Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

PIP5K1A (phosphatidylinositol-4-phosphate 5-kinase type 1 alpha)

Written2017-04Barnabas Nyesiga and Anette Gjörloff Wingren
Biomedical science, Health and society, Malmö University, Malmö, Sweden;

Abstract : Review on PIP5K1A, with data on DNA, on the protein encoded, and where the gene is implicated.

Keywords PIP5K1A

(Note : for Links provided by Atlas : click)


HGNC Previous name"phosphatidylinositol-4-phosphate 5-kinase, type I, alpha"
LocusID (NCBI) 8394
Atlas_Id 47397
Location 1q21.3  [Link to chromosome band 1q21]
Location_base_pair Starts at 151198552 and ends at 151249531 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping PIP5K1A.png]
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
PIP5K1A (1q21.3) / C1orf56 (1q21.3)PIP5K1A (1q21.3) / MLLT11 (1q21.3)PIP5K1A (1q21.3) / SLC20A2 (8p11.21)
PIP5K1A (1q21.3) / TNFAIP8L2 (1q21.3)


Description The cDNAs encoding the phosphatidylinositol 4-phosphate 5-kinases (PIP5K) were isolated from the human brain using peptide sequences from the erythroid 68-kDa type I PIP5KI (Loijens 1996). A human fetal brain cDNA library was screened leading to isolation of full-length type IA, PIP5K1A cDNAs (Loijens 1996). PIP5K1A is located in the chromosomal region 1q21.3 (Xie 2000), the product of which is predominantly responsible for the synthesis of PtdIns-4,5-P2 (PIP2), a substrate used by PI3K to produce PtdIns-3,4,5-P3 (PIP3) (Shaw 2006). PIP5K1A gene was localized to chromosome 1q22-q24 by fluorescence in situ hybridization (FISH) (Xie 2000).
Transcription The 549-amino acid protein has a conserved kinase homology domain similar to the rest of the PIP5K family members. Northern blot analysis showed a wide distribution of a PIP5K1A 4.2-kb transcript mostly expressed in skeletal muscle. In addition, high levels of PIP5K1A were also seen in heart, placenta, kidney, and pancreas while low levels of expression were observed in brain, liver, and lung (Loijens 1996). Deletion-mutant analysis was used to determine an approximately 380-amino acid minimal core sequence of mouse PIP5K1A that was sufficient for phosphatidylinositol 4-phosphate kinase activity.


