Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

MBD4 (methyl-CpG binding domain protein 4)

Written2011-07Huan X Meng, Richard R Meehan
MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK

(Note : for Links provided by Atlas : click)


Alias_namesmethyl-CpG binding domain protein 4
Alias_symbol (synonym)MED1
Other alias
HGNC (Hugo) MBD4
LocusID (NCBI) 8930
Atlas_Id 41312
Location 3q21.3  [Link to chromosome band 3q21]
Location_base_pair Starts at 129149787 and ends at 129159022 bp from pter ( according to hg19-Feb_2009)  [Mapping MBD4.png]
Local_order Between the C3orf25 and IFT122 genes.
Fusion genes
(updated 2016)
EFCAB12 (3q21.3) / MBD4 (3q21.3)
Note Homologous to MeCP2 gene.


Description MBD4 (NM_003925) is a gene of 9060 bp coded by 8 exons from 129158852 to 129149792 according to GRCh37 human genome assembly v37 by IGB browser.
Transcription The transcript encoded by NM_003925.1, mRNA length of 2470 bp.


Note MBD4 has two significant domains identified by homology and functional analysis: a highly conserved glycosylase domain (60% conservation between species) at the C-terminus, and a less well conserved methyl-CpG binding (MBD) domain (37% conservation between species) at the N-terminus (Bellacosa et al., 1999; Hendrich and Bird, 1998; Meng et al., 2011). The domain structure of MBD4 indicates that the gene could have been formed from the fusion of a glycosylase motif with a methyl-CpG binding domain (Hendrich and Tweedie, 2003). The N-terminal MBD domain of MBD4 is able to discriminate between methylated and unmethylated double stranded DNA (Hendrich and Bird, 1998). The N-terminal glycosylase domain of MBD4 was shown in vitro to recognise and repair the mismatched products from deamination including Thymine and Uracil (Hendrich et al., 1999; Wong et al., 2002), thus it has been proposed to take part in active demethylation. The methyl-CpG binding domain of MBD4 binds preferentially to m5CpG x TpG mismatches - the primary product of deamination at methyl-CpG.
It has been proposed that MBD4 proteins arose as a fusion protein between MBD and glycosylase domain ancestors in the vertebrate lineage, and MBD2/3 represents the ancestral methyl-CpG binding protein (Hendrich and Tweedie, 2003). Interestingly, a prototypical MBD4 protein and its putative ancestor MBD2/3 were identified outside vertebrates in the cephalochordate amphioxus (Branchiostoma floridae) (Albalat, 2008), in addition a putative MBD4 gene was predicted in the Ciona intestinalis genome, but this lacks an MBD domain. The finding of a putative MBD4 protein in this invertebrate-vertebrate transition model organism pushes back the origin of MBD4 proteins in evolutionary time, and argues against the fusion hypothesis of origin of MBD4 proteins (Albalat, 2008). The MBD domain of MBD4 is most similar to that of MeCP2 in primary sequence (Ballestar and Wolffe, 2001; Hendrich and Bird, 1998).
Description The longest Human MBD4 protein has 580 amino acids, at approximately 66 kDa.
Expression MBD4 expressed in all tissues tested with highest levels in Tonsil and Early Erythroid (CD71+) (BioGPS).
Localisation MBD4 is a nuclear protein. Overexpressed MBD4-GFP co-localises to heterochromatin sites in mouse cells and can recruit partner proteins e.g. MLH1 (Hendrich and Bird, 1998; Ruzov et al., 2009).
Function MBD4 is a methyl-CpG binding glycosylase (Bellacosa et al., 1999) that can excise and repair both C-T and C-U mutations at methylated and non-methylated CpGs via its glycosylase domain and adjacent binding site (Hendrich et al., 1999). Novel interacting partners of MBD4 include the mis-match repair (MMR) protein MLH1 (Bellacosa et al., 1999) and Fas-associated death domain (FADD) protein (Screaton et al., 2003), suggesting a potential link between genome surveillance and apoptosis. Consistent with these observations, reduced apoptosis occurs in the small intestine of mbd4-/- mice in response to a variety of DNA-damaging agents (Cortellino et al., 2003), and increased gastrointestinal tumorigenicity was observed for mbd4-/- mice on a tumor-susceptible Apc min background (Millar et al., 2002). Although Mbd4 inactivation did not increase mini-satellite instability (MSI) in the mouse genome, it did result in a 2- to 3-fold increase in C-to-T transition mutations at CpG sequences in splenocytes and epithelial cells of the small intestinal mucosa. The change in the gastrointestinal cancer phenotype was associated with an increase in somatic C-to-T mutations at CpG sites within the coding region of the wild-type Apc allele. These studies indicate that Mbd4 inactivation may alter the mutation spectrum in cancer cells and modify the cancer predisposition phenotype.
