Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

USF1 (upstream transcription factor 1)

Written2010-04Adrie JM Verhoeven
Cardiovascular Research School (COEUR), Department of Biochemistry, Erasmus MC, Rotterdam, Netherlands

(Note : for Links provided by Atlas : click)

Identity

Alias_symbol (synonym)UEF
MLTFI
bHLHb11
Other aliasFCHL
FCHL1
HYPLIP1
MLTF
MLTF1
HGNC (Hugo) USF1
LocusID (NCBI) 7391
Atlas_Id 45856
Location 1q23.3  [Link to chromosome band 1q23]
Location_base_pair Starts at 161039251 and ends at 161044937 bp from pter ( according to hg19-Feb_2009)  [Mapping USF1.png]
Local_order From centromere to telomere:
F11R (F11 receptor) (on reverse strand),
TSTD1 (thiosulfate sulfurtransferase (rhodanese)-like domain containing 1) (on reverse strand),
USF1 (upstream transcription factor 1) (on reverse strand),
ARHGAP30 (Rho GTPase activating protein 30) (on reverse strand),
PVRL4 (poliovirus receptor-related 4) (on reverse strand),
KLHDC9 (kelch domain containing 9) (on plus strand),
PFDN2 (prefoldin subunit 2) (on reverse strand).
Fusion genes
(updated 2016)
PSMA5 (1p13.3) / USF1 (1q23.3)USF1 (1q23.3) / ELOVL5 (6p12.1)USF1 (1q23.3) / MLLT6 (17q12)
USF1 (1q23.3) / SUPT7L (2p23.3)USF1 (1q23.3) / USF1 (1q23.3)ZNF814 (19q13.43) / USF1 (1q23.3)
Note USF1 is a bHLH-ZIP transcription factor which forms homo-dimers or heterodimers with USF2, a highly homologous bHLH-ZIP transcription factor. USF1 and USF2 homo- and heterodimers are similarly active in affecting transcription of most target genes. USF2 homodimers may have additional effects.

DNA/RNA

 
  Human USF1 gene diagram. Exons 1 through 11 are depicted by boxes, the open reading frames of the USF1 protein and the splice variant are shown by dark and light green colour code, respectively. The approximate positions of two functional SNPs are also indicated.
Description The human USF1 gene on chromosome 1q23 spans 6.73 kb and 11 exons.
Transcription The mRNA is about 1870 nt. Translation is from a start codon in exon 2 and ends at a stop codon in exon 11, and results in a 310 amino acid protein product. In a splice variant, an alternative donor splice site within exon 4 is used; translation from this variant mRNA is from an in-frame start codon in exon 5, and results in a 251 amino acid protein product (Saito et al., 2003).