  Figure 1. Schematic representation of human PIP5K1A isoform with the conserved kinase core domain (adopted from Porciello 2016).
Description PIP5K1A is a 61-kDa protein migrating at about 68 kDa in SDS-PAGE (Fruman 1998). The protein shows 83% and 35% amino acid identity with PIP5K1B and PIP4K2A (PIP5K2A), respectively, within the conserved kinase homology domain (Loijens 1996). Overall, the PIP5K1A and PIP5K1B proteins are 64% identical and Northern analysis shows the two to have a wide tissue distributions, but greatly differing expression levels. Recombinant, bacterially expressed PIP5KA was observed to have PIP5K activity and to be immunoreactive with erythroid PIP5KI antibodies (Loijens 1996). Furthermore, the authors isolated additional PIP5K1A cDNAs which they suggested represent splicing isoforms. Overexpression of mouse PIP5K1A in COS-7 cells stimulates an increase in short actin fibers and a decrease in actin stress fibers (Ishihara 1998).
PIP5K1A mediate the phosphorylation of phosphatidylinositol 4-phosphate on the D5 position of the inositol ring, thus inducing the production of phosphatidylinositol 4,5-biphosphate (PIP2) (van den Bout 2009). In both humans and mice, all PIP5K isoforms show variation in their sequence by alternative splicing (Ishihara 1998). Three PIP5K1α, four β, and one γ splice variants were identified in humans and eight PIP5K1α, two β, and three γ splice variants are present in mice. (Ishihara 1998).
All PIP5K isoforms α, β, and γ, and splice variants have a highly conserved kinase core domain that consists of 330-380 amino acids (Fig. 1), and a sub-domain called the activation loop, that regulates their activity and subcellular localization (Tuosto 2015). The variables N- and C-termini of PIP5K isoforms are also involved in the regulation of lipid kinase activity and in targeting PIP5Ks to specific cellular compartments (Kwiatkowska 2010). The C-terminal residues (440-562) of PIP5K1A regulate its localization at nuclear speckles (Mellman 2008). The 83 C-terminal amino acids of PIP5K1β are essential for its polarization at the uropod (Lacalle 2007), whereas the N-terminus controls PIP5K1β targeting to the plasma membrane and its dimerization with other PIP5K isoforms (Lacalle 2015). (Ishihara 1998).
The crystal structure of the catalytic domain of zebrafish PIP5K1A has been reported at 3.3Å resolution and the molecule forms a side-to-side dimer (Hu 2015). Mutagenesis study of PIP5K1A indicated two adjacent interfaces for the dimerization and interaction with the DIX domain of the Wnt signalling molecule dishevelled. Much as the interfaces were located distally to the catalytic/substrate-binding site, binding to these interfaces either through dimerization or the interaction with DIX stimulated PIP5K1 catalytic activity. DIX binding additionally enhanced PIP5K1 substrate binding (Hu 2015). (Ishihara 1998).
All the three PIP5K isoforms are expressed by primary T cells (Sun 2011) and they are triggered by phosphatidic acid (PA), which is generated by phospholipase D (PLD), through the hydrolysis of phosphatidylcholine (Jenkins 1994, Moritz 1992). PIP5K1α cooperates with PIP5Kβ and VAV1 in promoting actin polymerization and CD28 signaling functions in human T lymphocytes (Porciello 2016). PIP5K1A localises to the plasma membrane and the Golgi complex, and has also been observed at sites of membrane ruffling induced by the Rho GTPase RAC1 (van den Bout 2009). PIP5K1A in particular is recruited to the plasma membrane in response to several receptors to provide the substrate PIP2 for PLCγ leading to IP3 formation and Ca2+ mobilization (Saito 2003, Wang 2008 and Xie 2009). Both PIP5K1α and PIP5Kγ are known to interact and colocalize with phospholipase D 2 ( PLD2) at the membrane to stimulate cell adhesion (Divecha 2000, Powner 2005). Some studies have also shown pronounced association of PIP5K1A with nuclear speckles (Chakrabarti 2013) where it may regulate pre-mRNA processing and mRNA export (Barlow 2010).
Function Treatment of primary cultured astrocytes with gangliosides significantly enhanced PIP5K1α mRNA and protein expression levels (Sang 2010). MicroRNA-based PIP5K1α knockdown strongly reduced ganglioside-induced transcription of proinflammatory cytokines. In addition, PIP5K1α knockdown suppressed phosphorylation and nuclear translocation of NF-kB (Sang 2010).
PIPK-mediated mechanisms regulate microtubule dynamics in neuronal development (Noda 2012). Using immunoprecipitation with an antibody specific to KIF2A, PIPKα was identified as a candidate membrane protein that regulates the activity of KIF2A. Yeast two-hybrid and biochemical assays showed direct binding between KIF2A and PIPKα. Furthermore, the microtubule (MT)- depolymerizing activity of KIF2A was enhanced in the presence of PIPKα in vitro and in vivo.