MBD4 can repress several methylated reporter genes (Fukushige et al., 2006; Kondo et al., 2005). However the global genomic targets of MBD4 have not been characterised. MBD4 knock out mice are viable and fertile, and show only mild physiological defects (Millar et al., 2002). However, morpholino knock-down of xMbd4 in Xenopus laevis shows serious developmental defects and fails to develop to a tadpole. Re-introduction of mouse Mbd4 mRNA can rescue the phenotype (Ruzov et al., 2009). There is increased C-T mutation rate observed in the Mbd4 knock out mice as a consequence of reduced glycosylase activity (Millar et al., 2002).
MBD4 can interact directly with both DNMT1 and MLH1 leading to recruitment of all three components at sites of DNA damage (Ruzov et al., 2009). The co-localization of DNMT1, MBD4 and MLH1 suggests that they may participate in a cellular checkpoint that monitors potential DNA hypomethylation events by detecting the presence or absence of the maintenance methyltransferase Dnmt1, perhaps at or adjacent to the replication fork. The recruitment of these components in response to localized DNA damage suggests that can have a role in the cellular decision whether to repair the lesion or activate apoptosis (Ruzov et al., 2009). Decreases in DNMT1 protein levels in ES cells and normal differentiated human cells can result in mismatch repair (MMR) defects (Guo et al., 2004; Kim et al., 2004; Loughery et al., 2011; Wang and James Shen, 2004) In the hTERT-1604 fibroblast cell line, a normal diploid cell line immortalised by telomerase over-expression, depletion of DNMT1 is sufficient to cause MMR defects and increased mutation rates at a CA17 microsatellite. This is associated with decreases in MMR protein levels, including MBD4: following activation of the DNA damage response (DDR). Blocking the DDR, and in particular PARP over-activation, also increases survival of the DNMT1 knockdowns (Loughery et al., 2011).
zMbd4 has been proposed to be a candidate protein that is involved in DNA demethylation activity in Zebrafish (Rai et al., 2008). Rai and colleagues showed MBD4 removes G:T mismatch-specific thymines, resulting from deamination of 5-methylcytosine (5-meC) via cytidine deaminase family members (Activation Induced deaminase (AID) and Apolipo-protein B RNA-editing catalytic component (Apobec)). Interestingly, deamination activity by AID/Apobec did not occur unless MBD4 and/or other possible factor are present and/or activated, and a catalytically inactive hMBD4 derivative (D560A) stabilized the putative G:T intermediate and prevented rapid thymine removal (Rai et al., 2008). MBD4 was also reported to interact with Xenopus DNMT1 to promote p53 dependent apoptosis (Ruzov et al., 2009), and DNMT3b, which was is proposed to methylate cytosine and to deaminate 5-meC, relying on an inefficient deaminase activity (Kangaspeska et al., 2008; Metivier et al., 2008). Recent studies in mice have implicated thymine DNA-glycosylase (TDG) in active DNA demethylation, TDG interacts with the deaminase AID and the damage response protein GADD45a. These findings suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair (Cortazar et al., 2011; Cortellino et al., 2011). It is possible that MBD4 may make a contribution to this process.
  MBD4 interactions.
Homology MBD4 is a member of the methyl-CpG binding proteins that contain the MBD motif; the other members in the family are MeCp2, MBD1, MBD2, MBD3 (Hendrich and Bird, 1998; Klose and Bird, 2006). The protein with closest MBD homology to MBD4 is MeCP2.


