I Le concept d'hétérochromatine II Deux types d'hétérochromatine II.1 L'hétérochromatine constitutive II.2 L'hétérochromatine facultative III Propriétés de l'hétérochromatine III.1 L'hétérochromatine est condensée : III.2 L'ADN de l'HC est de réplication tardive : III.3 L'ADN de l'HC est méthylé : III.4 Les histones de l'HC sont hypo-acétylées : III.5 Les histones de l'HC sont méthylées sur la lysine 9: III.6 L'HC est transcriptionnellement inactive: III.7 L'HC ne participe pas à la recombinaison génétique: III.8 L'hétérochromatine a l'instinct grégaire: IV Facteurs impliqués dans l'hétérochromatinisation IV.1 Les séquences répétées en tandem, un grand nombre de fois. IV.2 La méthylation de l'ADN IV.3 L'hypo-acétylation des Histones IV.4 La méthylation de H3-K9 IV.5 Les protéines HP1 IV.6 Les ARNs nucléaires V Fonctions de l'hétérochromatine V.1 Rle de l'HC dans l'organisation des domaines nucléaires. V.2 Rle de l'HC dans la fonction centromérique V.3 Rle de l'HC dans la répression génique (régulation épigénétique) VI Maladies de l'hétérochromatine VI.1 Maladies de l'hétérochromatine constitutive VI.2 Maladies de l'hétérochromatine facultative Conclusion
II.1 L'hétérochromatine constitutive II.2 L'hétérochromatine facultative
III.1 L'hétérochromatine est condensée : III.2 L'ADN de l'HC est de réplication tardive : III.3 L'ADN de l'HC est méthylé : III.4 Les histones de l'HC sont hypo-acétylées : III.5 Les histones de l'HC sont méthylées sur la lysine 9: III.6 L'HC est transcriptionnellement inactive: III.7 L'HC ne participe pas à la recombinaison génétique: III.8 L'hétérochromatine a l'instinct grégaire:
IV.1 Les séquences répétées en tandem, un grand nombre de fois. IV.2 La méthylation de l'ADN IV.3 L'hypo-acétylation des Histones IV.4 La méthylation de H3-K9 IV.5 Les protéines HP1 IV.6 Les ARNs nucléaires
V.1 Rle de l'HC dans l'organisation des domaines nucléaires. V.2 Rle de l'HC dans la fonction centromérique V.3 Rle de l'HC dans la répression génique (régulation épigénétique)
VI.1 Maladies de l'hétérochromatine constitutive VI.2 Maladies de l'hétérochromatine facultative
*
Définition de la chromatine: Chez les eucaryotes, contrairement aux procaryotes, l'ADN est empaqueté sous forme d'un complexe nucléo-protéique appelé "", qui porte le message héréditaire. Elle est localisée dans un noyau et apparat organisée en plusieurs entités distinctes que sont les chromosomes.
Le concept d'hétérochromatine En 1928, basé sur des observations exclusivement histologiques, Emil Heitz définit l'hétérochromatine (HC) comme les segments de chromosome qui apparaissent très condensés et très colorés dans le noyau interphasique. En fait, la chromatine se présente comme un enchevêtrement de fibres dont le diamètre varie, non seulement au cours du cycle cellulaire, mais aussi en fonction des régions chromosomiques observées. L'euchromatine active est constituée d'une fibre dont le diamètre correspond à celui d'un nucléosome, segment d'ADN double brin enroulé autour de 8 molécules d'histones identiques deux à deux, H2A, H2B, H3, et H4.Dans l'euchromatine inactive, cette fibre peut s'enrouler en un solénoïde gr'ce aux histones H1. Ce solénoïde est davantage organisé gr'ce à des interactions avec des protéines non-histones (topoisomérase II, la scaffold protein 2 ou SC2, les lamines...). En ce qui concerne l'hétérochromatine telle que nous l'avons définie, la fibre qui la compose est encore plus condensée, apparat souvent en agrégats, et implique de nombreuses autres protéines et notamment les protéines HP1 (heterochromatin protein 1).
Il existe deux types d'hétérochromatine, l'HC constitutive et l'HC facultative, qui présentent quelques rares différences, essentiellement liées à l'ADN qu'elles contiennent. La richesse en ADN satellite conditionne, en effet, la permanence ou la réversibilité de l'hétérochromatine, son polymorphisme éventuel et ses propriétés tinctoriales (Table I).
Table1 : Propriétés permettant de différencier l'hétérochromatine constitutive de l'hétérochromatine facultative.
II.1 L'hétérochromatine constitutive
II.2 L'hétérochromatine facultative
En dépit des quelques différences que nous venons de voir, l'HC constitutive et l'HC facultative ont des propriétés très similaires.
III.1 L'hétérochromatine est condensée :
C'est la définition même de l'hétérochromatine et elle s'applique aussi bien à l'HC constitutive qu'à l'HC facultative. Cette forte condensation entrane une intense chromophilie et la rend inaccessible à la DNAse 1 et aux enzymes de restriction en général.
III.2 L'ADN de l'HC est de réplication tardive :
III.3 L'ADN de l'HC est méthylé :
III.4 Les histones de l'HC sont hypo-acétylées :
Les histones peuvent subir des modifications post-traductionnelles, portant sur leurs extrémités N-terminales et susceptibles d'influer sur l'activité génétique de la chromatine.