Protein

 
  Functional domains of the USF1 protein. The A1 domain is important for E-box dependent transactivation, the USR (USF-specific region) and A2 domains are important for E-box and initiator element (Inr)-dependent transactivation (Roy et al., 1997). Post-translational modifications that affect USF1 function are indicated. The protein product of the splice variant lacks the first 59 amino acids, dimerizes with full-length USF1 protein, which results in its inactivation (Saito et al., 2003).
Description USF1 belongs to the bHLH-Zip class of transcription factors. The bHLH-ZIP domains are important for DNA binding and dimerization. USF homo- and heterodimers activate transcription of target genes through binding either at distal E-box elements or at pyrimidine-rich Inr elements in the core promoter (Roy et al., 1997). Whole genome ChIP-chip analysis in human hepatoma HepG2 cells showed that USF1 and USF2 bind predominantly to CACGTGAC elements (Rada-Iglesias et al., 2008). In addition, USF2 but not USF1 binds to pyrimidine rich elements, suggesting that transactivation through Inr elements is mainly through USF2. Transactivation activity critically depends on post-translational modification of USF1. DNA binding to the E-box element is increased by phosphorylation of USF1 by the cdk1, p38 stress-activated kinase, protein kinase A and protein kinase C pathway (Corre and Galibert, 2005), whereas phosphorylation through the PI3Kinase pathway leads to loss of DNA binding activity to the ApoAV promoter (Nowak et al., 2005). Cellular stress stimuli such as DNA damage, oxidative stress and heavy metal exposure, induce p38-mediated phosphorylation at T153 and increased USF1 transactivation activity. Upon increased and/or prolonged stress exposure, USF1 phosphorylated at T153 becomes acetylated at K199 with concomitant loss of transactivation activity (Corre et al., 2009). In fasting-refeeding cycles, insulin increases the transactivation activity of USF1 via DNA-PK mediated phosphorylation of residue S262 and subsequent acetylation at K237 (Wong et al., 2009).
Expression The USF1 gene is ubiquitously expressed (Sirito et al., 1994).
Localisation The USF1 protein is located in the nucleus.
Function USF1 has been shown to play an important role in transcriptional regulation of a huge number of seemingly unrelated genes (Corre and Galibert, 2005; Rada-Iglesias et al., 2008), consistent with the abundant distribution of E-box like elements in the genome. Whole-genome ChIP analysis in HepG2 cells identified 2518 USF1 binding sites in chromatin context, of which 41 % were located within 1 kb of a transcription start site (Rade-Iglesias et al., 2008). USF1 binding signals strongly correlate with target gene expression levels, suggesting that USF1 plays an important role in transcription activation. USF1 physically interacts with histone modifying enzymes, transcription preinitiation complex factors, coactivator and corepressor proteins (Corre and Galibert, 2005; Huang et al., 2007; Corre et al., 2009; Wong et al., 2009). In addition, USF1 interacts with other transcription factors to achieve cooperative transcriptional activation of individual genes (Corre and Galibert, 2005). USF1 also plays a crucial role in chromatin barrier insulator function, in which euchromatin regions are protected from heterochromatin-induced gene silencing (Huang et al., 2007). USFs recruit histone modifying enzymes to the insulator element, which modify the adjacent nucleosomes thereby maintaining chromatin in an open state and preventing heterochromatin spread. Similarly, USFs main function at enhancer elements may be to render the adjacent region accessible for binding of other, bona fide transcription factors, by the recruitment of histone modifying enzymes (Huang et al., 2007).
Tumor suppression: Several lines of evidence support the hypothesis that USF1 may act as a tumor suppressor. First, USF1 is involved in the transcriptional activation of several tumor suppressor genes (e.g. p53, APC, BRCA2, PTEN, SSeCKS) (Corre and Galibert, 2005; Pezzolesi et al., 2007; Bu and Gelman, 2007), and represses expression of human telomerase reverse transcriptase TERT (McMurray and McCance, 2003; Chang et al., 2005). Second, USF1 is involved in cell cycle control (Cogswell et al., 1995) and overexpression of USF1 slows G2/M transition in thyrocytes and thyroid carcinoma cells (Jung et al., 2007). Third, USF1 overexpression leads to a strong reduction in cell proliferation in Ha-Ras/c-Myc transformed fibroblasts (Luo and Sawadogo, 1996). Fourth, USF1 transactivation activity is completely lost in three out of six transformed breast cell lines (Ismail et al., 1999). Fifth, USF1 antagonizes some activities of the oncoprotein c-Myc, possibly by competing for the same DNA binding sites (Luo and Sawadogo, 1996; McMurray and McCance, 2003). Definitive proof that USF1 is a tumor suppressor protein, e.g. showing that USF1 knockdown increases cell proliferation and tumor formation, however, is still missing. This proof may be hard to gain, as USF2 may compensate for USF1 loss, and USF2 appears to have a broader antiproliferative function than USF1 (Luo and Sadawogo, 1996; Sirito et al., 1998; Vallet et al., 1998).
Homology The USF1 gene is widely conserved with orthologs identified in Ciona intestinalis and Drosophila melanogaster.

