Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

RLN2 (relaxin 2)

Identity

Other namesH2
RLXH2
bA12D24.1.1
bA12D24.1.2
prorelaxin H2
HGNC (Hugo) RLN2
LocusID (NCBI) 6019
Location 9p24.1
Location_base_pair Starts at 5299866 and ends at 5304611 bp from pter ( according to hg19-Feb_2009)  [Mapping]
Local_order RLN2 is located on chromosome 9 on the reverse strand.
 
  RLN2 is located on chromosome 9 (position shown by yellow arrow).
Note See also, in the Deep Insight section: RLN2 and its role in cancer

DNA/RNA

 
  Schematic representation of the transcription of the human RLN2 gene. Adapted from Bathgate et al., 2006 (with permission). The gene is located with the RLN1, INSL4 and INSL6 genes on chromosome 9 at 9p24. The RLN2 gene consists of two exons and is transcribed to give preprorelaxin-2 mRNA. Exon I encodes for the signal peptide, the B Chain and part of the C Chain, and Exon II encodes for the remainder of the C Chain and the A chain of H2 relaxin. The arrows on the diagrams indicate the orientation of the genes. Although insulin and H2 relaxin are similar, there is no report that the insulin gene possess an intron.
Description RLN2 is a functioning gene of 4,712 bp comprising 2 exons and 1 intron.
Transcription The length of the transcript is 588bp. mRNA is expressed in high levels in ovary and placenta, and in lower levels in fibroblasts, a number of tumours, heart and brain.
Alternate splicing: 2 isoforms: P04090-1, P04090-2.
Pseudogene None but there are a number of similar genes of the same family. These include: RLN1 and RLN2 genes in a tight cluster with INSL4 and INSL6 genes on chromosome 9 at 9p24. The RLN3 gene is located on chromosome 19 at 19p13.3 in close proximity to INSL3 at 19p13.2 and the INSL5 gene is located on chromosome 1 at 1p31.1

Protein

 
  Modified from Westhuizen et al. 2008.
Characteristic two-peptide chain hormone held together by disulphide bonds (shown in yellow) which provide the tertiary form of the molecule. There is a relaxin receptor binding motif (shown in red and green).
Description Protein length of the precursor peptide is 185 amino acids with a molecular weight 21,043 Daltons.
The functional peptide has 21 amino acids in the A chain and 27 in the B chain and with a molecular weight 5,989 Daltons.
There is a specific binding motif (see diagram above) Arg-X-X-X-Arg-X-X-Ile/Val which are vital for binding and the projection from the tertiary structure is important in binding to the Type C LGR receptor (RXPF1). These receptors have a large and very distinctive ectodomain which includes an LDLa module at the far end of the N-terminus followed by a LRR domain (10 LRR). It is thought that this links with a unique hinge-like region leading into the transmembrane domain. There are seven transmembrane helices and an intracellular C-terminus.
Expression mRNA and protein found in brain, heart, skin, lungs, liver, kidney, ovary, uterus, testis, prostate and in prostatic and mammary neoplasia. Expression induced by a variety of factors in different tissues.
Localisation Cytoplasm.
Function Brain
    - Increased food intake
    - Mediates stress behaviour
    - Increased fluid intake
    - Release of a number of hypothalamic peptides including vasopressin, oxytoxcin, LH, and angiotensin II
Heart
    - Increased rate of atrial contraction
    - Increased force of atrial contraction
    - Reduced fibrosis
    - Differentiation and development
    - Release of ANP
Vasculature
    - Decreased blood pressure
    - Decreased total peripheral resistance
    - Vasodilation
Skin
    - Reduced fibosis
Lungs
    - Increased lung perfusion and gas exchange
    - Relaxes bronchi
    - Reduced fibrosis
    - Reduced degranulation mast cells
    - Reduced inflammatory leukocytes
Liver
    - Reduced fibosis
Kidney
    - Increased GFR
    - Increased ERPF
    - Increased Na+ excretion
    - Reduced fibosis
Ovary
    - Follicular ripening
    - Germ cell maturation
Uterus
    - Angiogenesis
    - Endometrial thickening
Cervix
    - Softening (shift from collagenous to more elastic tissue)
Pelvic ligaments
    - Softening (shift from collagenous to more elastic tissue)
Mammary gland
    - Differentiation and development
Prostate
    - Increased sperm motility
    - Possible role in hypertrophy and neoplastic change
Testis
    - Possible role in testicular descent in rats
Cancer
    - Angiogenesis
    - Vasodilation
    - Reduced fibrosis
    - Reduced apoptosis
Homology Generally 30-60% sequence homology is observed between relaxin 2 among species.

