Department of Microbiology, Immunology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, CSRB 4-17, New Orleans, LA 70112, USA
The involvement of pertussis toxin-sensitive GPCR-dependent mechanism for in vitro biological activities of PSAP (or its active molecular derivatives such as saposin C, TX14A) has been demonstrated in a number of cell lines. In addition, using human and mouse fibroblasts and in vivo studies, it has been demonstrated that PSAP entry into the cells is also possible via at least three other independent receptor system including the mannose receptor, mannose-6-phosphate (M-6-P) receptor, and low density lipoprotein receptor-related protein (LRP). Cell type-specific distribution of any of the above receptor systems, their relative abundance, their involvement in various biological activities of soluble PSAP and/or saposin C (e.g., cell signaling, sphingolipid transport), or post-receptor occupancy events require additional studies.
Several reports have identified a number of linear 5-22 amino acid segments called prosaptides (e.g., D5, TX14A) that demonstrate in vitro and/or in vivo neurotrophic activities. These bioactive sequences are located at the downstream region of saposin C domain of PSAP. Prosaptides, saposin C, or PSAP exert their effect at least partially, by binding to a single high-affinity G protein-coupled receptor. This receptor has been partially characterized but not cloned. In malignant cells and tissues, several classic reports have indicated a pluripotent regulatory role for saposin C and PSAP in prostate cancer with potential involvement in prostate carcinogenesis or progression toward metastatic or androgen-independent state.
Immunohistochemical staining on benign and malignant prostate tissues revealed an intense cytosolic and anti-prosaposin immunoreactivity in tumor cells, stromal, endothelial, and inflammatory mononuclear cells and the intensity of staining was proportional to the overall Gleasons score. PSAP-immunoreactivity was also noticeable as extracellular deposition in hypercellular regions in high-grade prostatic tumors. In addition, PSAP and/or its active molecular derivatives (saposin C or TX14A) stimulate prostate cancer cells growth, motility, and invasion, upregulates uPA/uPAR expression, activates the p42/44 MAPK (Raf-MEK-ERK-RSK-Elk-1 signaling cascade), p38 MAPK, and SAPK/JNK family members of the MAPK superfamily and PI3K/Akt signaling pathways, and protects cells from apoptotic cell-death induction by etoposide via modulation of caspase-3, -7, and -9 expression/activity and/or the PI3K/Akt signaling pathway activation.
Accumulation of saposins (up to 80-fold) are detected in spleen, liver, and brain of individuals affected with lysosomal storage diseases (LSD) such as Gaucher disease, Niemann-Pick disease (type 1), fucosidosis, Tay-Sachs disease, and Sandhoff disease. Analysis of plasma levels of saposins in patients with LSD disorders has revealed an increase of 59%, 25%, 61%, and 57% above the 95 percentile of control population for saposin A, saposin B, saposin C, and saposin D, respectively.
Total prosaposin deficiency leads to a lethal phenotype in both man and mice. Mice with homozygous inactivation of prosaposin gene showed similar clinicopathologic pictures to the human patient with total PSAP deficiency. Among these features was intrauterine or early neonatal death in PSAP-/- mice. In other mice, severe developmental abnormalities in the nervous system and male reproductive system was detected. Neuroembryological developmental abnormalities presented as muscular weakness, trembling or shakiness of head, and ataxia of the limb and progressed to severe weakness and shaking of head and trunk and after 4 weeks they developed seizures and persistant tonic epilepsy and finally died at the age of 35 days. Evidence of lysosomal storage disease was detected by abnormal accumulation of ceramide in brain, liver, and kidney, and storage of gangliosides and ceramide and hypomyelination of the brain. Gross pathological features were also detected in the male reproductive organ including atrophy of prostate gland, testes, epididymis, seminal vesicle, and reduced spermatogenesis. Microscopic examination of the involuted prostate, seminal vesicles, and epididymis revealed the presence of rudimentary undifferentiated epithelial cells. In spite of these abnormal findings, the testosterone level was normal or even elevated.
NCBI: 5660 MIM: 176801 HGNC: 9498 Ensembl: ENSG00000197746
dbSNP: 5660 ClinVar: 5660 TCGA: ENSG00000197746 COSMIC: PSAP
Shahriar Koochekpour
PSAP (Prosaposin (variant Gaucher disease and variant metachromatic leukodystrophy))
Atlas Genet Cytogenet Oncol Haematol. 2006-09-01
Online version: http://atlasgeneticsoncology.org/gene/42980
2006-03-01 PSAP (Prosaposin (variant Gaucher disease and variant metachromatic leukodystrophy)) by Shahriar Koochekpour  Affiliation