Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

BTRC (beta-transducin repeat containing)

Identity

Other namesBETA-TRCP
BTRCP
E3RSIkappaB
FBW1A
FBXW1
FBXW1A
FWD1
Fwd1
MGC4643
bTrCP
bTrCP1
beta-TrCP1
betaTrCP
HGNC (Hugo) BTRC
LocusID (NCBI) 8945
Location 10q24.32
Location_base_pair Starts at 103113790 and ends at 103317078 bp from pter ( according to hg19-Feb_2009)  [Mapping]

DNA/RNA

 
  Figure 1. The betaTrCP1 gene structure.
Description Spans 223.25 kb; 14 exons; 13 coding exons (Figure 1).
Transcription Full length transcript of 6011 bp, open reading frame 1707 bp. There is an alternatively spliced transcript (Figure 1).

Protein

 
  Figure 2. Two isoformes of betaTrCP1 protein.
Description There are two isoforms of betaTrCP1; isoform 1 consists of 569 amino acid residues and isoform 2 comprises 605 amino acid residues. Both isoforms contain an F-box domain and seven WD40 repeats, which bind SKP1 and protein substrates, respectively. Their function is indistinguishable (Figure 2).
Expression BetaTrCP1 is expressed in the majority of human tissues with high levels in the brain, heart, and testis, but undetectable levels in the small intestine and thymus (Cenciarelli et al., 1999).
Localisation betaTrCP1 protein is predominantly localized in the nucleus, while betaTrCP2 is primarily found in the cytoplasm (Cenciarelli et al., 1999; Lassot et al., 2001; Davis et al., 2002).
 
  Figure 3. Diagrammatic drawing showing the SCF complex and how it recognizes its substrate for degradation by the proteasome. (Ub)n, polyubiquitin; P, phosphate group; E1 and E2, ubiquitin E1 and E2 enzymes; Cul1, RBX1, Skp1, and F box protein, SCF components.
Function BetaTrCP1 is a member of the F-box proteins. Sixty nine F-box proteins have been identified in humans, and they are classified into three groups: those with WD40 domains (FBXWs), those with leucine-rich repeats (FBXLs), and those with other diverse domains (FBXOs) (Cenciarelli et al., 1999; Winston et al., 1999a; Jin et al., 2004). BetaTrCP1 is the substrate recognition subunit, which together with SKP1, Cullin1, and RBX1 (also known as ROC1), makes up the SCF (SKP1-CUL-F-box protein) complex or E3 ubiquitin ligase. BetaTrCP1 recognizes a DSGXXS destruction motif in which the serine residues are phosphorylated by specific kinases (Fig. 3). It also binds the variants of this motif where acidic residues substitute for phosphorylated serine residues (Frescas and Pagano, 2008). The binding of BTrCP results in ubiquitination and subsequent degradation of its substrates by the proteasome (Fig. 3).
Targets of the SCF ubiquitin ligase can be divided into two main groups on the basis of their function: cell cycle regulators and transcription factors. They include: IKappaB (Yaron et al., 1998; Hatakeyama et al., 1999; Kroll et al., 1999; Shirane et al., 1999; Spencer et al., 1999; Tan et al., 1999; Winston et al., 1999b; Wu and Ghosh, 1999), NFkappaB (Orian et al., 2000; Fong and Sun, 2002; Lang et al., 2003; Amir et al., 2004), beta-catenin (Kitagawa et al., 1999; Winston et al., 1999b), GLI2 (Huntzicker et al., 2006; Pan et al., 2006), GLI3 (Wang and Li, 2006; Tempe et al., 2006), REST (Guardavaccaro et al., 2008; Westbrook et al., 2008), ATF4 (Lassot et al., 2001), PER1/PER2 (Eide et al., 2005; Shirogane et al., 2005; Reischl et al., 2007), VPU (Besnard-Guerin et al., 2004), Claspin (Peschiaroli et al., 2006; Mailand et al., 2006), Emi1 (Guardavaccaro et al., 2003), CDC25A (Busino et al., 2003; Kanemori et al., 2005), CDC25B (Kanemori et al., 2005), WEE1 (Watanabe et al., 2004), MLC1 (Ding et al., 2007), etc. Among these targets, NFkappaB, GLI2, and GLI3 are degraded in a limited fashion instead of completely (Fig. 3).
Homology BetaTrCP1 is paralogous to betaTrCP2 (also termed HOS or Fbw1b) (Fuchs et al., 1999; Suzuki et al., 2000; Bhatia et al., 2002); the two are collectively called BTrCP, as their biochemical properties are indistinguishable. BTrCP is homologous to Slimb in Drosophila, which targets Armidillo (the B-catenin homolog) and Ci (the homolog of Gli) for degradation, though limited for the latter (Jiang and Struhl, 1998; Jia et al., 2005; Smelkinson and Kalderon, 2006; Smelkinson et al., 2007).