Mutations

Note It is assumed that the members of the relaxin-gene family are predominantly functional mutations of an original relaxin gene (RLN3) located on chromosome 19 at 19p13.3 and translocated at some stage predominantly to chromosome 9.

Implicated in

Entity Prostate cancer
Disease Prostate cancer is the most common form of carcinoma in men (Lippman et al., 2009). If left untreated, this form of cancer becomes highly metastatic, primarily to the bones and lymphatic system. RLN2 is implicated in the progression, development, and spread of prostate cancer. RLN2 increases extra-cellular matrix turnover, promotes tumor invasiveness, and neo-vascularization (Silvertown et al., 2006).
Prognosis Given that circulating relaxin increases in experimental models of prostate cancer, it is possible RLN2 may be employed as an early marker for prostate cancer and act as a screening mechanism in clinical settings. Furthermore, RLN2 exhibits the potential for genetic therapy to target and neutralize this gene as a novel treatment for prostate cancer.
Oncogenesis RLN2 has been implicated in the progression of prostate tumors. RLN2 expression is increased in prostate tumors (Silvertown et al., 2006). Antagonism with analogues of RLN2 (Silvertown et al., 2007) demonstrates antagonistic properties and impairs prostate tumor growth and development.
  
Entity Breast cancer
Disease Breast cancer is the most common form of carcinoma in women. RLN2 increases the invasiveness of breast cancer cells via the induction of matrix metalloproteinases (MMPs) (Binder et al., 2002). Circulating relaxin also increases in patients with breast cancer (Binder et al., 2004).
Prognosis Since serum relaxin concentrations are increased in patients with breast cancer, relaxin may be used as a screening tool for breast cancer. Furthermore, RLN2 may be targeted for genetic therapy as a novel treatment for breast cancer.
Oncogenesis RLN2 increases the oncogenic potential of breast cancer cells by stimulating growth, invasiveness, and metastasis.
  
Entity Thyroid cancer
Disease There are four types of thyroid cancer: papillary, folliculary, medullary, and anaplastic. While limited research has been conducted with regards to RLN2 and thyroid cancer, it is possible relaxin enhances the course and development of thyroid cancer.
Oncogenesis RLN2 acts as an autocrine/paracrine factor to enhance growth and invasiveness of thyroid cancer cells (Hombach-Klonisch et al., 2006). RLN2 may also increase motility of thyroid cancer cells thereby contributing to increased metastatic potential.
  