Implicated in

Entity Prostate cancer
Note Some studies have shown that overexpression of PIP5K1α in non-malignant PNT1A cells induces the invasive capacity of these cells. An increased expression of major factors that drive cancer cell proliferation and invasion such as VEGF, phosphorylated PTK2 (FAK), TWIST1, and MMP9, was observed in these cells due to PIP5K1α overexpression. PIP5K1α overexpression in these cells led to an increased AKT activity and an increased survival, as well as invasive malignant phenotype. The siRNA-mediated knockdown of PIP5K1α in these cells resulted into a reduced AKT activity and an inhibition in tumor growth. PIP5K1α, PIP2 and PIP3 are important lipids for membrane structure and actin polymerization, thus increased levels of these lipids may lead to malignant transformation and progression of cancer cells into a more invasive phenotype (Semenas 2014).


Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum
Barlow CA, Laishram RS, Anderson RA
Trends Cell Biol 2010 Jan;20(1):25-35
PMID 19846310
Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis
Chakrabarti R, Bhowmick D, Bhargava V, Bhar K, Siddhanta A
Biochem Biophys Res Commun 2013 Sep 20;439(2):209-14
PMID 23994136
Interaction of the type Ialpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity
Divecha N, Roefs M, Halstead JR, D'Andrea S, Fernandez-Borga M, Oomen L, Saqib KM, Wakelam MJ, D'Santos C
EMBO J 2000 Oct 16;19(20):5440-9
PMID 11032811
Phosphoinositide kinases
Fruman DA, Meyers RE, Cantley LC
Annu Rev Biochem 1998;67:481-507
PMID 9759495
Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled
Hu J, Yuan Q, Kang X, Qin Y, Li L, Ha Y, Wu D
Nat Commun 2015 Sep 14;6:8205
PMID 26365782
Type I phosphatidylinositol-4-phosphate 5-kinases
Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y
Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family J Biol Chem
PMID 9535851
Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid
Jenkins GH, Fisette PL, Anderson RA
J Biol Chem 1994 Apr 15;269(15):11547-54
PMID 8157686
One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane
Kwiatkowska K
Cell Mol Life Sci 2010 Dec;67(23):3927-46
PMID 20559679
Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity
Lacalle RA, de Karam JC, Martínez-Muñoz L, Artetxe I, Peregil RM, Sot J, Rojas AM, Goñi FM, Mellado M, Mañes S
FASEB J 2015 Jun;29(6):2371-85
PMID 25713054
Phosphatidylinositol 4-phosphate 5-kinase alpha is induced in ganglioside-stimulated brain astrocytes and contributes to inflammatory responses
Lee SY, Kim B, Yoon S, Kim YJ, Liu T, Woo JH, Chwae YJ, Joe EH, Jou I
Exp Mol Med 2010 Sep 30;42(9):662-73
PMID 20720456
Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family
Loijens JC, Anderson RA