Mutations

Note Of the 121 SNPs in the USF1 gene collected in the dbSNP database, only the rs4126997 T>C polymorphism causes a non-synchronous mutation (V15A missense), but data on allele frequency or functional effects are not available. The two SNPs that are shown to be functional, rs2073658 A>G in intron 7 (heterozygosity 0.296) and rs3737787 C>T in the 3'-UTR (heterozygosity 0.309), are in almost complete linkage disequilibrium. The minor allele is accompanied by normal USF1 expression in human muscle and fat tissue but loss of insulin-induced upregulation of USF1 mRNA and known USF1 target genes (Naukkarinen et al., 2005; Naukkarinen et al., 2009), as well as reduced insulin-mediated anti-lipolytic activity (Kantartzis et al., 2007).

Implicated in

Note
  
Entity Carcinogenesis
Note Given the suggestive evidence for a role of USF1 in tumor suppression, one may anticipate that carcinogenesis will evolve from loss of USF1 transactivation activity, either as a result of mutations in the USF1 gene or of posttranslational modification of USF1 protein. This has not been reported yet. Alternatively, tumor suppressor genes may lose responsivity to USF1 by mutations in the DNA binding element or by changes in local DNA methylation. This is exemplified by the observation of a classic Cowden syndrome patient with early onset breast cancer and reduced PTEN activity, which appears to be due to a specific germline mutation of an E-box element in the PTEN gene and loss of USF1 binding (Pezzolesi et al., 2007).
  
  
Entity Familial combined hyperlipidemia (FCHL)
Disease FCHL is the most common genetic form of hyperlipidemia and is associated with increased risk of premature cardiovascular disease. Affected persons characteristically show elevation of both cholesterol and triglycerides in the blood, which is due to increased VLDL and LDL levels. This is often accompanied by elevated apoB100 and low HDL levels, and a preponderance of small dense LDL particles (Naukkarinen et al., 2006). FCHL is genetically heterogeneous. One of the loci that is linked to FCHL is 1q21-q23. Pajukanta et al. (2004) showed that the dyslipidemia observed in FCHL is linked to the USF1 gene. The disease is associated with a common haplotype of non-coding SNPs within the USF1 gene. Carriers of the risk allele show lack of insulin-induced increase of USF1 expression in skeletal muscle and fat tissue (Naukkarinen et al., 2009). As USF1 is involved in regulation of numerous genes of glucose and lipid metabolism (Corre and Galibert, 2005), non-responsive USF1 expression may lead to increased production and reduced metabolism of plasma lipids and lipoproteins.
  

Bibliography

v-Src-mediated down-regulation of SSeCKS metastasis suppressor gene promoter by the recruitment of HDAC1 into a USF1-Sp1-Sp3 complex.
Bu Y, Gelman IH.
J Biol Chem. 2007 Sep 14;282(37):26725-39. Epub 2007 Jul 10.
PMID 17626016
 
Upstream stimulatory factor (USF) as a transcriptional suppressor of human telomerase reverse transcriptase (hTERT) in oral cancer cells.
Chang JT, Yang HT, Wang TC, Cheng AJ.
Mol Carcinog. 2005 Nov;44(3):183-92.
PMID 16010690
 
Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter.
Cogswell JP, Godlevski MM, Bonham M, Bisi J, Babiss L.
Mol Cell Biol. 1995 May;15(5):2782-90.
PMID 7739559
 
Upstream stimulating factors: highly versatile stress-responsive transcription factors.
Corre S, Galibert MD.
Pigment Cell Res. 2005 Oct;18(5):337-48.
PMID 16162174
 
Target gene specificity of USF-1 is directed via p38-mediated phosphorylation-dependent acetylation.
Corre S, Primot A, Baron Y, Le Seyec J, Goding C, Galibert MD.
J Biol Chem. 2009 Jul 10;284(28):18851-62. Epub 2009 Apr 23.
PMID 19389701
 
USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier.
Huang S, Li X, Yusufzai TM, Qiu Y, Felsenfeld G.
Mol Cell Biol. 2007 Nov;27(22):7991-8002. Epub 2007 Sep 10.
PMID 17846119
 