External links

Nomenclature
HGNC (Hugo)RLN2   10027
Cards
AtlasRLN2ID44421ch9p24
Entrez_Gene (NCBI)RLN2  6019  relaxin 2
GeneCards (Weizmann)RLN2
Ensembl (Hinxton)ENSG00000107014 [Gene_View]  chr9:5299866-5304611 [Contig_View]  RLN2 [Vega]
ICGC DataPortalENSG00000107014
cBioPortalRLN2
AceView (NCBI)RLN2
Genatlas (Paris)RLN2
WikiGenes6019
SOURCE (Princeton)NM_005059 NM_134441
Genomic and cartography
GoldenPath (UCSC)RLN2  -  9p24.1   chr9:5299866-5304611 -  9p24.1   [Description]    (hg19-Feb_2009)
EnsemblRLN2 - 9p24.1 [CytoView]
Mapping of homologs : NCBIRLN2 [Mapview]
OMIM179740   
Gene and transcription
Genbank (Entrez)A06925 A17315 AA935560 AF057706 AI033912
RefSeq transcript (Entrez)NM_005059 NM_134441
RefSeq genomic (Entrez)AC_000141 NC_000009 NC_018920 NT_008413 NW_001839149 NW_004929342
Consensus coding sequences : CCDS (NCBI)RLN2
Cluster EST : UnigeneHs.127032 [ NCBI ]
CGAP (NCI)Hs.127032
Alternative Splicing : Fast-db (Paris)GSHG0030650
Alternative Splicing GalleryENSG00000107014
Gene ExpressionRLN2 [ NCBI-GEO ]     RLN2 [ SEEK ]   RLN2 [ MEM ]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP04090 (Uniprot)
NextProtP04090  [Medical]
With graphics : InterProP04090
Splice isoforms : SwissVarP04090 (Swissvar)
Domaine pattern : Prosite (Expaxy)INSULIN (PS00262)   
Domains : Interpro (EBI)Insulin-like [organisation]   Insulin_CS [organisation]   Insulin_family [organisation]   Relaxin [organisation]  
Related proteins : CluSTrP04090
Domain families : Pfam (Sanger)Insulin (PF00049)   
Domain families : Pfam (NCBI)pfam00049   
Domain families : Smart (EMBL)IlGF (SM00078)  
DMDM Disease mutations6019
Blocks (Seattle)P04090
PDB (SRS)6RLX   
PDB (PDBSum)6RLX   
PDB (IMB)6RLX   
PDB (RSDB)6RLX   
Human Protein AtlasENSG00000107014 [gene] [tissue] [antibody] [cell] [cancer]
Peptide AtlasP04090
HPRD01561
IPIIPI00021836   IPI00218018   
Protein Interaction databases
DIP (DOE-UCLA)P04090
IntAct (EBI)P04090
FunCoupENSG00000107014
BioGRIDRLN2
InParanoidP04090
Interologous Interaction database P04090
IntegromeDBRLN2
STRING (EMBL)RLN2
Ontologies - Pathways
Ontology : AmiGOhormone activity  extracellular region  female pregnancy  
Ontology : EGO-EBIhormone activity  extracellular region  female pregnancy  
Protein Interaction DatabaseRLN2
Wikipedia pathwaysRLN2
Gene fusion - rearrangments
Polymorphisms : SNP, mutations, diseases
SNP Single Nucleotide Polymorphism (NCBI)RLN2
snp3D : Map Gene to Disease6019
SNP (GeneSNP Utah)RLN2
SNP : HGBaseRLN2
Genetic variants : HAPMAPRLN2
Exome VariantRLN2
1000_GenomesRLN2 
ICGC programENSG00000107014 
Somatic Mutations in Cancer : COSMICRLN2 
CONAN: Copy Number AnalysisRLN2 
Mutations and Diseases : HGMDRLN2
Genomic VariantsRLN2  RLN2 [DGVbeta]
dbVarRLN2
ClinVarRLN2
Pred. of missensesPolyPhen-2  SIFT(SG)  SIFT(JCVI)  Align-GVGD  MutAssessor  Mutanalyser  
Pred. splicesGeneSplicer  Human Splicing Finder  MaxEntScan  
Diseases
OMIM179740   
MedgenRLN2
GENETestsRLN2
Disease Genetic AssociationRLN2
Huge Navigator RLN2 [HugePedia]  RLN2 [HugeCancerGEM]
General knowledge
Homologs : HomoloGeneRLN2
Homology/Alignments : Family Browser (UCSC)RLN2
Phylogenetic Trees/Animal Genes : TreeFamRLN2
Chemical/Protein Interactions : CTD6019
Chemical/Pharm GKB GenePA34400
Clinical trialRLN2
Cancer Resource (Charite)ENSG00000107014
Other databases
Probes
Litterature
PubMed74 Pubmed reference(s) in Entrez
CoreMineRLN2
iHOPRLN2

Bibliography

Two human relaxin genes are on chromosome 9.
Crawford RJ, Hudson P, Shine J, Niall HD, Eddy RL, Shows TB.
EMBO J. 1984 Oct;3(10):2341-5.
PMID 6548703
 
Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones.
Hudson P, John M, Crawford R, Haralambidis J, Scanlon D, Gorman J, Tregear G, Shine J, Niall H.
EMBO J. 1984 Oct;3(10):2333-9.
PMID 6548702
 
Structural characterization by mass spectrometry of native and recombinant human relaxin.
Stults JT, Bourell JH, Canova-Davis E, Ling VT, Laramee GR, Winslow JW, Griffin PR, Rinderknecht E, Vandlen RL.
Biomed Environ Mass Spectrom. 1990 Nov;19(11):655-64.
PMID 2076464
 
X-ray structure of human relaxin at 1.5 A. Comparison to insulin and implications for receptor binding determinants.
Eigenbrot C, Randal M, Quan C, Burnier J, O'Connell L, Rinderknecht E, Kossiakoff AA.
J Mol Biol. 1991 Sep 5;221(1):15-21.
PMID 1656049
 
