Institute of Molecular Pathology, Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
LRP1B functions at the extracellular and cell membrane levels: In order to characterize LRP1B ligands, immobilized recombinant extracellular sub-domains of LRP1B have been used as decoys to perform affinity chromatography using brain lysates (Liu et al., 2001) or in serum (Haas et al., 2011) as a source of potential physiological ligands. Using this strategy, LRP1B has been previously found to bind lipoproteins and ligands of the uPA system (Liu et al., 2001; Li et al., 2002; Knisely et al., 2007). Also several serum proteins, including fibrinogen and apoE-carrying lipoproteins showed affinity to LRP1B extracellular regions (Haas et al., 2011). It should nevertheless be noted that these approaches inherently under-estimate the full impact of LRP1B activity since, in the former study (Liu et al., 2001), the proteome which has been interrogated was derived from brain-lysate fractions, rather than the extracellular proteome which shares the physiological milieu with LRP1B. In the latter study (Haas et al., 2011), the use of serum restricts candidate ligands to systemic circulating factors and neglects local factors that may play a role in the tissue microenvironment. Evidence that LRP1B activity may, directly or indirectly, modulate the abundance of multiple extracellular factors comes from the analysis of conditioned media from LRP1B overexpressing cells, relative to their parental counterparts. Conditioned media from cells overexpressing LRP1B shows a reduction in the amounts of MMP2 as well as other metalloproteinases, growth factors, cytokines and angiogenic factors, indicating that LRP1B impacts the overall extracellular proteome (Prazeres et al., 2011). It is thus expected that LRP1B, in analogy with other LRs, can displays a myriad of additional extracellular ligands that impact the physiology in the extracellular microenvironment. LRP1B ligands also include the cellular prion protein (Taylor and Hooper, 2007; Lu et al., 2010). At the membrane level, LRP1B has been shown to modulate the localization of Urokinase and PDGF receptors (Tanaga et al., 2004) and to retain beta-amyloid precursor protein at the cell surface and reducing amyloid-beta peptide production (Cam et al., 2004).
Intracellular LRP1B partners: Six interacting partners of the LRP1B cytoplasmic region have been identified by yeast two-hybrid screen and immunoprecipitation. One of the partners, PICK1 recognizes the C-terminus of LRP1B and inhibits phosphorylation of LRP1B by PKC alpha (Shiroshima et al., 2009). The output of these interactions in terms of signaling pathways activated in consequence of LRP1B activity remains unexplored.
Proteolytic release of LRP1B domains: LRP1B ectodomains resulting from proteolytic shedding of the extracellular region can be found in the soluble form (Dietrich et al., 2010). LRP1B has also been shown to undergo regulated intra-membrane proteolysis in a gamma-secretase-dependent manner, releasing an intracellular domain (ICD) that then translocates to the nucleus (Liu et al., 2007). The functions of the ICD in the nucleus are unknown.
Functions associated with heterologous ligands: LRP1B may also act as a receptor for heterologous biomolecules such as the Pseudomonas exotoxin (Pastrana et al., 2005) and, most interestingly, for certain drugs, putting emphasis on the role of endocytosis in cellular drug uptake (Chung and Wasan, 2004). In accordance with this, reduced uptake of liposomes by LRP1B may underlie the mechanism of acquired resistance to liposomal doxorubicin chemotherapy in high-grade serous ovarian cancers that display LRP1B deletion (Cowin et al., 2012).
NCBI: 53353 MIM: 608766 HGNC: 6693 Ensembl: ENSG00000168702
dbSNP: 53353 ClinVar: 53353 TCGA: ENSG00000168702 COSMIC: LRP1B
Hugo Prazeres ; Catarina Salgado ; Cecília Duarte ; Paula Soares
LRP1B (low density lipoprotein receptor-related protein 1B)
Atlas Genet Cytogenet Oncol Haematol. 2013-07-01
Online version: http://atlasgeneticsoncology.org/gene/41200/favicon/tumors-explorer/js/web-card-_common.js