenzi B, Santoro A, Chiaretti S, Mecucci C.
Haematologica. 2010 Dec;95(12):2161-3. doi: 10.3324/haematol.2010.029769. Epub 2010 Sep 17.
PMID 20851865
Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion.
Krull S, Dorries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC.
EMBO J. 2010 May 19;29(10):1659-73. doi: 10.1038/emboj.2010.54. Epub 2010 Apr 20.
PMID 20407419
Flexible use of nuclear import pathways by HIV-1.
Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R, Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin JM, Hughes SH, Unutmaz D, Engelman A, KewalRamani VN.
Cell Host Microbe. 2010 Mar 18;7(3):221-33. doi: 10.1016/j.chom.2010.02.007.
PMID 20227665
The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1.
Lussi YC, Shumaker DK, Shimi T, Fahrenkrog B.
Nucleus. 2010 Jan-Feb;1(1):71-84. doi: 10.4161/nucl.1.1.10244.
PMID 21327106
Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint.
Mackay DR, Makise M, Ullman KS.
J Cell Biol. 2010 Nov 29;191(5):923-31. doi: 10.1083/jcb.201007124. Epub 2010 Nov 22.
PMID 21098116
Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane.
Mitchell JM, Mansfeld J, Capitanio J, Kutay U, Wozniak RW.
J Cell Biol. 2010 Nov 1;191(3):505-21. doi: 10.1083/jcb.201007098. Epub 2010 Oct 25.
PMID 20974814
Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor.
Neumann N, Lundin D, Poole AM.
PLoS One. 2010 Oct 8;5(10):e13241. doi: 10.1371/journal.pone.0013241.
PMID 20949036
The mechanism of nucleocytoplasmic transport through the nuclear pore complex.
Tetenbaum-Novatt J, Rout MP.
Cold Spring Harb Symp Quant Biol. 2010;75:567-84. doi: 10.1101/sqb.2010.75.033. Epub 2011 Mar 29.
PMID 21447814
The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex.
Theerthagiri G, Eisenhardt N, Schwarz H, Antonin W.
J Cell Biol. 2010 Jun 28;189(7):1129-42. doi: 10.1083/jcb.200912045. Epub 2010 Jun 21.
PMID 20566687
Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome.
Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A.
PLoS Genet. 2010 Feb 12;6(2):e1000846. doi: 10.1371/journal.pgen.1000846.
PMID 20174442
The nuclear pore complex and nuclear transport.
Wente SR, Rout MP.
Cold Spring Harb Perspect Biol. 2010 Oct;2(10):a000562. doi: 10.1101/cshperspect.a000562. Epub 2010 Jul 14. (REVIEW)
PMID 20630994
Recognition of nuclear targeting signals by Karyopherin-beta proteins.
Xu D, Farmer A, Chook YM.
Curr Opin Struct Biol. 2010 Dec;20(6):782-90. doi: 10.1016/ Epub 2010 Oct 13. (REVIEW)
PMID 20951026
A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins.
Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF.
Mol Cell Proteomics. 2010 Oct;9(10):2205-24. doi: 10.1074/mcp.M000035-MCP201. Epub 2010 Apr 5.
PMID 20368288
The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells.
Zhou L, Pante N.
FEBS Lett. 2010 Jul 16;584(14):3013-20. doi: 10.1016/j.febslet.2010.05.038. Epub 2010 May 24.
PMID 20561986
Distinct association of the nuclear pore protein Nup153 with A- and B-type lamins.
Al-Haboubi T, Shumaker DK, Koser J, Wehnert M, Fahrenkrog B.
Nucleus. 2011 Sep-Oct;2(5):500-9. doi: Epub 2011 Sep 1.
PMID 21983083
Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile.
Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos DP, Arumugam M, Bork P, Hurt E.
Cell. 2011 Jul 22;146(2):277-89. doi: 10.1016/j.cell.2011.06.039.
PMID 21784248
Nuclear pore complex protein mediated nuclear localization of dicer protein in human cells.
Ando Y, Tomaru Y, Morinaga A, Burroughs AM, Kawaji H, Kubosaki A, Kimura R, Tagata M, Ino Y, Hirano H, Chiba J, Suzuki H, Carninci P, Hayashizaki Y.
PLoS One. 2011;6(8):e23385. doi: 10.1371/journal.pone.0023385. Epub 2011 Aug 15.
PMID 21858095
NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights.
Gough SM, Slape CI, Aplan PD.
Blood. 2011 Dec 8;118(24):6247-57. doi: 10.1182/blood-2011-07-328880. Epub 2011 Sep 26. (REVIEW)
PMID 21948299
The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid.
Matreyek KA, Engelman A.