Mutations

Note Mutations in BTrCP in both germinal and somatic cells are rarely found in human tumors, probably because of the redundancy of the two BTrCP paralogues.

Implicated in

Entity Various Cancer
Oncogenesis Overwhelming evidence indicates that BTrCP mostly displays an oncogenic activity. Two point mutations in betaTrCP1 have been found from 22 prostate cancer samples (Gerstein et al., 2002). Five missense mutations have also been identified in 95 gastric cancers (Kim et al., 2007). In addition, an in-frame deletion of three amino acid residues in betaTrCP2 has been detected in breast cancers in a large scale genomic DNA sequencing project (Wood et al., 2007). However, it is not clear whether these mutations causally associate with tumorigenesis, as the function of these mutated BTrCP gene products has not been determined. On the other hand, it has been well established that overexpression of bTrCP proteins is associated with several types of human tumors, including colorectal cancers (Ougolkov et al., 2004), pancreatic cancers (Muerkoster et al., 2005), and breast cancers (Spiegelman et al., 2002), melanoma (Dhawan and Richmond, 2002; Liu et al., 2007), and hepatoblastomas (Koch et al., 2005). In most of these tumors, overexpression of BTrCP results in the degradation of IKappaB, an inhibitor for the NFkappaB transcription factor, and thus the activation of NFkappaB. In others, the increased BTrCP expression also correlates with the activation of beta-catenin, the transcription regulator for WNT signaling. Therefore, it is believed that the activation of either NFkappaB, beta-catenin, or both is the main mechanism by which the upregulated BTrCP expression results in uncontrolled cell proliferation in these tumors.
  