Note A C-terminal truncation of MBD4 containing its MBD domain was detected in the HCA7 cell line (colon cancer cell line) (Bader et al., 1999). Frequent MBD4 mutations were reported in MSI tumours in sporadic colon cancers and in hereditary non-polyposis colorectal cancer (HNPCC) tumours. The frequency of MBD4 mutations was correlated with MSH2/MLH1 germline mutations (Riccio et al., 1999). In humans, frame-shift mutation of MBD4 occurs in up to 43% of microsatellite unstable colon cancers. Recombinant truncated MBD4 (MBD4tru) inhibits glycosylase activities of normal MBD4 or Uracil DNA glycosylase in cell-free assays as a dominant negative effect. Over-expression of MBD4tru in Big Blue (lacI)-transfected, MSI human colorectal carcinoma cells doubled the mutation frequency, indicating that the modest dominant negative effect on DNA repair can occur in living cells in short-term experiments. Intriguingly, the whole mutation spectrum was increased, not only at CpG sites, suggesting that truncated MBD4 has a more widespread effect on genomic stability. This demonstration of a dominant negative effect may be of significance in tumour progression and acquisition of drug resistance (Abdel-Rahman et al., 2008; Bader et al., 2007).

Implicated in

Entity Intestinal tumorigenesis
Note A reduced apoptotic response occurs in the small intestine of mbd4-/- mice in response to a variety of DNA-damaging agents, and increased tumorigenicity was observed on a background of mbd4-/- with the tumor-susceptible Apc min background in mice (Millar et al., 2002; Sansom et al., 2003; Wong et al., 2002). A frame-shift in a polyadenine tract due to an MMR defective background resulted in a mutated form of MBD4 that occurs naturally in human colon cancers (Abdel-Rahman et al., 2008). This leads to a premature truncation of the MBD4 protein, which has an intact MBD domain but lacks of the whole glycosylase domain. It has been suggested that this truncated form of MBD4 acts in a dominant negative way, competitively inhibiting normal glycosylase activity of wild type MBD4, and increases mutation frequency when overexpressed in cells (Bader et al., 2007). The frameshift mutations in MBD4 appear to be selected for in MSI tumour cells, as similar coding polyadenine repeats in other tested genes are rarely altered in this panel of 56 primary MSI tumours (Riccio et al., 1999).