J Virol. 2011 Aug;85(15):7818-27. doi: 10.1128/JVI.00325-11. Epub 2011 May 18.
PMID 21593146
Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153.
Milles S, Lemke EA.
Biophys J. 2011 Oct 5;101(7):1710-9. doi: 10.1016/j.bpj.2011.08.025.
PMID 21961597
Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex.
Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MR.
PLoS Comput Biol. 2011 Jun;7(6):e1002049. doi: 10.1371/journal.pcbi.1002049. Epub 2011 Jun 2.
PMID 21673865
HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency.
Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ.
PLoS Pathog. 2011 Dec;7(12):e1002439. doi: 10.1371/journal.ppat.1002439. Epub 2011 Dec 8.
PMID 22174692
miRNA response to DNA damage.
Wan G, Mathur R, Hu X, Zhang X, Lu X.
Trends Biochem Sci. 2011 Sep;36(9):478-84. doi: 10.1016/j.tibs.2011.06.002. Epub 2011 Jul 7. (REVIEW)
PMID 21741842
The ATM kinase induces microRNA biogenesis in the DNA damage response.
Zhang X, Wan G, Berger FG, He X, Lu X.
Mol Cell. 2011 Feb 18;41(4):371-83. doi: 10.1016/j.molcel.2011.01.020.
PMID 21329876
The yeast nuclear pore complex and transport through it.
Aitchison JD, Rout MP.
Genetics. 2012 Mar;190(3):855-83. doi: 10.1534/genetics.111.127803.
PMID 22419078
Dynamics and diverse functions of nuclear pore complex proteins.
Chatel G, Fahrenkrog B.
Nucleus. 2012 Mar 1;3(2):162-71. doi: 10.4161/nucl.19674. Epub 2012 Mar 1. (REVIEW)
PMID 22555605
Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2.
Chow KH, Elgort S, Dasso M, Ullman KS.
Nucleus. 2012 Jul 1;3(4):349-58. Epub 2012 Jun 12.
PMID 22688647
A change in nuclear pore complex composition regulates cell differentiation.
D'Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH, Hetzer MW.
Dev Cell. 2012 Feb 14;22(2):446-58. doi: 10.1016/j.devcel.2011.11.021. Epub 2012 Jan 19.
PMID 22264802
A genome-wide search for non-UGT1A1 markers associated with unconjugated bilirubin level reveals significant association with a polymorphic marker near a gene of the nucleoporin family.
Datta S, Chowdhury A, Ghosh M, Das K, Jha P, Colah R, Mukerji M, Majumder PP.
Ann Hum Genet. 2012 Jan;76(1):33-41. doi: 10.1111/j.1469-1809.2011.00688.x. Epub 2011 Nov 28.
PMID 22118420
Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration.
Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, Roux P, Shorte S, Charneau P, Diaz-Griffero F, Arhel NJ.
PLoS One. 2012;7(9):e46037. doi: 10.1371/journal.pone.0046037. Epub 2012 Sep 25.
PMID 23049930
Functional architecture of the nuclear pore complex.
Grossman E, Medalia O, Zwerger M.
Annu Rev Biophys. 2012;41:557-84. doi: 10.1146/annurev-biophys-050511-102328. (REVIEW)
PMID 22577827
The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model.
Hulsmann BB, Labokha AA, Gorlich D.
Cell. 2012 Aug 17;150(4):738-51. doi: 10.1016/j.cell.2012.07.019.
PMID 22901806
The spindle assembly checkpoint.
Lara-Gonzalez P, Westhorpe FG, Taylor SS.
Curr Biol. 2012 Nov 20;22(22):R966-80. doi: 10.1016/j.cub.2012.10.006. (REVIEW)
PMID 23174302
The nucleoporin 153, a novel factor in double-strand break repair and DNA damage response.
Lemaitre C, Fischer B, Kalousi A, Hoffbeck AS, Guirouilh-Barbat J, Shahar OD, Genet D, Goldberg M, Betrand P, Lopez B, Brino L, Soutoglou E.
Oncogene. 2012 Nov 8;31(45):4803-9. doi: 10.1038/onc.2011.638. Epub 2012 Jan 16.
PMID 22249246
The human nuclear pore complex as revealed by cryo-electron tomography.
Maimon T, Elad N, Dahan I, Medalia O.
Structure. 2012 Jun 6;20(6):998-1006. doi: 10.1016/j.str.2012.03.025. Epub 2012 May 24.
PMID 22632834
The Nup153-Nup50 protein interface and its role in nuclear import.
Makise M, Mackay DR, Elgort S, Shankaran SS, Adam SA, Ullman KS.
J Biol Chem. 2012 Nov 9;287(46):38515-22. doi: 10.1074/jbc.M112.378893. Epub 2012 Sep 24.