Loss of USF transcriptional activity in breast cancer cell lines.
Ismail PM, Lu T, Sawadogo M.
Oncogene. 1999 Sep 30;18(40):5582-91.
PMID 10523835
 
USF inhibits cell proliferation through delay in G2/M phase in FRTL-5 cells.
Jung HS, Kim KS, Chung YJ, Chung HK, Min YK, Lee MS, Lee MK, Kim KW, Chung JH.
Endocr J. 2007 Apr;54(2):275-85. Epub 2007 Mar 20.
PMID 17379962
 
Upstream transcription factor 1 gene polymorphisms are associated with high antilipolytic insulin sensitivity and show gene-gene interactions.
Kantartzis K, Fritsche A, Machicao F, Stumvoll M, Machann J, Schick F, Haring HU, Stefan N.
J Mol Med. 2007 Jan;85(1):55-61. Epub 2006 Sep 26.
PMID 17016691
 
Antiproliferative properties of the USF family of helix-loop-helix transcription factors.
Luo X, Sawadogo M.
Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1308-13.
PMID 8577760
 
Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression.
McMurray HR, McCance DJ.
J Virol. 2003 Sep;77(18):9852-61.
PMID 12941894
 
Functional variant disrupts insulin induction of USF1: mechanism for USF1-associated dyslipidemias.
Naukkarinen J, Nilsson E, Koistinen HA, Soderlund S, Lyssenko V, Vaag A, Poulsen P, Groop L, Taskinen MR, Peltonen L.
Circ Cardiovasc Genet. 2009 Oct;2(5):522-9. Epub 2009 Jun 12.
PMID 20031629
 
Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor.
Nowak M, Helleboid-Chapman A, Jakel H, Martin G, Duran-Sandoval D, Staels B, Rubin EM, Pennacchio LA, Taskinen MR, Fruchart-Najib J, Fruchart JC.
Mol Cell Biol. 2005 Feb;25(4):1537-48.
PMID 15684402
 
Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1).
Pajukanta P, Lilja HE, Sinsheimer JS, Cantor RM, Lusis AJ, Gentile M, Duan XJ, Soro-Paavonen A, Naukkarinen J, Saarela J, Laakso M, Ehnholm C, Taskinen MR, Peltonen L.
Nat Genet. 2004 Apr;36(4):371-6. Epub 2004 Feb 29.
PMID 14991056
 
Comparative genomic and functional analyses reveal a novel cis-acting PTEN regulatory element as a highly conserved functional E-box motif deleted in Cowden syndrome.
Pezzolesi MG, Zbuk KM, Waite KA, Eng C.
Hum Mol Genet. 2007 May 1;16(9):1058-71. Epub 2007 Mar 6.
PMID 17341483
 
Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders.
Rada-Iglesias A, Ameur A, Kapranov P, Enroth S, Komorowski J, Gingeras TR, Wadelius C.
Genome Res. 2008 Mar;18(3):380-92. Epub 2008 Jan 29.
PMID 18230803
 
Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1.
Roy AL, Du H, Gregor PD, Novina CD, Martinez E, Roeder RG.
EMBO J. 1997 Dec 1;16(23):7091-104.
PMID 9384587
 
Cloning and characterization of a novel splicing isoform of USF1.
Saito T, Oishi T, Yanai K, Shimamoto Y, Fukamizu A.
Int J Mol Med. 2003 Aug;12(2):161-7.
PMID 12851711
 
Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice.
Sirito M, Lin Q, Deng JM, Behringer RR, Sawadogo M.
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3758-63.
PMID 9520440
 
Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose.
Vallet VS, Casado M, Henrion AA, Bucchini D, Raymondjean M, Kahn A, Vaulont S.
J Biol Chem. 1998 Aug 7;273(32):20175-9.
PMID 9685363
 
A role of DNA-PK for the metabolic gene regulation in response to insulin.
Wong RH, Chang I, Hudak CS, Hyun S, Kwan HY, Sul HS.
Cell. 2009 Mar 20;136(6):1056-72.
PMID 19303849
 