Truncation of MBD4 predisposes to reciprocal chromosomal translocations and alters the response to therapeutic agents in colon cancer cells.
Abdel-Rahman WM, Knuutila S, Peltomaki P, Harrison DJ, Bader SA.
DNA Repair (Amst). 2008 Feb 1;7(2):321-8. Epub 2007 Dec 26.
PMID 18162445
Evolution of DNA-methylation machinery: DNA methyltransferases and methyl-DNA binding proteins in the amphioxus Branchiostoma floridae.
Albalat R.
Dev Genes Evol. 2008 Dec;218(11-12):691-701. Epub 2008 Sep 24.
PMID 18813943
Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency.
Bader S, Walker M, Hendrich B, Bird A, Bird C, Hooper M, Wyllie A.
Oncogene. 1999 Dec 23;18(56):8044-7.
PMID 10637515
A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells.
Bader SA, Walker M, Harrison DJ.
Br J Cancer. 2007 Feb 26;96(4):660-6. Epub 2007 Feb 6.
PMID 17285135
Methyl-CpG-binding proteins. Targeting specific gene repression.
Ballestar E, Wolffe AP.
Eur J Biochem. 2001 Jan;268(1):1-6. (REVIEW)
PMID 11121095
MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1.
Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y, Golemis EA, Genuardi M, Neri G.
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3969-74.
PMID 10097147
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability.
Cortazar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F, Steinacher R, Jiricny J, Bird A, Schar P.
Nature. 2011 Feb 17;470(7334):419-23. Epub 2011 Jan 30.
PMID 21278727
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair.
Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, Abramowitz LK, Bartolomei MS, Rambow F, Bassi MR, Bruno T, Fanciulli M, Renner C, Klein-Szanto AJ, Matsumoto Y, Kobi D, Davidson I, Alberti C, Larue L, Bellacosa A.
Cell. 2011 Jul 8;146(1):67-79. Epub 2011 Jun 30.
PMID 21722948
RET finger protein enhances MBD2- and MBD4-dependent transcriptional repression.
Fukushige S, Kondo E, Gu Z, Suzuki H, Horii A.
Biochem Biophys Res Commun. 2006 Dec 8;351(1):85-92. Epub 2006 Oct 10.
PMID 17049487
Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells.
Guo G, Wang W, Bradley A.
Nature. 2004 Jun 24;429(6994):891-5.
PMID 15215866
The methyl-CpG binding domain and the evolving role of DNA methylation in animals.
Hendrich B, Tweedie S.
Trends Genet. 2003 May;19(5):269-77. (REVIEW)
PMID 12711219
Transient cyclical methylation of promoter DNA.
Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G.
Nature. 2008 Mar 6;452(7183):112-5.
PMID 18322535
Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells.
Kim M, Trinh BN, Long TI, Oghamian S, Laird PW.
Nucleic Acids Res. 2004 Oct 27;32(19):5742-9. Print 2004.
PMID 15509869
Genomic DNA methylation: the mark and its mediators.
Klose RJ, Bird AP.
Trends Biochem Sci. 2006 Feb;31(2):89-97. Epub 2006 Jan 5. (REVIEW)
PMID 16403636
The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16(INK4a) and hMLH1 genes.
Kondo E, Gu Z, Horii A, Fukushige S.
Mol Cell Biol. 2005 Jun;25(11):4388-96.
PMID 15899845
DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response.
Loughery JE, Dunne PD, O'Neill KM, Meehan RR, McDaid JR, Walsh CP.
Hum Mol Genet. 2011 Aug 15;20(16):3241-55. Epub 2011 Jun 2.
PMID 21636528
Apoptosis and DNA Methylation.
Meng HX, Hackett JA, Nestor C, Dunican DS, Madej M, Reddington JP, Pennings S, Harrison DJ, Meehan RR.
Cancers 2011; 3: 1798-1820. (REVIEW)
Cyclical DNA methylation of a transcriptionally active promoter.
Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G.
Nature. 2008 Mar 6;452(7183):45-50.
PMID 18322525
Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice.
Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR, Bird A.
Science. 2002 Jul 19;297(5580):403-5.
PMID 12130785
DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45.
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR.
Cell. 2008 Dec 26;135(7):1201-12.
PMID 19109892
The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability.
Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, Masciullo V, Genuardi M, Paravatou-Petsotas M, Bassi DE, Ruggeri BA, Klein-Szanto AJ, Testa JR, Neri G, Bellacosa A.
Nat Genet. 1999 Nov;23(3):266-8.
PMID 10545939
MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos.
Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR.
Development. 2009 Jul;136(13):2277-86.
PMID 19502488
MBD4 deficiency reduces the apoptotic response to DNA-damaging agents in the murine small intestine.
Sansom OJ, Zabkiewicz J, Bishop SM, Guy J, Bird A, Clarke AR.
Oncogene. 2003 Oct 16;22(46):7130-6.
PMID 14562041
Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis.
Screaton RA, Kiessling S, Sansom OJ, Millar CB, Maddison K, Bird A, Clarke AR, Frisch SM.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5211-6. Epub 2003 Apr 17.
PMID 12702765
DNA methyltransferase Dnmt1 and mismatch repair.
Wang KY, James Shen CK.
Oncogene. 2004 Oct 14;23(47):7898-902.
PMID 15378011
Mbd4 inactivation increases Cright-arrowT transition mutations and promotes gastrointestinal tumor formation.
Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E, Fan K, Fazzari M, Jin B, Brown AM, Lipkin M, Edelmann W.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14937-42. Epub 2002 Nov 4.
PMID 12417741