External links

Nomenclature
HGNC (Hugo)BTRC   1144
Cards
AtlasBTRCID451ch10q24
Entrez_Gene (NCBI)BTRC  8945  beta-transducin repeat containing E3 ubiquitin protein ligase
GeneCards (Weizmann)BTRC
Ensembl (Hinxton)ENSG00000166167 [Gene_View]  chr10:103113790-103317078 [Contig_View]  BTRC [Vega]
ICGC DataPortalENSG00000166167
cBioPortalBTRC
AceView (NCBI)BTRC
Genatlas (Paris)BTRC
WikiGenes8945
SOURCE (Princeton)NM_001256856 NM_003939 NM_033637
Genomic and cartography
GoldenPath (UCSC)BTRC  -  10q24.32   chr10:103113790-103317078 +  10q24.32   [Description]    (hg19-Feb_2009)
EnsemblBTRC - 10q24.32 [CytoView]
Mapping of homologs : NCBIBTRC [Mapview]
OMIM603482   
Gene and transcription
Genbank (Entrez)AA824369 AF101784 AF129530 AK295870 AK313353
RefSeq transcript (Entrez)NM_001256856 NM_003939 NM_033637
RefSeq genomic (Entrez)AC_000142 NC_000010 NC_018921 NG_009234 NT_030059 NW_001838006 NW_004929376
Consensus coding sequences : CCDS (NCBI)BTRC
Cluster EST : UnigeneHs.643802 [ NCBI ]
CGAP (NCI)Hs.643802
Alternative Splicing : Fast-db (Paris)GSHG0003632
Alternative Splicing GalleryENSG00000166167
Gene ExpressionBTRC [ NCBI-GEO ]     BTRC [ SEEK ]   BTRC [ MEM ]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ9Y297 (Uniprot)
NextProtQ9Y297  [Medical]
With graphics : InterProQ9Y297
Splice isoforms : SwissVarQ9Y297 (Swissvar)
Domaine pattern : Prosite (Expaxy)FBOX (PS50181)    WD_REPEATS_1 (PS00678)    WD_REPEATS_2 (PS50082)    WD_REPEATS_REGION (PS50294)   
Domains : Interpro (EBI)Beta-TrCP_D [organisation]   F-box_dom [organisation]   G-protein_beta_WD-40_rep [organisation]   WD40/YVTN_repeat-like_dom [organisation]   WD40_repeat [organisation]   WD40_repeat_CS [organisation]   WD40_repeat_dom [organisation]  
Related proteins : CluSTrQ9Y297
Domain families : Pfam (Sanger)Beta-TrCP_D (PF12125)    F-box-like (PF12937)    WD40 (PF00400)   
Domain families : Pfam (NCBI)pfam12125    pfam12937    pfam00400   
Domain families : Smart (EMBL)Beta-TrCP_D (SM01028)  FBOX (SM00256)  WD40 (SM00320)  
DMDM Disease mutations8945
Blocks (Seattle)Q9Y297
PDB (SRS)1P22    2P64   
PDB (PDBSum)1P22    2P64   
PDB (IMB)1P22    2P64   
PDB (RSDB)1P22    2P64   
Human Protein AtlasENSG00000166167 [gene] [tissue] [antibody] [cell] [cancer]
Peptide AtlasQ9Y297
HPRD04596
IPIIPI00413142   IPI00307418   IPI01012795   IPI01010517   IPI00641852   
Protein Interaction databases
DIP (DOE-UCLA)Q9Y297
IntAct (EBI)Q9Y297
FunCoupENSG00000166167
BioGRIDBTRC
InParanoidQ9Y297
Interologous Interaction database Q9Y297
IntegromeDBBTRC
STRING (EMBL)BTRC
Ontologies - Pathways
Ontology : AmiGOG2/M transition of mitotic cell cycle  protein polyubiquitination  mitotic cell cycle  ubiquitin-protein transferase activity  protein binding  nucleus  cytosol  protein dephosphorylation  ubiquitin-dependent protein catabolic process  signal transduction  beta-catenin binding  viral process  Wnt signaling pathway  protein ubiquitination  ligase activity  SCF ubiquitin ligase complex  anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process  SCF-dependent proteasomal ubiquitin-dependent protein catabolic process  protein destabilization  mammary gland epithelial cell proliferation  regulation of circadian rhythm  positive regulation of circadian rhythm  regulation of I-kappaB kinase/NF-kappaB signaling  proteasome-mediated ubiquitin-dependent protein catabolic process  negative regulation of sequence-specific DNA binding transcription factor activity  protein phosphorylated amino acid binding  positive regulation of proteolysis  negative regulation of smoothened signaling pathway  negative regulation of transcription, DNA-templated  positive regulation of transcription, DNA-templated  protein dimerization activity  rhythmic process  positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle  regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle  regulation of cell cycle  branching involved in mammary gland duct morphogenesis  regulation of proteasomal protein catabolic process  cellular response to organic cyclic compound  
Ontology : EGO-EBIG2/M transition of mitotic cell cycle  protein polyubiquitination  mitotic cell cycle  ubiquitin-protein transferase activity  protein binding  nucleus  cytosol  protein dephosphorylation  ubiquitin-dependent protein catabolic process  signal transduction  beta-catenin binding  viral process  Wnt signaling pathway  protein ubiquitination  ligase activity  SCF ubiquitin ligase complex  anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process  SCF-dependent proteasomal ubiquitin-dependent protein catabolic process  protein destabilization  mammary gland epithelial cell proliferation  regulation of circadian rhythm  positive regulation of circadian rhythm  regulation of I-kappaB kinase/NF-kappaB signaling  proteasome-mediated ubiquitin-dependent protein catabolic process  negative regulation of sequence-specific DNA binding transcription factor activity  protein phosphorylated amino acid binding  positive regulation of proteolysis  negative regulation of smoothened signaling pathway  negative regulation of transcription, DNA-templated  positive regulation of transcription, DNA-templated  protein dimerization activity  rhythmic process  positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle  regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle  regulation of cell cycle  branching involved in mammary gland duct morphogenesis  regulation of proteasomal protein catabolic process  cellular response to organic cyclic compound  
Pathways : BIOCARTAPresenilin action in Notch and Wnt signaling [Genes]    WNT Signaling Pathway [Genes]   
Pathways : KEGGOocyte meiosis    Ubiquitin mediated proteolysis    Wnt signaling pathway    Hedgehog signaling pathway    Hippo signaling pathway    Circadian rhythm    Shigellosis   
Protein Interaction DatabaseBTRC
Wikipedia pathwaysBTRC
Gene fusion - rearrangments
Polymorphisms : SNP, mutations, diseases
SNP Single Nucleotide Polymorphism (NCBI)BTRC
snp3D : Map Gene to Disease8945
SNP (GeneSNP Utah)BTRC
SNP : HGBaseBTRC
Genetic variants : HAPMAPBTRC
Exome VariantBTRC
1000_GenomesBTRC 
ICGC programENSG00000166167 
Somatic Mutations in Cancer : COSMICBTRC 
CONAN: Copy Number AnalysisBTRC 
Mutations and Diseases : HGMDBTRC
Genomic VariantsBTRC  BTRC [DGVbeta]
dbVarBTRC
ClinVarBTRC
Pred. of missensesPolyPhen-2  SIFT(SG)  SIFT(JCVI)  Align-GVGD  MutAssessor  Mutanalyser  
Pred. splicesGeneSplicer  Human Splicing Finder  MaxEntScan  
Diseases
OMIM603482   
MedgenBTRC
GENETestsBTRC
Disease Genetic AssociationBTRC
Huge Navigator BTRC [HugePedia]  BTRC [HugeCancerGEM]
General knowledge
Homologs : HomoloGeneBTRC
Homology/Alignments : Family Browser (UCSC)BTRC
Phylogenetic Trees/Animal Genes : TreeFamBTRC
Chemical/Protein Interactions : CTD8945
Chemical/Pharm GKB GenePA25465
Clinical trialBTRC
Cancer Resource (Charite)ENSG00000166167
Other databases
Probes
Litterature
PubMed281 Pubmed reference(s) in Entrez
CoreMineBTRC
iHOPBTRC
OncoSearchBTRC