J Biol Chem 1996 Dec 20;271(51):32937-43
PMID 8955136
A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs
Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C, Anderson RA
Nature 2008 Feb 21;451(7181):1013-7
PMID 18288197
Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase
Moritz A, De Graan PN, Gispen WH, Wirtz KW
J Biol Chem 1992 Apr 15;267(11):7207-10
PMID 1313792
Phosphatidylinositol 4-phosphate 5-kinase alpha (PIPKα) regulates neuronal microtubule depolymerase kinesin, KIF2A and suppresses elongation of axon branches
Noda Y, Niwa S, Homma N, Fukuda H, Imajo-Ohmi S, Hirokawa N
Proc Natl Acad Sci U S A 2012 Jan 31;109(5):1725-30
PMID 22307638
Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation
Porciello N, Kunkl M, Viola A, Tuosto L
Front Immunol 2016 May 13;7:186
PMID 27242793
Phospholipase D2 stimulates integrin-mediated adhesion via phosphatidylinositol 4-phosphate 5-kinase Igamma b
Powner DJ, Payne RM, Pettitt TR, Giudici ML, Irvine RF, Wakelam MJ
J Cell Sci 2005 Jul 1;118(Pt 13):2975-86
PMID 15976455
BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity
Saito K, Tolias KF, Saci A, Koon HB, Humphries LA, Scharenberg A, Rawlings DJ, Kinet JP, Carpenter CL
Immunity 2003 Nov;19(5):669-78
PMID 14614854
The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer
Semenas J, Hedblom A, Miftakhova RR, Sarwar M, Larsson R, Shcherbina L, Johansson ME, Härkönen P, Sterner O, Persson JL
Proc Natl Acad Sci U S A 2014 Sep 2;111(35):E3689-98
PMID 25071204
Ras, PI(3)K and mTOR signalling controls tumour cell growth
Shaw RJ, Cantley LC
Nature 2006 May 25;441(7092):424-30
PMID 16724053
Phosphatidylinositol (4,5) bisphosphate controls T cell activation by regulating T cell rigidity and organization
Sun Y, Dandekar RD, Mao YS, Yin HL, Wülfing C
PLoS One 2011;6(11):e27227
PMID 22096541
The multifaceted role of PIP2 in leukocyte biology
Tuosto L, Capuano C, Muscolini M, Santoni A, Galandrini R
Cell Mol Life Sci 2015 Dec;72(23):4461-74
PMID 26265181
Loss of PIP5KIbeta demonstrates that PIP5KI isoform-specific PIP2 synthesis is required for IP3 formation
Wang Y, Chen X, Lian L, Tang T, Stalker TJ, Sasaki T, Kanaho Y, Brass LF, Choi JK, Hartwig JH, Abrams CS
Proc Natl Acad Sci U S A 2008 Sep 16;105(37):14064-9
PMID 18772378
Assignment of type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) to human chromosome bands 1q22--> q24 by in situ hybridization
Xie Y, Zhu L, Zhao G
Cytogenet Cell Genet 2000;88(3-4):197-9
PMID 10828584
Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation
Xie Z, Chang SM, Pennypacker SD, Liao EY, Bikle DD
Mol Biol Cell 2009 Mar;20(6):1695-704
PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions
van den Bout I, Divecha N
J Cell Sci 2009 Nov 1;122(Pt 21):3837-50
PMID 19889969