PMID 23007389
The interaction between importin-alpha and Nup153 promotes importin-alpha/beta-mediated nuclear import.
Ogawa Y, Miyamoto Y, Oka M, Yoneda Y.
Traffic. 2012 Jul;13(7):934-46. doi: 10.1111/j.1600-0854.2012.01367.x. Epub 2012 May 14.
PMID 22510057
Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1.
Moudry P, Lukas C, Macurek L, Neumann B, Heriche JK, Pepperkok R, Ellenberg J, Hodny Z, Lukas J, Bartek J.
Cell Death Differ. 2012 May;19(5):798-807. doi: 10.1038/cdd.2011.150. Epub 2011 Nov 11.
PMID 22075984
The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes.
Sachdev R, Sieverding C, Flotenmeyer M, Antonin W.
Mol Biol Cell. 2012 Feb;23(4):740-9. doi: 10.1091/mbc.E11-09-0761. Epub 2011 Dec 14.
PMID 22171326
Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy.
Siebrasse JP, Kaminski T, Kubitscheck U.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9426-31. doi: 10.1073/pnas.1201781109. Epub 2012 May 21.
PMID 22615357
Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes.
Tarazon E, Rivera M, Rosello-Lleti E, Molina-Navarro MM, Sanchez-Lazaro IJ, Espana F, Montero JA, Lago F, Gonzalez-Juanatey JR, Portoles M.
PLoS One. 2012;7(11):e48957. doi: 10.1371/journal.pone.0048957. Epub 2012 Nov 12.
PMID 23152829
Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions.
Tetenbaum-Novatt J, Hough LE, Mironska R, McKenney AS, Rout MP.
Mol Cell Proteomics. 2012 May;11(5):31-46. doi: 10.1074/mcp.M111.013656. Epub 2012 Feb 22.
PMID 22357553
Cell division control by the Chromosomal Passenger Complex.
van der Waal MS, Hengeveld RC, van der Horst A, Lens SM.
Exp Cell Res. 2012 Jul 15;318(12):1407-20. doi: 10.1016/j.yexcr.2012.03.015. Epub 2012 Mar 24. (REVIEW)
PMID 22472345
Conserved spatial organization of FG domains in the nuclear pore complex.
Atkinson CE, Mattheyses AL, Kampmann M, Simon SM.
Biophys J. 2013 Jan 8;104(1):37-50. doi: 10.1016/j.bpj.2012.11.3823. Epub 2013 Jan 8.
PMID 23332057
Integrated structural analysis of the human nuclear pore complex scaffold.
Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andres-Pons A, Glavy JS, Beck M.
Cell. 2013 Dec 5;155(6):1233-43. doi: 10.1016/j.cell.2013.10.055.
PMID 24315095
SENP1 and SENP2 affect spatial and temporal control of sumoylation in mitosis.
Cubenas-Potts C, Goeres JD, Matunis MJ.
Mol Biol Cell. 2013 Nov;24(22):3483-95. doi: 10.1091/mbc.E13-05-0230. Epub 2013 Sep 18.
PMID 24048451
SUMO: a multifaceted modifier of chromatin structure and function.
Cubenas-Potts C, Matunis MJ.
Dev Cell. 2013 Jan 14;24(1):1-12. doi: 10.1016/j.devcel.2012.11.020. (REVIEW)
PMID 23328396
New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration.
Di Nunzio F.
Virus Res. 2013 Dec 26;178(2):187-96. doi: 10.1016/j.virusres.2013.09.003. Epub 2013 Sep 16. (REVIEW)
PMID 24051001
Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication.
Di Nunzio F, Fricke T, Miccio A, Valle-Casuso JC, Perez P, Souque P, Rizzi E, Severgnini M, Mavilio F, Charneau P, Diaz-Griffero F.
Virology. 2013 May 25;440(1):8-18. doi: 10.1016/j.virol.2013.02.008. Epub 2013 Mar 21.
PMID 23523133
Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections.
Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL.
J Virol. 2013 Mar;87(5):2390-400. doi: 10.1128/JVI.02396-12. Epub 2012 Dec 19.
PMID 23255796
A translocation t(2;8)(q12;p11) fuses FGFR1 to a novel partner gene, RANBP2/NUP358, in a myeloproliferative/myelodysplastic neoplasm.
Gervais C, Dano L, Perrusson N, Helias C, Jeandidier E, Galoisy AC, Ittel A, Herbrecht R, Bilger K, Mauvieux L.
Leukemia. 2013 Apr;27(5):1186-8. doi: 10.1038/leu.2012.286. Epub 2012 Oct 8.
