PAX6 (paired box 6)

2009-08-01   Yi-Hong Zhou 

Department of Neurological Surgery, Department of Biological Chemistry (joint), University of California, Irvine, Med Sci I, Room C214, Irvine, CA 92697, USA

Identity

HGNC
LOCATION
11p13
LOCUSID
ALIAS
AN,AN1,AN2,ASGD5,D11S812E,FVH1,MGDA,WAGR
FUSION GENES

DNA/RNA

Atlas Image

Description

The PAX6 coding region extends over a genomic interval of 16-17 kb and comprise 10 (isoform a) and 11 exons (isoform b).

Transcription

Three transcripts have been identified, originating from alternative promoter usage (variant 3) or alternative splicing (variant 2, additional in-frame coding 42 bp exon downstream of exon 5 of variant 1); transcription is from centromere to telomere.

Proteins

Atlas Image
There are two isoforms of PAX6, PAX6a and PAX6b with additional 14 extra amino acids in the paired box DNA binding domain. PAX6a, 423 amino acids, ~47 kDa; PAX6b, 436 amino acids, ~49 kDa.

Description

PAX6 belongs to the paired box family of transcription factors, contains two DNA binding domains, a paired box (PD) and a paired-type homeodomain (HD), and a carboxyl-terminal transactivation domain rich of proline, serine, and threonine (PST).

Expression

PAX6, predominately in form of PAX6a, is expressed in the developing sensory organs (including eye, nasal and olfactory tissues), central nervous system (including forebrain, hindbrain, and spinal cord), and endocrine system (including anterior pituitary gland and pancreas) in human and rodent (Walther and Gruss., 1991; Stoykova and Gruss., 1994; Davis and Reed., 1996; Terzic and Saraga-Babic., 1999; Pinson et al., 2005). PAX6 expression is sustained into adulthood in certain areas of the brain, including, hippocampal dentate gyrus (Maekawa et al., 2005; Nacher et al., 2005), ependymal layer and the subventricular zone of the lateral ventricle (Hack et al., 2005; Kohwi et al., 2005), radial glia-like cells (Gubert et al., 2009), and in mature endocrine cells in pancreas (St-Onge et al., 1997). PAX6 transcription is regulated by two promoters, P0 and P1, which are remarkably conserved in evolution in both of their nucleotide sequence arrangement and functional control of special and temporal expression of PAX6 in development (Xu and Saunders, 1997; Okladnova et al., 1998a; Williams et al., 1998; Xu and Saunders, 1998; Kammandel et al., 1999; Plaza et al., 1999a; Xu et al., 1999; Tyas et al., 2006), involving multiple transcription factors, such as POU factor Brn-3B, TFCP2, SP1, the basic helix-loop-helix transcription factor NeuroD/BETA2, CCCTC binding factor CTCF, PPARgamma (Plaza et al., 1999b; Zheng et al., 2001; Schinner et al., 2002; Marsich et al., 2003; Li et al., 2006; Wu et al., 2006). PAX6 expression is also regulated by a long range downstream enhancer (Kleinjan et al., 2006) and is under autoregulation (Grocott et al., 2007) and post modification by HIPK2 and protein phosphatase 1 (Kim et al., 2006; Yan et al., 2007). A promoter-associated polymorphic repeat was found to modulate PAX6 expression in human brain (Okladnova et al., 1998b).

Localisation

Nuclear.