This paper should be referenced as such :
Barnabas Nyesiga, Anette Grloff Wingren
PIP5K1A (phosphatidylinositol-4-phosphate 5-kinase type 1 alpha)
Atlas Genet Cytogenet Oncol Haematol. 2018;22(2):41-43.
Free journal version : [ pdf ]   [ DOI ]

Other Solid tumors implicated (Data extracted from papers in the Atlas) [ 4 ]
  PIP5K1A/C1orf56 (1q21)
PIP5K1A/MLLT11 (1q21)
PIP5K1A/TNFAIP8L2 (1q21)
t(1;8)(q21;p11) PIP5K1A/SLC20A2

External links

HGNC (Hugo)PIP5K1A   8994
Entrez_Gene (NCBI)PIP5K1A    phosphatidylinositol-4-phosphate 5-kinase type 1 alpha
GeneCards (Weizmann)PIP5K1A
Ensembl hg19 (Hinxton)ENSG00000143398 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000143398 [Gene_View]  ENSG00000143398 [Sequence]  chr1:151198552-151249531 [Contig_View]  PIP5K1A [Vega]
ICGC DataPortalENSG00000143398
TCGA cBioPortalPIP5K1A
Genatlas (Paris)PIP5K1A
SOURCE (Princeton)PIP5K1A
Genetics Home Reference (NIH)PIP5K1A
Genomic and cartography
GoldenPath hg38 (UCSC)PIP5K1A  -     chr1:151198552-151249531 +  1q21.3   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)PIP5K1A  -     1q21.3   [Description]    (hg19-Feb_2009)
GoldenPathPIP5K1A - 1q21.3 [CytoView hg19]  PIP5K1A - 1q21.3 [CytoView hg38]
genome Data Viewer NCBIPIP5K1A [Mapview hg19]  
Gene and transcription
Genbank (Entrez)AF085856 AK291015 AK295691 AK302268 AK309826
RefSeq transcript (Entrez)NM_001135636 NM_001135637 NM_001135638 NM_001330689 NM_003557
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)PIP5K1A
Alternative Splicing GalleryENSG00000143398
Gene ExpressionPIP5K1A [ NCBI-GEO ]   PIP5K1A [ EBI - ARRAY_EXPRESS ]   PIP5K1A [ SEEK ]   PIP5K1A [ MEM ]
Gene Expression Viewer (FireBrowse)PIP5K1A [ Firebrowse - Broad ]
GenevisibleExpression of PIP5K1A in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)8394
GTEX Portal (Tissue expression)PIP5K1A
Human Protein AtlasENSG00000143398-PIP5K1A [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ99755   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ99755  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ99755
Splice isoforms : SwissVarQ99755
Catalytic activity : Enzyme2.7.1.68 [ Enzyme-Expasy ] [ IntEnz-EBI ] [ BRENDA ] [ KEGG ]   [ MEROPS ]
Domaine pattern : Prosite (Expaxy)PIPK (PS51455)   
Domains : Interpro (EBI)PInositol-4-P-5-kinase    PInositol-4-P-5-kinase_C    PInositol-4-P-5-kinase_core    PInositol-4-P-5-kinase_N   
Domain families : Pfam (Sanger)PIP5K (PF01504)   
Domain families : Pfam (NCBI)pfam01504   
Domain families : Smart (EMBL)PIPKc (SM00330)  
Conserved Domain (NCBI)PIP5K1A
Blocks (Seattle)PIP5K1A
Human Protein Atlas [tissue]ENSG00000143398-PIP5K1A [tissue]
Peptide AtlasQ99755
IPIIPI00022150   IPI00022149   IPI00163602   IPI00909663   IPI00793493   IPI00853104   IPI00908438   IPI00852961   IPI00922583   IPI00974496   
Protein Interaction databases
IntAct (EBI)Q99755
Ontologies - Pathways
Ontology : AmiGOprotein binding  ATP binding  nucleus  nucleoplasm  cytosol  cytosol  mRNA cleavage and polyadenylation specificity factor complex  plasma membrane  focal adhesion  glycerophospholipid metabolic process  phosphatidylinositol biosynthetic process  phagocytosis  signal transduction  phospholipid biosynthetic process  fibroblast migration  regulation of phosphatidylinositol 3-kinase signaling  1-phosphatidylinositol-4-phosphate 5-kinase activity  1-phosphatidylinositol-4-phosphate 5-kinase activity  cell migration  nuclear speck  nuclear speck  kinase binding  lamellipodium  keratinocyte differentiation  actin cytoskeleton reorganization  ruffle membrane  phosphatidylinositol phosphorylation  focal adhesion assembly  cell chemotaxis  protein localization to plasma membrane  activation of GTPase activity  ruffle assembly  