This paper should be referenced as such :
Meng, HX ; Meehan, RR
MBD4 (methyl-CpG binding domain protein 4)
Atlas Genet Cytogenet Oncol Haematol. 2011;15(12):1041-1044.
Free journal version : [ pdf ]   [ DOI ]
On line version :

Other Solid tumors implicated (Data extracted from papers in the Atlas) [ 1 ]
  Gastric Tumors: an overview

External links

HGNC (Hugo)MBD4   6919
Entrez_Gene (NCBI)MBD4  8930  methyl-CpG binding domain 4, DNA glycosylase
GeneCards (Weizmann)MBD4
Ensembl hg19 (Hinxton)ENSG00000129071 [Gene_View]  chr3:129149787-129159022 [Contig_View]  MBD4 [Vega]
Ensembl hg38 (Hinxton)ENSG00000129071 [Gene_View]  chr3:129149787-129159022 [Contig_View]  MBD4 [Vega]
ICGC DataPortalENSG00000129071
TCGA cBioPortalMBD4
AceView (NCBI)MBD4
Genatlas (Paris)MBD4
SOURCE (Princeton)MBD4
Genetics Home Reference (NIH)MBD4
Genomic and cartography
GoldenPath hg19 (UCSC)MBD4  -     chr3:129149787-129159022 -  3q21.3   [Description]    (hg19-Feb_2009)
GoldenPath hg38 (UCSC)MBD4  -     3q21.3   [Description]    (hg38-Dec_2013)
EnsemblMBD4 - 3q21.3 [CytoView hg19]  MBD4 - 3q21.3 [CytoView hg38]
Mapping of homologs : NCBIMBD4 [Mapview hg19]  MBD4 [Mapview hg38]
Gene and transcription
Genbank (Entrez)AF072250 AF114784 AF532602 AK303013 AK312878
RefSeq transcript (Entrez)NM_001276270 NM_001276271 NM_001276272 NM_001276273 NM_003925
RefSeq genomic (Entrez)NC_000003 NC_018914 NG_033106 NT_005612 NW_004929311
Consensus coding sequences : CCDS (NCBI)MBD4
Cluster EST : UnigeneHs.35947 [ NCBI ]
CGAP (NCI)Hs.35947
Alternative Splicing GalleryENSG00000129071
Gene ExpressionMBD4 [ NCBI-GEO ]   MBD4 [ EBI - ARRAY_EXPRESS ]   MBD4 [ SEEK ]   MBD4 [ MEM ]
Gene Expression Viewer (FireBrowse)MBD4 [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevisibleExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)8930
GTEX Portal (Tissue expression)MBD4
Protein : pattern, domain, 3D structure
UniProt/SwissProtO95243   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtO95243  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProO95243
Splice isoforms : SwissVarO95243
Catalytic activity : Enzyme3.2.2.- [ Enzyme-Expasy ]   3.2.2.-3.2.2.- [ IntEnz-EBI ]   3.2.2.- [ BRENDA ]   3.2.2.- [ KEGG ]   
Domaine pattern : Prosite (Expaxy)MBD (PS50982)   
Domains : Interpro (EBI)DNA-bd_dom    DNA_glycosylase    MBD4    Methyl_CpG_DNA-bd   
Domain families : Pfam (Sanger)MBD (PF01429)   
Domain families : Pfam (NCBI)pfam01429   
Domain families : Smart (EMBL)MBD (SM00391)  
Conserved Domain (NCBI)MBD4
DMDM Disease mutations8930
Blocks (Seattle)MBD4
PDB (SRS)2MOE    3IHO    4DK9    4E9E    4E9F    4E9G    4E9H    4EA4    4EA5    4LG7    4OFA    4OFE    4OFH   
PDB (PDBSum)2MOE    3IHO    4DK9    4E9E    4E9F    4E9G    4E9H    4EA4    4EA5    4LG7    4OFA    4OFE    4OFH   
PDB (IMB)2MOE    3IHO    4DK9    4E9E    4E9F    4E9G    4E9H    4EA4    4EA5    4LG7    4OFA    4OFE    4OFH   
PDB (RSDB)2MOE    3IHO    4DK9    4E9E    4E9F    4E9G    4E9H    4EA4    4EA5    4LG7    4OFA    4OFE    4OFH   
Structural Biology KnowledgeBase2MOE    3IHO    4DK9    4E9E    4E9F    4E9G    4E9H    4EA4    4EA5    4LG7    4OFA    4OFE    4OFH   