Expression of the human relaxin H1 gene in the decidua, trophoblast, and prostate.
Hansell DJ, Bryant-Greenwood GD, Greenwood FC.
J Clin Endocrinol Metab. 1991 Apr;72(4):899-904.
PMID 2005217
 
Relaxin: structures, functions, promises, and nonevolution.
Schwabe C, Bullesbach EE.
FASEB J. 1994 Nov;8(14):1152-60.
PMID 7958621
 
Relaxin gene expression in human reproductive tissues by in situ hybridization.
Bogic LV, Mandel M, Bryant-Greenwood GD.
J Clin Endocrinol Metab. 1995 Jan;80(1):130-7.
PMID 7829601
 
Expression of human relaxin genes: characterization of a novel alternatively-spliced human relaxin mRNA species.
Gunnersen JM, Fu P, Roche PJ, Tregear GW.
Mol Cell Endocrinol. 1996 Apr 19;118(1-2):85-94.
PMID 8735594
 
An autocrine/paracrine role of human decidual relaxin. I. Interstitial collagenase (matrix metalloproteinase-1) and tissue plasminogen activator.
Qin X, Garibay-Tupas J, Chua PK, Cachola L, Bryant-Greenwood GD.
Biol Reprod. 1997 Apr;56(4):800-11.
PMID 9096859
 
The INSL4 gene maps close to WI-5527 at 9p24.1-->p23.3 clustered with two relaxin genes and outside the critical region for the monosomy 9p syndrome.
Veitia R, Laurent A, Quintana-Murci L, Ottolenghi C, Fellous M, Vidaud M, McElreavey K.
Cytogenet Cell Genet. 1998;81(3-4):275-7.
PMID 9730618
 
Analysis of the 5'-upstream regions of the human relaxin H1 and H2 genes and their chromosomal localization on chromosome 9p24.1 by radiation hybrid and breakpoint mapping.
Garibay-Tupas JL, Csiszar K, Fox M, Povey S, Bryant-Greenwood GD.
J Mol Endocrinol. 1999 Dec;23(3):355-65.
PMID 10601981
 
Isolation and analysis of the 3'-untranslated regions of the human relaxin H1 and H2 genes.
Garibay-Tupas JL, Bao S, Kim MT, Tashima LS, Bryant-Greenwood GD.
J Mol Endocrinol. 2000 Apr;24(2):241-52.
PMID 10750025
 
Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases.
Binder C, Hagemann T, Husen B, Schulz M, Einspanier A.
Mol Hum Reprod. 2002 Sep;8(9):789-96.
PMID 12200455
 
Adenovirus-mediated expression of human prorelaxin promotes the invasive potential of canine mammary cancer cells.
Silvertown JD, Geddes BJ, Summerlee AJ.
Endocrinology. 2003 Aug;144(8):3683-91.
PMID 12865351
 
Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients.
Binder C, Simon A, Binder L, Hagemann T, Schulz M, Emons G, Trumper L, Einspanier A.
Breast Cancer Res Treat. 2004 Sep;87(2):157-66.
PMID 15377840
 
DNA sequence and analysis of human chromosome 9.
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I.
Nature. 2004 May 27;429(6990):369-74.
PMID 15164053
 
Demonstration of upregulated H2 relaxin mRNA expression during neuroendocrine differentiation of LNCaP prostate cancer cells and production of biologically active mammalian recombinant 6 histidine-tagged H2 relaxin.
Figueiredo KA, Palmer JB, Mui AL, Nelson CC, Cox ME.
Ann N Y Acad Sci. 2005 May;1041:320-7.
PMID 15956728
 
Signaling pathways of the LGR7 and LGR8 receptors determined by reporter genes.
Halls ML, Bathgate RA, Roche PJ, Summers RJ.
Ann N Y Acad Sci. 2005 May;1041:292-5.
PMID 15956720
 
Signal switching after stimulation of LGR7 receptors by human relaxin 2.
Halls ML, Bathgate RA, Summers RJ.
Ann N Y Acad Sci. 2005 May;1041:288-91.
PMID 15956719
 
INSL3 in the benign hyperplastic and neoplastic human prostate gland.
Klonisch T, Muller-Huesmann H, Riedel M, Kehlen A, Bialek J, Radestock Y, Holzhausen HJ, Steger K, Ludwig M, Weidner W, Hoang-Vu C, Hombach-Klonisch S.
Int J Oncol. 2005 Aug;27(2):307-15.
PMID 16010410
 
Relaxin downregulates the calcium binding protein S100A4 in MDA-MB-231 human breast cancer cells.
Radestock Y, Hoang-Vu C, Hombach-Klonisch S.
Ann N Y Acad Sci. 2005 May;1041:462-9.
PMID 15956747
 
Physiology and molecular biology of the relaxin peptide family.
Bathgate RAD, Hsueh AJW, Sherwood OD.
Knobil and Neilis Physiology of Reproduction. Third Edition. Ed: JD Neill, Elsevier Holland;2006:679-768.
 