Citation

This paper should be referenced as such :
Verhoeven, AJM
USF1 (upstream transcription factor 1)
Atlas Genet Cytogenet Oncol Haematol. 2011;15(1):73-76.
Free journal version : [ pdf ]   [ DOI ]
On line version : http://AtlasGeneticsOncology.org/Genes/USF1ID45856ch1q23.html


External links

Nomenclature
HGNC (Hugo)USF1   12593
Cards
AtlasUSF1ID45856ch1q23
Entrez_Gene (NCBI)USF1  7391  upstream transcription factor 1
AliasesFCHL; FCHL1; HYPLIP1; MLTF; 
MLTFI; UEF; bHLHb11
GeneCards (Weizmann)USF1
Ensembl hg19 (Hinxton)ENSG00000158773 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000158773 [Gene_View]  chr1:161039251-161044937 [Contig_View]  USF1 [Vega]
ICGC DataPortalENSG00000158773
TCGA cBioPortalUSF1
AceView (NCBI)USF1
Genatlas (Paris)USF1
WikiGenes7391
SOURCE (Princeton)USF1
Genetics Home Reference (NIH)USF1
Genomic and cartography
GoldenPath hg38 (UCSC)USF1  -     chr1:161039251-161044937 -  1q23.3   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)USF1  -     1q23.3   [Description]    (hg19-Feb_2009)
EnsemblUSF1 - 1q23.3 [CytoView hg19]  USF1 - 1q23.3 [CytoView hg38]
Mapping of homologs : NCBIUSF1 [Mapview hg19]  USF1 [Mapview hg38]
OMIM191523   602491   
Gene and transcription
Genbank (Entrez)AB098540 AK314876 AL832119 AM392755 AM393836
RefSeq transcript (Entrez)NM_001276373 NM_007122 NM_207005
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)USF1
Cluster EST : UnigeneHs.414880 [ NCBI ]
CGAP (NCI)Hs.414880
Alternative Splicing GalleryENSG00000158773
Gene ExpressionUSF1 [ NCBI-GEO ]   USF1 [ EBI - ARRAY_EXPRESS ]   USF1 [ SEEK ]   USF1 [ MEM ]
Gene Expression Viewer (FireBrowse)USF1 [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevisibleExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)7391
GTEX Portal (Tissue expression)USF1
Protein : pattern, domain, 3D structure
UniProt/SwissProtP22415   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtP22415  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProP22415
Splice isoforms : SwissVarP22415
PhosPhoSitePlusP22415
Domaine pattern : Prosite (Expaxy)BHLH (PS50888)   
Domains : Interpro (EBI)bHLH_dom   
Domain families : Pfam (Sanger)HLH (PF00010)   
Domain families : Pfam (NCBI)pfam00010   
Domain families : Smart (EMBL)HLH (SM00353)  
Conserved Domain (NCBI)USF1
DMDM Disease mutations7391
Blocks (Seattle)USF1
PDB (SRS)1AN4   
PDB (PDBSum)1AN4   
PDB (IMB)1AN4   
PDB (RSDB)1AN4   
Structural Biology KnowledgeBase1AN4   
SCOP (Structural Classification of Proteins)1AN4   
CATH (Classification of proteins structures)1AN4   
SuperfamilyP22415
Human Protein AtlasENSG00000158773
Peptide AtlasP22415
HPRD01880
IPIIPI00026559   IPI00413700   IPI00514348   IPI00979526   IPI00980707   IPI00981390   
Protein Interaction databases
DIP (DOE-UCLA)P22415
IntAct (EBI)P22415
FunCoupENSG00000158773
BioGRIDUSF1
STRING (EMBL)USF1
ZODIACUSF1
Ontologies - Pathways
QuickGOP22415
Ontology : AmiGOregulation of transcription from RNA polymerase II promoter by glucose  positive regulation of transcription from RNA polymerase II promoter by glucose  positive regulation of transcription from RNA polymerase II promoter by glucose  nuclear chromatin  response to hypoxia  double-stranded DNA binding  transcription factor activity, RNA polymerase II distal enhancer sequence-specific binding  transcription factor activity, RNA polymerase II distal enhancer sequence-specific binding  protein binding  nucleus  nucleoplasm  transcription factor complex  glucose metabolic process  regulation of transcription from RNA polymerase II promoter  transcription from RNA polymerase II promoter  response to UV  NURF complex  late viral transcription  enzyme binding  protein kinase binding  cellular response to insulin stimulus  glucose homeostasis  identical protein binding  protein homodimerization activity  protein homodimerization activity  histone deacetylase binding  bHLH transcription factor binding  sequence-specific DNA binding  positive regulation of transcription from RNA polymerase II promoter  carbon catabolite regulation of transcription  protein heterodimerization activity  Set1C/COMPASS complex  negative regulation of fibrinolysis  lipid homeostasis  