Function

Loss of Pax6 function in rodent mutant and knock-out model revealed that Pax6 is a key regulator of a multitude of developmental processes of sensory system, including eye, nasal and olfactory (Hill et al., 1991; Grindley et al., 1995; Quinn et al., 1996; van Raamsdonk and Tilghman, 2000; Singh et al., 2002; van Heyningen and Williamson, 2002; Collinson et al., 2003; Davis et al., 2003; Brill et al., 2008), CNS (Matsuo et al., 1993; Schmahl et al., 1993; Stoykova et al., 1996; Grindley et al., 1997; Osumi et al., 1997; Mastick et al., 1997; Warren and Price, 1997; Gotz et al., 1998; Sun et al., 1998; Engelkamp et al., 1999; Kawano et al., 1999; Pratt et al., 2000; Stoykova et al., 2000; Estivill-Torrus et al., 2002; Pratt et al., 2002; Talamillo et al., 2003; Quinn et al., 2007), pituitary (Bentley et al., 1999; Kioussi et al., 1999) and pancreas (Sander et al., 1997; St-Onge et al., 1997; Dohrmann et al., 2000; Zhang et al., 2003). Pax6 function in development of fundamental sensory processes and central nervous system, particularly of the photoreceptive organ, are remarkably conserved in evolution (Halder et al., 1995; Gehring et al., 2005). PAX6 funciton in development were found to be under control of Shh, notch and EGFR signaling (Ericson et al., 1997; Kumar and Moses, 2001; Onuma et al., 2002; Li and Lu, 2005), essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system (Warren et al., 1999; Bishop et al., 2000; Toresson et al., 2000; Marquardt et al., 2001; Yamasaki et al., 2001; Yun et al., 2001; Estivill-Torrus et al., 2002; Heins et al., 2002; Simpson and Price, 2002; Tyas et al., 2003; Collinson et al., 2004; Haubst et al., 2004; Nomura and Osumi, 2004; Schuurmans et al., 2004; Maekawa et al., 2005; Bel-Vialar et al., 2007; Duparc et al., 2007; Quinn et al., 2007; Canto-Soler et al., 2008; Oron-Karni et al., 2008; Osumi et al., 2008), and appears to control the balance between neural stem cell self-renewal and neurogenesis under a dose-dependent manner (Sansom et al., 2009).
PAX6 binds as a monomer to relatively long (15-22 bp) DNA binding sites, and the 14 aa insertion in the paired domain allows different binding affinity to DNA sequences between PAX6a and PAX6b (Epstein et al., 1994a; Epstein et al., 1994b). Through binding to different DNA sequences via usage of various DNA binding motifs alone or in combination, PAX6 controls the expression of various downstream target genes involved in complex gene regulatory networks for cell proliferation, adhesion, migration, and neurogenesis (Schmahl et al., 1993; Caric et al., 1997; Sander et al., 1997; Sax et al., 1997; Tang et al., 1997; Duncan et al., 1998; Beimesche et al., 1999; Meech et al., 1999; Singh et al., 2000; Sivak et al., 2000; Zhou et al., 2000; Chauhan et al., 2002; Mishra et al., 2002; Skala-Rubinson et al., 2002; Zhou et al., 2002; Andrews and Mastick, 2003; Davis et al., 2003; Horie et al., 2003; Tyas et al., 2003; Cvekl et al., 2004; Grinchuk et al., 2005; Mayes et al., 2006; Holm et al., 2007; Tuoc and Stoykova, 2008). Not only reduced, but also increases level of PAX6 gene dosage also cause defects in developmental processes that are sensitive to PAX6 dosage, including eye organogenesis and corticogenesis (Schedl et al., 1996; Berger et al., 2007; Manuel et al., 2007).

Homology

PAX6 shares homology through the conserved paired box domain with the other members of the nine PAX gene family.

Mutations

Germinal

Heterozygous intragenic mutation of PAX6, that causes loss of function of one copy of the PAX6 gene, is the cause of aniridia syndrome (Ton et al., 1991; Glaser et al., 1992; Prosser and van Heyningen, 1998; Robinson et al., 2008; Hingorani et al., 2009; MRC Human Genetics Unit) and cerebral malformation, olfactory dysfunction, absence of the pineal gland and unilateral polymicrogyria (Sisodiya et al., 2001; Free et al., 2003; Mitchell et al., 2003; Bamiou et al., 2007a; Bamiou et al., 2007b).
PAX6 3 deletion also results in aniridia, autism and mental retardation (Davis et al., 2008).

