Department of Pharmacology, Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
Regulation Sirt1 has been shown to exert transcriptional control of BCLAF1 at the promoter level (Kong et al., 2011). Sirt1 was found to form a complex with the histone acetyltransferase p300 and NF-kB transcription factor Rel-A, bind the BCLAF1 promoter and suppress BCLAF1 transcription via H3K56 deacetylation (Kong et al., 2011). BCLAF1 protein levels fluctuate according to cell cycle position, with levels highest during the G1 phase, but lower during S and G2 phases (Bracken et al., 2008). BCLAF1 protein levels also fluctuate in a cell-lineage and temporal manner during differentiation of certain tissues and organs (McPherson et al., 2009). Several studies have determined that Bclaf1 is extensively phosphorylated, although the functional significance of this modification is unclear. BCLAF1 has been proposed as a substrate of GSK-3 kinase (Linding et al., 2007). Vasopressin action in kidney cells has been reported to simulate BCLAF1 phosphorylation (Hoffert et al., 2006). BCLAF1 has been shown to be one of the cellular targets for microRNAs (miRNAs) encoded by Kaposis sarcoma-associated herpesvirus (KSHV). KSHV triggers certain acquired immune deficiency syndrome-related malignancies such as Kaposis sarcoma, primary effusion lymphoma and variants of multicentric Castleman disease. A miRNA cluster within the KSHV genome is expressed during viral latency. During induction of lytic KSHV growth, inhibition of miRNAs was associated with increased BCLAF1 expression and decreased KSHV virion production (Ziegelbauer et al., 2009).
Interactions E1B 19K. By yeast two-hybrid analysis, BCLAF1 was shown to directly interact with adenoviral E1B 19K via a BH3 domain and another region immediately adjacent to BH3 in E1B 19K (Kasof et al., 1999). In vitro binding assays reported BCLAF1 associates with BCL-2 and BCL2L1. emerin. By yeast-two hybrid analysis and microtiter well binding assays, BCLAF1 was shown to directly interact with emerin, a nuclear membrane protein. Mutations that result in a loss of functional emerin cause X-linked recessive Emery-Dreifuss muscular dystrophy. The residues of emerin required for binding to BCLAF1 mapped to two regions that flank its lamin-binding domain. Two disease-causing mutations in emerin, S54F and Delta95-99, disrupted binding to BCLAF1. BCLAF1 and emerin were observed to co-localize in the vicinity of the nuclear envelope following induction of apoptosis by Fas antibody (Haraguchi et al., 2004). MAN1. The C-terminal domain of MAN1, a nuclear inner membrane protein that inhibits Smad signaling downstream of transforming growth factor beta, was observed to bind BCLAF1, as well as the transcriptional regulators GCL, and barrier-to-autointegration factor (BAF) (Mansharamani and Wilson, 2005). Factors that participate in RNA metabolism. BCLAF1 and TRAP150 have been identified to be protein components of ribonucleoprotein complexes that participate in pre-mRNA splicing and other mRNA processing events (Merz et al., 2007; Sarras et al., 2010; Lee et al., 2010). Both BCLAF1 and TRAP150 have been reported to reside in protein complexes that contain the mRNA export factor NXF1/TAP (Sarras et al., 2010; Lee et al., 2010). Both BCLAF1 and TRAP150, together with Pinin and SkIP, have been found in a protein complex that regulates cyclin D1 mRNA stability.
NCBI: 9774 MIM: 612588 HGNC: 16863 Ensembl: ENSG00000029363
dbSNP: 9774 ClinVar: 9774 TCGA: ENSG00000029363 COSMIC: BCLAF1
John Peter McPherson
BCLAF1 (BCL2-associated transcription factor 1)
Atlas Genet Cytogenet Oncol Haematol. 2011-06-01
Online version: http://atlasgeneticsoncology.org/gene/43164/meetings/img/cancer-prone-explorer/