SCOP (Structural Classification of Proteins)2MOE    3IHO    4DK9    4E9E    4E9F    4E9G    4E9H    4EA4    4EA5    4LG7    4OFA    4OFE    4OFH   
CATH (Classification of proteins structures)2MOE    3IHO    4DK9    4E9E    4E9F    4E9G    4E9H    4EA4    4EA5    4LG7    4OFA    4OFE    4OFH   
Human Protein AtlasENSG00000129071
Peptide AtlasO95243
IPIIPI00426727   IPI00426728   IPI00426729   IPI00789432   IPI00967824   IPI00791816   
Protein Interaction databases
IntAct (EBI)O95243
Ontologies - Pathways
Ontology : AmiGOchromatin  satellite DNA binding  endodeoxyribonuclease activity  protein binding  nucleus  nucleoplasm  nucleoplasm  DNA repair  pyrimidine-specific mismatch base pair DNA N-glycosylase activity  response to radiation  DNA N-glycosylase activity  response to estradiol  depyrimidination  
Ontology : EGO-EBIchromatin  satellite DNA binding  endodeoxyribonuclease activity  protein binding  nucleus  nucleoplasm  nucleoplasm  DNA repair  pyrimidine-specific mismatch base pair DNA N-glycosylase activity  response to radiation  DNA N-glycosylase activity  response to estradiol  depyrimidination  
Pathways : KEGGBase excision repair   
REACTOMEO95243 [protein]
REACTOME Pathways110328 [pathway]   110329 [pathway]   110357 [pathway]   
NDEx NetworkMBD4
Atlas of Cancer Signalling NetworkMBD4
Wikipedia pathwaysMBD4
Orthology - Evolution
GeneTree (enSembl)ENSG00000129071
Phylogenetic Trees/Animal Genes : TreeFamMBD4
Homologs : HomoloGeneMBD4
Homology/Alignments : Family Browser (UCSC)MBD4
Gene fusions - Rearrangements
Fusion : MitelmanEFCAB12/MBD4 [3q21.3/3q21.3]  [t(3;3)(q21;q21)]  
Fusion: TCGAC3orf25 MBD4 3q21.3 OV
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerMBD4 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)MBD4
Exome Variant ServerMBD4
ExAC (Exome Aggregation Consortium)MBD4 (select the gene name)
Genetic variants : HAPMAP8930
Genomic Variants (DGV)MBD4 [DGVbeta]
DECIPHER (Syndromes)3:129149787-129159022  ENSG00000129071
CONAN: Copy Number AnalysisMBD4 
ICGC Data PortalMBD4 
TCGA Data PortalMBD4 
Broad Tumor PortalMBD4
OASIS PortalMBD4 [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICMBD4  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDMBD4
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch MBD4
DgiDB (Drug Gene Interaction Database)MBD4
DoCM (Curated mutations)MBD4 (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)MBD4 (select a term)
NCG5 (London)MBD4
Cancer3DMBD4(select the gene name)
Impact of mutations[PolyPhen2] [SIFT Human Coding SNP] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry MBD4
NextProtO95243 [Medical]
Huge Navigator MBD4 [HugePedia]
snp3D : Map Gene to Disease8930
BioCentury BCIQMBD4
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD8930
Chemical/Pharm GKB GenePA30663
Clinical trialMBD4
canSAR (ICR)MBD4 (select the gene name)
PubMed67 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Tue Mar 14 13:44:08 CET 2017

Home   Genes   Leukemias   Solid Tumours   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us