Bibliography

Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb.
Jiang J, Struhl G.
Nature. 1998 Jan 29;391(6666):493-6.
PMID 9461217
 
Identification of the receptor component of the IkappaBalpha-ubiquitin ligase.
Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y.
Nature. 1998 Dec 10;396(6711):590-4.
PMID 9859996
 
Identification of a family of human F-box proteins.
Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M.
Curr Biol. 1999 Oct 21;9(20):1177-9.
PMID 10531035
 
HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IkappaB and beta-catenin.
Fuchs SY, Chen A, Xiong Y, Pan ZQ, Ronai Z.
Oncogene. 1999 Mar 25;18(12):2039-46.
PMID 10321728
 
Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1.
Hatakeyama S, Kitagawa M, Nakayama K, Shirane M, Matsumoto M, Hattori K, Higashi H, Nakano H, Okumura K, Onoe K, Good RA, Nakayama K.
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3859-63.
PMID 10097128
 
An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin.
Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K.
EMBO J. 1999 May 4;18(9):2401-10.
PMID 10228155
 
Inducible degradation of IkappaBalpha by the proteasome requires interaction with the F-box protein h-betaTrCP.
Kroll M, Margottin F, Kohl A, Renard P, Durand H, Concordet JP, Bachelerie F, Arenzana-Seisdedos F, Benarous R.
J Biol Chem. 1999 Mar 19;274(12):7941-5.
PMID 10075690
 
Common pathway for the ubiquitination of IkappaBalpha, IkappaBbeta, and IkappaBepsilon mediated by the F-box protein FWD1.
Shirane M, Hatakeyama S, Hattori K, Nakayama K, Nakayama K.
J Biol Chem. 1999 Oct 1;274(40):28169-74.
PMID 10497169
 
Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP.
Spencer E, Jiang J, Chen ZJ.
Genes Dev. 1999 Feb 1;13(3):284-94.
PMID 9990853
 
Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha.
Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ.
Mol Cell. 1999 Apr;3(4):527-33.
PMID 10230406
 
A family of mammalian F-box proteins.
Winston JT, Koepp DM, Zhu C, Elledge SJ, Harper JW.
Curr Biol. 1999a Oct 21;9(20):1180-2.
PMID 10531037
 
The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro.
Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW.
Genes Dev. 1999b Feb 1;13(3):270-83.
PMID 9990852
 
beta-TrCP mediates the signal-induced ubiquitination of IkappaBbeta.
Wu C, Ghosh S.
J Biol Chem. 1999 Oct 15;274(42):29591-4.
PMID 10514424
 
