1.Institute of Medical Oncology, University of Bern, 3010 Bern, Switzerland (DCB)
SCLC cells are small and round to fusiform with scant cytoplasm. The relatively large round, oval or fusiform nucleus contains finely stippled chromatin and nucleoli may be inconspicuous or absent. The tumour cells, which have a high mitotic index, often grow in sheets but they may be arranged in ribbons or rosettes. Small cell carcinomas frequently express markers of neuroendocrine differentiation such as creatine kinase-BB, chromogranin and neuron specific enolase. They may also express small peptide hormones such as gastrin-releasing peptide, calcitonin and serotonin. As significant differences exist in the treatment of SCLC and NSCLC, the distinction of SCLC from other neuroendocrine lesions (such as large cell neuroendocrine carcinoma) is important. No pre-malignant states have been identified for small cell tumours.
Although in the future, gene expression profiling is likely to define new disease subdivisions with variable drug sensitivities and outcomes, only two subtypes of SCLC are currently discriminated:
StagingUsing molecular analyses, malignant cells can be demonstrated at distant sites in all cases of diagnosed SCLC and patients should therefore receive combination chemotherapy as part of their treatment. Staging of the disease, although not carried out in order to identify a subset of patients who might be treated with local therapy, is nevertheless useful to direct treatment and predict prognosis. Bronchoscopy usually allows biopsy of the primary tumour which defines the diagnosis but if malignant small cells are detected cytologically in the sputum, this may be unnecessary.
The most important prognostic factors are tumour extent (extensive disease), performance status, elevated LDH and alkaline phosphatase, and decreased sodium level (Manchester Score). Cure is rare even in limited disease (10%); disease-free survivals at 2 years are 30% and 3% for limited and extensive disease, respectively.
In addition to these changes, extra-chromosomal double minutes and intra-chromosomal homogeneously staining regions have sometimes been observed, especially in SCLC cell lines and especially in tumours from chemotherapy-treated patients. These characteristic structures, indicative of somatic gene amplification, generally encode multiple copies of MYC family genes.
Comparative genomic hybridisation (CGH) has been used to extend conventional karyotypic analysis in SCLC. Prominent imbalances seen in several studies include losses of chromosomes 3, 4, 5, 8, 10, 13 and 17 with the most frequently implicated regions being 3p13-14, 4q32-35, 5q32-35, 8p21-22, 10q25, 13q13-14 and 17p12-13. Common gains include 3q, 5p, 8q and 19q with the most commonly involved sub-regions being 3q26-29, 5p12-13, 8q23-24 and 19q13.1.
Using molecular probes, the loss of material from the short arm of chromosome 3 has been shown to occur in almost 100% of SCLCs. This striking loss may occur in the earliest stages of malignancy: in histologically normal and pre-neoplastic smoking damaged epithelia. A number of different regions of 3p have subsequently been highlighted by high density allelotyping leading to the hypothesis that multiple tumour suppressor genes involved in lung cancer pathogenesis may be localised to 3p. Whilst many candidates have been considered (including FHIT, RASSF1 and FUS1) none show consistent coding sequence mutation in SCLC. However, a number of these candidate sequences show epigenetic differences between tumour and normal cells which may implicate them pathologically.
Jim Heighway ; Daniel C Betticher
Lung: small cell cancer
Atlas Genet Cytogenet Oncol Haematol. 2004-06-01
Online version: http://atlasgeneticsoncology.org/solid-tumor/5142/img/tumors-explorer/favicon/manifest.json