III.5 Les histones de l'HC sont méthylées sur la lysine 9:
La méthylation de l'histone H3 lysine 9 (H3-K9) a très récemment été impliquée dans les processus d'hétérochromatinisation du génome, aussi bien de l'HC constitutive que l'HC facultative.
III.6 L'HC est transcriptionnellement inactive:
III.7 L'HC ne participe pas à la recombinaison génétique:
III.8 L'hétérochromatine a l'instinct grégaire:
L'étude de différents organismes montre que l'HC constitutive a une réelle tendance à s'agréger en interphase.
Cette tendance de l'hétérochomatine à s'agréger semble être fortement liée à la présence de séquences d'ADN satellite, mais pourrait impliquer aussi d'autres séquences.
Certaines observations ont permis de mieux cerner les éléments ayant un rle important dans la formation d'hétérochromatine, qu'elle soit constitutive ou facultative.
IV.1 Les séquences répétées en tandem, un grand nombre de fois.
Ces différentes observations suggèrent que la répétition d'une séquence d'ADN, en tandem, un grand nombre de fois, est capable de générer, à elle seule, la formation d'hétérochromatine. De telles séquences répétées permettraient d'atteindre un degré plus élevé de compactage de la chromatine, formant ainsi des structures particulières. Ces structures pourraient alors être reconnues par des protéines spécifiques comme les protéines HP1, et l'ensemble conduirait à la formation d'une chromatine d'un ordre supérieur.
IV.2 La méthylation de l'ADN
Les larges répétitions de transgènes ne conduisent pas toutes à une inactivation transcriptionnelle de celui-ci. Le silencing induit par les répétitions en tandem apparat être lié à la présence de séquences d'ADN procaryote, riches en CpG, susceptibles d'être méthylées. Alors, la composition en bases des séquences répétées en tandem pourrait donc jouer un rle non négligeable dans la formation d'hétérochromatine.
Fig1: La méthylation de l'ADN provoque une dé-acétylation des histones, modification qui caractérise les histones à la fois dans l'hétérochromatine et dans l'euchromatine. MeCP2 se fixe à l'ADN méthylée et recrute une HDAC qui dé-acétyle les histones.(Ac = Acetyl ; Me = Methyl ; MeCP2 = Methyl-CpG binding Protein 2 ; HDAC = Histone De-Acetylase).
IV.3 L'hypo-acétylation des Histones
Nous avons vu que l'hypo-acétylation des histones était une caractéristique de la chromatine silencieuse qu'il s'agisse ou non d'hétérochromatine. Ainsi, un blocage de la de-acétylation des histones par adjonction de trichostatine A induit une hyper-acétylation des histones, qui a pour conséquence une ouverture de la structure chromatinienne.
IV.4 La méthylation de H3-K9
La méthylation de l'histone H3 sur la lysine 9 est une modification épigénétique, très récemment démontrée comme étant impliquée dans les processus d'hétérochromatinisation, aussi bien dans l'HC constitutive que sur l'X inactif. L'enzyme responsable de la méthylation est l'histone méthyltransférase SUV39H1.
Fig 2: La méthylation de l'histone H3-K9 provoque la méthylation de l'ADN, modification qui caractérise l'ADN dans l'hétérochromatine ou dans l'euchromatine réprimée. SUVAR39H est une méthyltransférase qui méthyle spécifiquement la lysine 9 de l'histone H3. Une telle méthylation crée un site pour la protéine de l'hétérochromatine HP1 qui recrute une DNA Méthyl Transférase (DNMT), capable de méthyler le CpG de l'ADN. (Me = Methyl ; Methyl H3-K9 = Methyl sur Lysine 9 de l'Histone H3 ; HP1 = Heterochromatin Protein 1).
IV.5 Les protéines HP1
Les protéines HP1 semblent jouer un rle tout à fait particulier dans l'organisation de l'hétérochromatine. C'est essentiellement l'étude de la variégation par effet de position (effet PEV) chez la drosophile, puis l'étude des transgènes chez la drosophile et la souris qui ont permis de mieux connatre le rle joué par les protéines HP1.
Il est intéressant de noter que même dans les cas o un transgène est réprimé, non pas en raison d'un effet centromérique, mais en raison de sa forte répétition, là encore on retrouve des protéines HP1 associées à la chromatine réprimée.
IV.6 Les ARNs nucléaires
V.1 Rle de l'HC dans l'organisation des domaines nucléaires.
V.2 Rle de l'HC dans la fonction centromérique
V.3 Rle de l'HC dans la répression génique (régulation épigénétique)
L'expression génique peut être régulée à deux niveaux:
Mécanisme d'inactivation en cis: A la suite d'un réarrangement chromosomique, une région euchromatique peut être juxtaposée à une région hétérochromatique. Dans les cas o le réarrangement a enlevé certaines barrières normales protégeant l'euchromatine, la structure hétérochromatique devient capable de se propager en cis à l'euchromatine qui la jouxte, inactivant ainsi les gènes qu'elle contient. Ce mécanisme a été observé dans la variégation par effet de position (PEV) chez la Drosophile ou encore dans l'inactivation de certains transgènes chez la souris.
VI.1 Maladies de l'hétérochromatine constitutive
VI.2 Maladies de l'hétérochromatine facultative
CONCLUSION
Mattei MG, Luciani J
Atlas of Genetics and Cytogenetics in Oncology and Haematology 2003-01-01
Hétérochromatine, du Chromosome ? la Protéine
Online version: http://atlasgeneticsoncology.org/teaching/30127/h-eacute;t-eacute;rochromatine-du-chromosome-la-prot-eacute;ine