Implicated in

Entity name
Brain cancer
Note
The expression level of PAX6 in human glioma cell lines was shown to be negatively associated with the degree of tumorigenicity. PAX6 expression level is lower in glioblastoma compared to the adjacent normal tissue and to the anaplastic astrocytoma previously formed in the same patient (Zhou et al., 2003). Ectopic expression of PAX6 in glioma cell lines suppressed cell anchorage independent growth, ability to survive under oxidative stress induced by cell detachment, ability to invade partially by suppression of MMP2 gene expression, ability to induce angiogenesis by initiating a new signaling pathway independent of PI3K/Akt-HIF1A signaling to suppress VEGFA, and overall tumor growth after intracranial implantation in immunocompromised mouse brain (Zhou et al., 2005; Mayes et al., 2006; Chang et al., 2007; Zhou et al., 2009). Mutation analysis for PAX6 in gliomas failed to identify PAX6 mutation in its coding and regulating regions, suggesting involvement of epigenetic mechanisms in the silencing of PAX6 in glioma (Pinto et al., 2007). PAX6 expression is activated in glioma cell line with re-introduction of a normal ch.10, suggesting that PAX6 is regulated by a gene(s) on ch.10 (Zhou et al., 2005).
Prognosis
PAX6 is a factor related to a longer survival prognosis for astrocytic gliomas (Zhou et al., 2003).
Entity name
Pancreatic cancer
Note
PAX6 is expressed in pancreatic adenocarcinoma and is downregulated during induction of terminal differentiation (Lang et al., 2008). In pancreatic carcinoma cell lines, PAX6 bind directly to an enhancer element in the MET promoter and activate the expression of the MET gene (Mascarenhas et al., 2009).
Entity name
Bladder cancer
Note
Methylation of PAX6-promoters is increased in early bladder cancer and in normal mucosa adjacent to pTa tumours (Hellwinkel et al., 2008).
Entity name
Familial adenomatous polyposis (FAP) related carcinoma
Note
PAX6 gene is methylated in FAP-related carcinoma. Patients with familial adenomatous polyposis (FAP) have a high risk of developing duodenal carcinomas (Berkhout et al., 2007).
Entity name
WAGR syndrome
Note
WAGR syndrome can have aniridia due to deletion of chromosome 11 including PAX6 (Gronskov et al., 2001; Chao et al., 2003). However, PAX6 mutation is only found in aniridia patient, not WAGR syndrome associated anomalies (Robinson et al., 2008).

Bibliography

Pubmed IDLast YearTitleAuthors

Other Information

Locus ID:

NCBI: 5080
MIM: 607108
HGNC: 8620
Ensembl: ENSG00000007372

Variants:

dbSNP: 5080
ClinVar: 5080
TCGA: ENSG00000007372
COSMIC: PAX6

RNA/Proteins

Gene IDTranscript IDUniprot
ENSG00000007372ENST00000241001P26367
ENSG00000007372ENST00000241001Q66SS1
ENSG00000007372ENST00000379107P26367
ENSG00000007372ENST00000379107F1T0F8
ENSG00000007372ENST00000379109P26367
ENSG00000007372ENST00000379109Q66SS1
ENSG00000007372ENST00000379111A0A1W2PQA8
ENSG00000007372ENST00000379115A0A1X7SBT0
ENSG00000007372ENST00000379123A0A1W2PPJ2
ENSG00000007372ENST00000379129P26367
ENSG00000007372ENST00000379129F1T0F8
ENSG00000007372ENST00000379132P26367
ENSG00000007372ENST00000379132Q66SS1
ENSG00000007372ENST00000419022P26367
ENSG00000007372ENST00000419022F1T0F8
ENSG00000007372ENST00000423822B1B1I9
ENSG00000007372ENST00000438681B1B1I8
ENSG00000007372ENST00000455099B1B1J0
ENSG00000007372ENST00000481563A0A1W2PRA8
ENSG00000007372ENST00000524853E9PKM0
ENSG00000007372ENST00000606377P26367
ENSG00000007372ENST00000606377F1T0F8
ENSG00000007372ENST00000638250A0A1W2PPJ2
ENSG00000007372ENST00000638346A0A1W2PP27
ENSG00000007372ENST00000638629A0A1W2PRA8
ENSG00000007372ENST00000638685A0A1W2PRH6
ENSG00000007372ENST00000638696A0A1W2PS91
ENSG00000007372ENST00000638755A0A1W2PQM7
ENSG00000007372ENST00000638762A0A1W2PPG3
ENSG00000007372ENST00000638802A0A1W2PRU4
ENSG00000007372ENST00000638853A0A1W2PQ31
ENSG00000007372ENST00000638878A0A1W2PQG3
ENSG00000007372ENST00000638914P26367
ENSG00000007372ENST00000638914F1T0F8
ENSG00000007372ENST00000638963A0A1W2PQG7
ENSG00000007372ENST00000638965A0A1W2PSB5
ENSG00000007372ENST00000639006A0A1W2PP89
ENSG00000007372ENST00000639034D1KF47
ENSG00000007372ENST00000639061A0A1W2PPH0
ENSG00000007372ENST00000639079A0A1W2PQJ8
ENSG00000007372ENST00000639109A0A1W2PQ31
ENSG00000007372ENST00000639386A0A1W2PRA8
ENSG00000007372ENST00000639394A0A1W2PQW3
ENSG00000007372ENST00000639409P26367
ENSG00000007372ENST00000639409F1T0F8
ENSG00000007372ENST00000639548A0A1W2PRA8
ENSG00000007372ENST00000639916P26367
ENSG00000007372ENST00000639916Q66SS1
ENSG00000007372ENST00000639920A0A1W2PR58
ENSG00000007372ENST00000639943A0A1W2PPM5
ENSG00000007372ENST00000639950A0A1W2PQA8
ENSG00000007372ENST00000640125A0A1W2PRA8
ENSG00000007372ENST00000640242A0A1W2PRS6
ENSG00000007372ENST00000640287P26367
ENSG00000007372ENST00000640287Q66SS1
ENSG00000007372ENST00000640335A0A1W2PRW7
ENSG00000007372ENST00000640368P26367
ENSG00000007372ENST00000640368F1T0F8
ENSG00000007372ENST00000640431A0A1W2PQL7
ENSG00000007372ENST00000640460A0A1W2PSA8
ENSG00000007372ENST00000640610P26367
ENSG00000007372ENST00000640610Q66SS1
ENSG00000007372ENST00000640613A0A1W2PRG3
ENSG00000007372ENST00000640684A0A1W2PPN2
ENSG00000007372ENST00000640766A0A1W2PPH0
ENSG00000007372ENST00000640872A0A1W2PNS7
ENSG00000007372ENST00000640963A0A1W2PRA4
ENSG00000007372ENST00000640975P26367
ENSG00000007372ENST00000640975F1T0F8
ENSG00000007372ENST00000643871P26367
ENSG00000007372ENST00000643871Q66SS1

Expression (GTEx)

0
5
10
15
20
25
30
35
40
45

Pathways

PathwaySourceExternal ID
Maturity onset diabetes of the youngKEGGko04950
Maturity onset diabetes of the youngKEGGhsa04950
Signaling pathways regulating pluripotency of stem cellsKEGGhsa04550
Signaling pathways regulating pluripotency of stem cellsKEGGko04550
Metabolism of proteinsREACTOMER-HSA-392499
Peptide hormone metabolismREACTOMER-HSA-2980736
Incretin synthesis, secretion, and inactivationREACTOMER-HSA-400508
Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1)REACTOMER-HSA-381771
Synthesis, secretion, and inactivation of Glucose-dependent Insulinotropic Polypeptide (GIP)REACTOMER-HSA-400511
Developmental BiologyREACTOMER-HSA-1266738
Regulation of beta-cell developmentREACTOMER-HSA-186712
Regulation of gene expression in beta cellsREACTOMER-HSA-210745
Activation of HOX genes during differentiationREACTOMER-HSA-5619507
Activation of anterior HOX genes in hindbrain development during early embryogenesisREACTOMER-HSA-5617472

Protein levels (Protein atlas)

Not detected
Low
Medium
High

References

Pubmed IDYearTitleCitations
206210532010Pax6 is a human neuroectoderm cell fate determinant.155
184676632008Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator.134
127219552003Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations.72
225615462012Pax6: a multi-level regulator of ocular development.71
203796142010Personalized smoking cessation: interactions between nicotine dose, dependence and quit-success genotype score.62
250301752014WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis.57
159188962005PAX6 mutations: genotype-phenotype correlations.51
167126952006Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2.51
217106922011Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer.51
127310012003Polymicrogyria and absence of pineal gland due to PAX6 mutation.49

Citation

Yi-Hong Zhou

PAX6 (paired box 6)

Atlas Genet Cytogenet Oncol Haematol. 2009-08-01

Online version: http://atlasgeneticsoncology.org/gene/211/pax6