PMID 23041776
Differential effects of human immunodeficiency virus type 1 capsid and cellular factors nucleoporin 153 and LEDGF/p75 on the efficiency and specificity of viral DNA integration.
Koh Y, Wu X, Ferris AL, Matreyek KA, Smith SJ, Lee K, KewalRamani VN, Hughes SH, Engelman A.
J Virol. 2013 Jan;87(1):648-58. doi: 10.1128/JVI.01148-12. Epub 2012 Oct 24.
PMID 23097450
Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity.
Matreyek KA, Yucel SS, Li X, Engelman A.
PLoS Pathog. 2013;9(10):e1003693. doi: 10.1371/journal.ppat.1003693. Epub 2013 Oct 10.
PMID 24130490
Facilitated aggregation of FG nucleoporins under molecular crowding conditions.
Milles S, Huy Bui K, Koehler C, Eltsov M, Beck M, Lemke EA.
EMBO Rep. 2013 Feb;14(2):178-83. doi: 10.1038/embor.2012.204. Epub 2012 Dec 14.
PMID 23238392
Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.
Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M.
Mol Syst Biol. 2013;9:648. doi: 10.1038/msb.2013.4.
PMID 23511206
Integrative genomic and functional profiling of the pancreatic cancer genome.
Shain AH, Salari K, Giacomini CP, Pollack JR.
BMC Genomics. 2013 Sep 16;14:624. doi: 10.1186/1471-2164-14-624.
PMID 24041470
Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging.
Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JA, Ellenberg J.
Science. 2013 Aug 9;341(6146):655-8. doi: 10.1126/science.1240672. Epub 2013 Jul 11.
PMID 23845946
The molecular architecture of the plant nuclear pore complex.
Tamura K, Hara-Nishimura I.
J Exp Bot. 2013 Feb;64(4):823-32. doi: 10.1093/jxb/ers258. Epub 2012 Sep 17. (REVIEW)
PMID 22987840
The human TREX-2 complex is stably associated with the nuclear pore basket.
Umlauf D, Bonnet J, Waharte F, Fournier M, Stierle M, Fischer B, Brino L, Devys D, Tora L.
J Cell Sci. 2013 Jun 15;126(Pt 12):2656-67. doi: 10.1242/jcs.118000. Epub 2013 Apr 16.
PMID 23591820
Crystal structures of the human G3BP1 NTF2-like domain visualize FxFG Nup repeat specificity.
Vognsen T, Moller IR, Kristensen O.
PLoS One. 2013 Dec 4;8(12):e80947. doi: 10.1371/journal.pone.0080947. eCollection 2013.
PMID 24324649
DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway.
Wan G, Zhang X, Langley RR, Liu Y, Hu X, Han C, Peng G, Ellis LM, Jones SN, Lu X.
Cell Rep. 2013 Jun 27;3(6):2100-12. doi: 10.1016/j.celrep.2013.05.038. Epub 2013 Jun 20.
PMID 23791529
In vivo analysis of human nucleoporin repeat domain interactions.
Xu S, Powers MA.
Mol Biol Cell. 2013 Apr;24(8):1222-31. doi: 10.1091/mbc.E12-08-0585. Epub 2013 Feb 20.
PMID 23427268
Intermolecular disulfide bonds between nucleoporins regulate karyopherin-dependent nuclear transport.
Yoshimura SH, Otsuka S, Kumeta M, Taga M, Takeyasu K.
J Cell Sci. 2013 Jul 15;126(Pt 14):3141-50. doi: 10.1242/jcs.124172. Epub 2013 May 2.
PMID 23641069
Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly.
Eisenhardt N, Redolfi J, Antonin W.
J Cell Sci. 2014 Feb 15;127(Pt 4):908-21. doi: 10.1242/jcs.141739. Epub 2013 Dec 20.
PMID 24363447
Nucleoporin gene fusions and hematopoietic malignancies.
Fahrenkrog B.
New Journal of Science. 2014; 10: 1-18; doi 10.1038/leu.2008.80.
The diverse roles of the Nup93/Nic96 complex proteins - structural scaffolds of the nuclear pore complex with additional cellular functions.
Vollmer B, Antonin W.
Biol Chem. 2014 May;395(5):515-28. doi: 10.1515/hsz-2013-0285. (REVIEW)
PMID 24572986
Written2014-10Vincent Duheron, Birthe Fahrenkrog
for Molecular Biology, Medicine, Universite Libre de Bruxelles, 6041 Charleroi, Belgium


This paper should be referenced as such :
Vincent Duheron, Birthe Fahrenkrog
The nuclear pore complex: structure and function
Atlas Genet Cytogenet Oncol Haematol. 2015;19(5):355-375.
Free journal version : [ pdf ]   [ DOI ]
On line version :