Ontology : EGO-EBIprotein binding  ATP binding  nucleus  nucleoplasm  cytosol  cytosol  mRNA cleavage and polyadenylation specificity factor complex  plasma membrane  focal adhesion  glycerophospholipid metabolic process  phosphatidylinositol biosynthetic process  phagocytosis  signal transduction  phospholipid biosynthetic process  fibroblast migration  regulation of phosphatidylinositol 3-kinase signaling  1-phosphatidylinositol-4-phosphate 5-kinase activity  1-phosphatidylinositol-4-phosphate 5-kinase activity  cell migration  nuclear speck  nuclear speck  kinase binding  lamellipodium  keratinocyte differentiation  actin cytoskeleton reorganization  ruffle membrane  phosphatidylinositol phosphorylation  focal adhesion assembly  cell chemotaxis  protein localization to plasma membrane  activation of GTPase activity  ruffle assembly  
Pathways : KEGGInositol phosphate metabolism    Phosphatidylinositol signaling system    Endocytosis    Fc gamma R-mediated phagocytosis    Regulation of actin cytoskeleton   
REACTOMEQ99755 [protein]
REACTOME PathwaysR-HSA-6811558 [pathway]   
NDEx NetworkPIP5K1A
Atlas of Cancer Signalling NetworkPIP5K1A
Wikipedia pathwaysPIP5K1A
Orthology - Evolution
GeneTree (enSembl)ENSG00000143398
Phylogenetic Trees/Animal Genes : TreeFamPIP5K1A
Homologs : HomoloGenePIP5K1A
Homology/Alignments : Family Browser (UCSC)PIP5K1A
Gene fusions - Rearrangements
Fusion : MitelmanPIP5K1A/C1orf56 [1q21.3/1q21.3]  
Fusion : MitelmanPIP5K1A/MLLT11 [1q21.3/1q21.3]  
Fusion : MitelmanPIP5K1A/SLC20A2 [1q21.3/8p11.21]  
Fusion : MitelmanPIP5K1A/TNFAIP8L2 [1q21.3/1q21.3]  
Fusion PortalPIP5K1A 1q21.3 C1orf56 1q21.3 LUAD
Fusion PortalPIP5K1A 1q21.3 MLLT11 1q21.3 BRCA
Fusion PortalPIP5K1A 1q21.3 SLC20A2 8p11.21 LUSC
Fusion PortalPIP5K1A 1q21.3 TNFAIP8L2 1q21.3 LUSC
Fusion : Fusion_HubCAMKK2--PIP5K1A    CCDC82--PIP5K1A    CD27--PIP5K1A    CDC42SE1--PIP5K1A    FAM63A--PIP5K1A    HYDIN--PIP5K1A    ITLN1--PIP5K1A    LUC7L--PIP5K1A    MLLT11--PIP5K1A    NEDD4L--PIP5K1A    NRXN2--PIP5K1A    NSF--PIP5K1A    PHACTR4--PIP5K1A    PIP5K1A--A2M    PIP5K1A--C1ORF56   
PIP5K1A--EIF5    PIP5K1A--GABPB2    PIP5K1A--MLLT11    PIP5K1A--PARP3    PIP5K1A--PDHA1    PIP5K1A--PIPSL    PIP5K1A--SASH1    PIP5K1A--SCNM1    PIP5K1A--SLC20A2    PIP5K1A--TNFAIP8L2    POGZ--PIP5K1A    SNX27--PIP5K1A    SRP68--PIP5K1A    TUFT1--PIP5K1A   
Fusion : QuiverPIP5K1A
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerPIP5K1A [hg38]
Exome Variant ServerPIP5K1A
GNOMAD BrowserENSG00000143398
Varsome BrowserPIP5K1A
Genomic Variants (DGV)PIP5K1A [DGVbeta]
DECIPHERPIP5K1A [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisPIP5K1A 
ICGC Data PortalPIP5K1A 
TCGA Data PortalPIP5K1A 
Broad Tumor PortalPIP5K1A
OASIS PortalPIP5K1A [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICPIP5K1A  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DPIP5K1A
Mutations and Diseases : HGMDPIP5K1A
intOGen PortalPIP5K1A
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch PIP5K1A
DgiDB (Drug Gene Interaction Database)PIP5K1A
DoCM (Curated mutations)PIP5K1A (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)PIP5K1A (select a term)
NCG6 (London) select PIP5K1A
Cancer3DPIP5K1A(select the gene name)
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry PIP5K1A
NextProtQ99755 [Medical]
Target ValidationPIP5K1A
Huge Navigator PIP5K1A [HugePedia]
Clinical trials, drugs, therapy
Protein Interactions : CTD
Pharm GKB GenePA33327
Clinical trialPIP5K1A
canSAR (ICR)PIP5K1A (select the gene name)
DataMed IndexPIP5K1A
PubMed67 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Feb 19 17:57:36 CET 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us