Relaxin enhances the oncogenic potential of human thyroid carcinoma cells.
Hombach-Klonisch S, Bialek J, Trojanowicz B, Weber E, Holzhausen HJ, Silvertown JD, Summerlee AJ, Dralle H, Hoang-Vu C, Klonisch T.
Am J Pathol. 2006 Aug;169(2):617-32.
PMID 16877360
 
H2 relaxin overexpression increases in vivo prostate xenograft tumor growth and angiogenesis.
Silvertown JD, Ng J, Sato T, Summerlee AJ, Medin JA.
Int J Cancer. 2006 Jan 1;118(1):62-73.
PMID 16049981
 
Gateways to clinical trials.
Bayes M, Rabasseda X, Prous JR.
Methods Find Exp Clin Pharmacol. 2007 Dec;29(10):697-735.
PMID 18200333
 
Relaxin promotes prostate cancer progression.
Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM, Agoulnik AI.
Clin Cancer Res. 2007 Mar 15;13(6):1695-702.
PMID 17363522
 
Effects of recombinant H2 relaxin on the expression of matrix metalloproteinases and tissue inhibitor metalloproteinase in cultured early placental extravillous trophoblasts.
Maruo N, Nakabayashi K, Wakahashi S, Yata A, Maruo T.
Endocrine. 2007 Dec;32(3):303-10. Epub 2008 Jan 31.
PMID 18236174
 
Analog of H2 relaxin exhibits antagonistic properties and impairs prostate tumor growth.
Silvertown JD, Symes JC, Neschadim A, Nonaka T, Kao JC, Summerlee AJ, Medin JA.
FASEB J. 2007 Mar;21(3):754-65. Epub 2006 Dec 28.
PMID 17197386
 
Inappropriate activation of androgen receptor by relaxin via beta-catenin pathway.
Liu S, Vinall RL, Tepper C, Shi XB, Xue LR, Ma AH, Wang LY, Fitzgerald LD, Wu Z, Gandour-Edwards R, deVere White RW, Kung HJ.
Oncogene. 2008 Jan 17;27(4):499-505. Epub 2007 Jul 23.
PMID 17653089
 
Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells.
Radestock Y, Hoang-Vu C, Hombach-Klonisch S.
Breast Cancer Res. 2008;10(4):R71. Epub 2008 Aug 21.
PMID 18718015
 
Relaxin family peptide receptors--from orphans to therapeutic targets.
van der Westhuizen ET, Halls ML, Samuel CS, Bathgate RA, Unemori EN, Sutton SW, Summers RJ.
Drug Discov Today. 2008 Aug;13(15-16):640-51. Epub 2008 Jun 6. (REVIEW)
PMID 18675759
 
Estrogen and TCDD influence RLN2 gene activity in estrogen receptor-positive human breast cancer cells.
Kietz S, Feng S, Agoulnik A, Hombach-Klonisch S.
Ann N Y Acad Sci. 2009 Apr;1160:367-73.
PMID 19416221
 
Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT).
Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD 3rd, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr.
JAMA. 2009 Jan 7;301(1):39-51. Epub 2008 Dec 9.
PMID 19066370
 
Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2.
Mookerjee I, Hewitson TD, Halls ML, Summers RJ, Mathai ML, Bathgate RA, Tregear GW, Samuel CS.
FASEB J. 2009 Apr;23(4):1219-29. Epub 2008 Dec 10.
PMID 19073841
 
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

Contributor(s)

Written11-2009Jordan M Willcox, Alastair JS Summerlee
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Citation

This paper should be referenced as such :
Willcox, JM ; Summerlee, AJS
RLN2 (relaxin 2)
Atlas Genet Cytogenet Oncol Haematol. 2010;14(9):-.
Free online version   Free pdf version   [Bibliographic record ]
URL : http://AtlasGeneticsOncology.org/Genes/RLN2ID44421ch9p24.html

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Jul 11 17:16:21 CEST 2014

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.