SCF(beta)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase.
Orian A, Gonen H, Bercovich B, Fajerman I, Eytan E, Israel A, Mercurio F, Iwai K, Schwartz AL, Ciechanover A.
EMBO J. 2000 Jun 1;19(11):2580-91.
PMID 10835356
 
Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination.
Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, Tanaka K.
J Biol Chem. 2000 Jan 28;275(4):2877-84.
PMID 10644755
 
ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase.
Lassot I, Segeral E, Berlioz-Torrent C, Durand H, Groussin L, Hai T, Benarous R, Margottin-Goguet F.
Mol Cell Biol. 2001 Mar;21(6):2192-202.
PMID 11238952
 
Mouse homologue of HOS (mHOS) is overexpressed in skin tumors and implicated in constitutive activation of NF-kappaB.
Bhatia N, Herter JR, Slaga TJ, Fuchs SY, Spiegelman VS.
Oncogene. 2002 Feb 28;21(10):1501-9.
PMID 11896578
 
Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U.
Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A, Bauskin A, Mercurio F, Mann M, Ben-Neriah Y.
Genes Dev. 2002 Feb 15;16(4):439-51.
PMID 11850407
 
A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells.
Dhawan P, Richmond A.
J Biol Chem. 2002 Mar 8;277(10):7920-8. Epub 2001 Dec 28.
PMID 11773061
 
Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100.
Fong A, Sun SC.
J Biol Chem. 2002 Jun 21;277(25):22111-4. Epub 2002 May 6.
PMID 11994270
 
APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers.
Gerstein AV, Almeida TA, Zhao G, Chess E, Shih IeM, Buhler K, Pienta K, Rubin MA, Vessella R, Papadopoulos N.
Genes Chromosomes Cancer. 2002 May;34(1):9-16.
PMID 11921277
 
Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling.
Spiegelman VS, Tang W, Chan AM, Igarashi M, Aaronson SA, Sassoon DA, Katoh M, Slaga TJ, Fuchs SY.
J Biol Chem. 2002 Sep 27;277(39):36624-30. Epub 2002 Jul 31.
PMID 12151397
 
Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage.
Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV, Hershko A, Pagano M, Draetta GF.
Nature. 2003 Nov 6;426(6962):87-91.
PMID 14603323
 
Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo.
Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M.
Dev Cell. 2003 Jun;4(6):799-812.
PMID 12791266
 
betaTrCP-mediated proteolysis of NF-kappaB1 p105 requires phosphorylation of p105 serines 927 and 932.
Lang V, Janzen J, Fischer GZ, Soneji Y, Beinke S, Salmeron A, Allen H, Hay RT, Ben-Neriah Y, Ley SC.
Mol Cell Biol. 2003 Jan;23(1):402-13.
PMID 12482991
 
Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase.
Amir RE, Haecker H, Karin M, Ciechanover A.
Oncogene. 2004 Apr 1;23(14):2540-7.
PMID 14676825
 
HIV-1 Vpu sequesters beta-transducin repeat-containing protein (betaTrCP) in the cytoplasm and provokes the accumulation of beta-catenin and other SCFbetaTrCP substrates.
Besnard-Guerin C, Belaidouni N, Lassot I, Segeral E, Jobart A, Marchal C, Benarous R.
J Biol Chem. 2004 Jan 2;279(1):788-95. Epub 2003 Oct 14.
PMID 14561767
 
Systematic analysis and nomenclature of mammalian F-box proteins.
Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW.
Genes Dev. 2004 Nov 1;18(21):2573-80.
PMID 15520277
 
Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer.
Ougolkov A, Zhang B, Yamashita K, Bilim V, Mai M, Fuchs SY, Minamoto T.
J Natl Cancer Inst. 2004 Aug 4;96(15):1161-70.
PMID 15292388
 
M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.
Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4419-24. Epub 2004 Mar 22.
PMID 15070733
 
Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation.
Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM.
Mol Cell Biol. 2005 Apr;25(7):2795-807.
PMID 15767683
 
Phosphorylation by double-time/CKIepsilon and CKIalpha targets cubitus interruptus for Slimb/beta-TRCP-mediated proteolytic processing.
Jia J, Zhang L, Zhang Q, Tong C, Wang B, Hou F, Amanai K, Jiang J.
Dev Cell. 2005 Dec;9(6):819-30.
PMID 16326393
 
Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases.
Kanemori Y, Uto K, Sagata N.
Proc Natl Acad Sci U S A. 2005 May 3;102(18):6279-84. Epub 2005 Apr 21.
PMID 15845771
 