Ontology : EGO-EBIregulation of transcription from RNA polymerase II promoter by glucose  positive regulation of transcription from RNA polymerase II promoter by glucose  positive regulation of transcription from RNA polymerase II promoter by glucose  nuclear chromatin  response to hypoxia  double-stranded DNA binding  transcription factor activity, RNA polymerase II distal enhancer sequence-specific binding  transcription factor activity, RNA polymerase II distal enhancer sequence-specific binding  protein binding  nucleus  nucleoplasm  transcription factor complex  glucose metabolic process  regulation of transcription from RNA polymerase II promoter  transcription from RNA polymerase II promoter  response to UV  NURF complex  late viral transcription  enzyme binding  protein kinase binding  cellular response to insulin stimulus  glucose homeostasis  identical protein binding  protein homodimerization activity  protein homodimerization activity  histone deacetylase binding  bHLH transcription factor binding  sequence-specific DNA binding  positive regulation of transcription from RNA polymerase II promoter  carbon catabolite regulation of transcription  protein heterodimerization activity  Set1C/COMPASS complex  negative regulation of fibrinolysis  lipid homeostasis  
NDEx NetworkUSF1
Atlas of Cancer Signalling NetworkUSF1
Wikipedia pathwaysUSF1
Orthology - Evolution
OrthoDB7391
GeneTree (enSembl)ENSG00000158773
Phylogenetic Trees/Animal Genes : TreeFamUSF1
HOVERGENP22415
HOGENOMP22415
Homologs : HomoloGeneUSF1
Homology/Alignments : Family Browser (UCSC)USF1
Gene fusions - Rearrangements
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerUSF1 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)USF1
dbVarUSF1
ClinVarUSF1
1000_GenomesUSF1 
Exome Variant ServerUSF1
ExAC (Exome Aggregation Consortium)USF1 (select the gene name)
Genetic variants : HAPMAP7391
Genomic Variants (DGV)USF1 [DGVbeta]
DECIPHERUSF1 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisUSF1 
Mutations
ICGC Data PortalUSF1 
TCGA Data PortalUSF1 
Broad Tumor PortalUSF1
OASIS PortalUSF1 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICUSF1  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDUSF1
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch USF1
DgiDB (Drug Gene Interaction Database)USF1
DoCM (Curated mutations)USF1 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)USF1 (select a term)
intoGenUSF1
NCG5 (London)USF1
Cancer3DUSF1(select the gene name)
Impact of mutations[PolyPhen2] [SIFT Human Coding SNP] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM191523    602491   
Orphanet
MedgenUSF1
Genetic Testing Registry USF1
NextProtP22415 [Medical]
TSGene7391
GENETestsUSF1
Target ValidationUSF1
Huge Navigator USF1 [HugePedia]
snp3D : Map Gene to Disease7391
BioCentury BCIQUSF1
ClinGenUSF1
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD7391
Chemical/Pharm GKB GenePA37223
Clinical trialUSF1
Miscellaneous
canSAR (ICR)USF1 (select the gene name)
Probes
Litterature
PubMed148 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
CoreMineUSF1
EVEXUSF1
GoPubMedUSF1
iHOPUSF1
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Wed Jun 7 12:17:36 CEST 2017

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.