Elevated expression of Wnt antagonists is a common event in hepatoblastomas.
Koch A, Waha A, Hartmann W, Hrychyk A, Schuller U, Waha A, Wharton KA Jr, Fuchs SY, von Schweinitz D, Pietsch T.
Clin Cancer Res. 2005 Jun 15;11(12):4295-304.
PMID 15958610
 
Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells.
Muerkoster S, Arlt A, Sipos B, Witt M, Grossmann M, Kloppel G, Kalthoff H, Folsch UR, Schafer H.
Cancer Res. 2005 Feb 15;65(4):1316-24.
PMID 15735017
 
SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein.
Shirogane T, Jin J, Ang XL, Harper JW.
J Biol Chem. 2005 Jul 22;280(29):26863-72. Epub 2005 May 24.
PMID 15917222
 
Dual degradation signals control Gli protein stability and tumor formation.
Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE.
Genes Dev. 2006 Feb 1;20(3):276-81. Epub 2006 Jan 18.
PMID 16421275
 
Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress.
Mailand N, Bekker-Jensen S, Bartek J, Lukas J.
Mol Cell. 2006 Aug 4;23(3):307-18.
PMID 16885021
 
Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation.
Pan Y, Bai CB, Joyner AL, Wang B.
Mol Cell Biol. 2006 May;26(9):3365-77.
PMID 16611981
 
SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response.
Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M.
Mol Cell. 2006 Aug 4;23(3):319-29.
PMID 16885022
 
Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb.
Smelkinson MG, Kalderon D.
Curr Biol. 2006 Jan 10;16(1):110-6. Epub 2005 Dec 29.
PMID 16386907
 
Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP.
Tempe D, Casas M, Karaz S, Blanchet-Tournier MF, Concordet JP.
Mol Cell Biol. 2006 Jun;26(11):4316-26.
PMID 16705181
 
Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing.
Wang B, Li Y.
Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):33-8. Epub 2005 Dec 21.
PMID 16371461
 
Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization.
Ding Q, He X, Hsu JM, Xia W, Chen CT, Li LY, Lee DF, Liu JC, Zhong Q, Wang X, Hung MC.
Mol Cell Biol. 2007 Jun;27(11):4006-17. Epub 2007 Mar 26..
PMID 17387146
 
Somatic mutations of the beta-TrCP gene in gastric cancer.
Kim CJ, Song JH, Cho YG, Kim YS, Kim SY, Nam SW, Yoo NJ, Lee JY, Park WS.
APMIS. 2007 Feb;115(2):127-33.
PMID 17295679
 
Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells.
Liu J, Suresh Kumar KG, Yu D, Molton SA, McMahon M, Herlyn M, Thomas-Tikhonenko A, Fuchs SY.
Oncogene. 2007 Mar 22;26(13):1954-8. Epub 2006 Sep 25.
PMID 17001349
 
Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics.
Reischl S, Vanselow K, Westermark PO, Thierfelder N, Maier B, Herzel H, Kramer A.
J Biol Rhythms. 2007 Oct;22(5):375-86.
PMID 17876059
 
Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation.
Smelkinson MG, Zhou Q, Kalderon D.
Dev Cell. 2007 Oct;13(4):481-95.
PMID 17925225
 
The genomic landscapes of human breast and colorectal cancers.
Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B.
Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.
PMID 17932254
 
Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer.
Frescas D, Pagano M.
Nat Rev Cancer. 2008 Jun;8(6):438-49.
PMID 18500245
 
Control of chromosome stability by the beta-TrCP-REST-Mad2 axis.
Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M.
Nature. 2008 Mar 20;452(7185):365-9.
PMID 18354482
 
SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation.
Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, Leng Y, Maehr R, Shi Y, Harper JW, Elledge SJ.
Nature. 2008 Mar 20;452(7185):370-4.
PMID 18354483
 
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

Contributor(s)

Written12-2008Baolin Wang
Department of Genetic Medicine, Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA

Citation

This paper should be referenced as such :
Wang, B
BTRC (beta-transducin repeat containing)
Atlas Genet Cytogenet Oncol Haematol. 2009;13(11):784-787.
Free online version   Free pdf version   [Bibliographic record ]
URL : http://AtlasGeneticsOncology.org/Genes/BTRCID451ch10q24.html

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Wed Jul 30 16:58:27 CEST 2014

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.