Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

PTN (pleiotrophin)

Written2012-05Evangelia Pantazaka, Evangelia Papadimitriou
Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece

(Note : for Links provided by Atlas : click)


neurite growth-promoting factor 1
Alias_symbol (synonym)HBNF
Other aliasHARP
LocusID (NCBI) 5764
Atlas_Id 41904
Location 7q33  [Link to chromosome band 7q33]
Location_base_pair Starts at 137227346 and ends at 137343990 bp from pter ( according to hg19-Feb_2009)  [Mapping PTN.png]
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
OIP5-AS1 (15q15.1) / PTN (7q33)
Note The different names initially assigned to the growth factor were due to its purification from different tissues in different labs. The name pleiotrophin is widely accepted nowadays and reflects the plethora of functions it exerts in different tissues and cell lines (see "Function").
The mouse gene is located on chromosome 6 (Tezuka et al., 1990), the rat (Merenmies and Rauvala, 1990), bovine (Li et al., 1990; Böhlen et al., 1991), and zebrafish (Chang et al., 2004) on chromosome 4, the fruit-fly (Englund et al., 2006) and monkey genes on chromosome 3, the chicken gene on chromosome 1 (Lee et al., 2012), the canine gene on chromosome 16. Note that the records' status and the GenBank sequence data for these species are defined as provisional or model.


Description The human gene coding PTN was first found to consist of at least 7 exons, with the open reading frame (ORF) located on 4 exons (Lai et al., 1992). In another study it was reported to be arranged in 5 exons and 4 introns (Milner et al., 1992). PTN mRNA is approximately 1,6 kb. The ORF of the coding region is 507 bp.
Transcription Although a variant with a single residue deletion has been mentioned (Kretschmer et al., 1993), it is considered that no mRNA variants exist (Laaroubi et al., 1995). There are two PTN transcripts appearing in Ensembl.
Pseudogene None known.


Note PTN does not possess an N-glycosylation consensus sequence, nor have any other co- or post-translational modifications been observed up to date. However, a controversy for the cleavage site of the signalling peptide has been documented in the literature, identifying a 136- or a 139-amino acid residue mature protein (Laaroubi et al., 1994; Delbé et al., 1995). Proteolytic cleavage of PTN has been described by plasmin (Polykratis et al., 2004) and MMP-2 (Dean et al., 2007), leading to peptides with different biological activities concerning tumour growth and angiogenesis. Two forms of PTN that differ by 12 amino acid residues in the C-terminal (15 and 18 kDa, designated as PTN15 and PTN18, respectively) have been detected in glioblastoma (Lu et al., 2005) and are considered to result from post-translational processing, e.g. proteolysis.
  Proteolytic cleavage of PTN. The arrows indicate the cleavage sites by plasmin (Polykratis et al., 2004) and MMP-2 (Dean et al., 2007) and the residues where the cleavages occur are highlighted. The numbers indicate the corresponding residues.
Description Structure. PTN is a secreted growth factor composed of 168 amino acid residues; the first 32 correspond to the secretory signal sequence and the remaining 136 residues constitute the mature protein. Although the calculated molecular weight of PTN is 15,3 kDa, it appears as an 18 kDa band on gels, suggesting an anomalous migration due to the high percentage of basic amino acid residues.
Heteronuclear NMR has revealed the structure of PTN (Kilpelainen et al., 2000); two β-sheet domains (N- and C-terminals) maintained through five disulfide bonds and connected by a flexible linker, and two lysine-rich clusters at the N- and C-terminal domains that appear as random flexible coils. Each β-sheet domain consists of three antiparallel β-strands and contains a thrombospondin repeat I (TSR-I) motif. TSR-I has been suggested to be responsible for PTN binding to heparin/heparan sulfate (Raulo et al., 2005) and N-syndecan (Raulo et al., 2006), to regulate PTN neurite outgrowth activity and synaptic plasticity (Raulo et al., 2006), mitogenic and angiogenic activity (in particular the C-terminal TSR-I) (Hamma-Kourbali et al., 2008). Computational analysis has identified the three-dimensional structure and electrostatic potential distribution of PTN, and homology modelling using midkine as a template has predicted the binding pocket of PTN for oligosaccharides (Li et al., 2010a). The structure of PTN peptide P112-136 has also been studied by NMR suggesting that the peptide adopts a specific folded conformation (Mikelis et al., 2011).
Cloning of different PTN constructs has led to the identification that residues 41-64 (with the cooperation of either of the lysine-rich terminal clusters) are important for the transformation of NIH 3T3 cells and were designated as the "transforming domain" (Zhang et al., 1999b), while residues 69-136 have been designated as the "angiogenesis domain" (Zhang et al., 2006) (also see "Peptides/chimaeras and structure-function relationship").
PTN has been reported to form non-covalent dimers in a process dependent on the presence of heparin or other glycosaminoglycans (Bernard-Pierrot et al., 1999). PTN was secreted as a dimer in conditioned medium of NIH 3T3 cells (Bernard-Pierrot et al., 1999). Furthermore, truncated PTN mutants (P1-40 and P1-110) have been suggested to heterodimerize with endogenous PTN (Zhang et al., 1997; Bernard-Pierrot et al., 2002), an action that explains their dominant negative effects.

Regulation. PTN expression is regulated in a temporal and cell type-dependent manner (also see "Expression"). PTN expression has been reported to be regulated by: cytokines and growth factors, such as midkine in a compensatory manner (Herradon et al., 2005), platelet-derived growth factor (PDGF) (Li et al., 1992a; Antoine et al., 2005), epidermal growth factor (Pufe et al., 2003), fibroblast growth factor (FGF) 2 (Hatziapostolou et al., 2006), and tumour necrosis factor α (Pufe et al., 2003); signalling molecules, such as cAMP (Mourlevat et al., 2005), hydrogen peroxide (Polytarchou et al., 2005) and nitric oxide (Polytarchou et al., 2009); hormones (Tamura et al., 1995; Vacherot et al., 1995; Roger et al., 2006); transcription factors, such as AP-1 (Florin et al., 2005; Polytarchou et al., 2005; Poimenidi et al., 2009) and HOXA5 (Chen et al., 2005); tumour suppressors, such as menin (Gao et al., 2009; Feng et al., 2010) and PTEN (Li et al., 2006); miscellaneous conditions, such as hypoxia (Antoine et al., 2005), mechanical loading (Liedert et al., 2004), serum (Poimenidi et al., 2009) and X-rays (Polytarchou et al., 2004). Contradictory observations regarding retinoic acid suggest either induction of expression by retinoic acid (Kretschmer et al., 1991; Bloch et al., 1992; Azizan et al., 2000; Brunet-de Carvalho et al., 2003; Mitsiadis et al., 2008) and regulation by the retinoic acid receptors (Marzan et al., 2011), or lack of effect (Li et al., 1992a). PTN expression is also altered during disease (see "Implicated in").
PTN has been suggested to mediate FGF2 stimulatory effect on human prostate cancer cell proliferation and migration (Hatziapostolou et al., 2006), as well as hydrogen peroxide and nitric oxide stimulatory effects on human prostate cancer and endothelial cell migration (Polytarchou et al., 2005; Polytarchou et al., 2009). It is also suggested to regulate vascular endothelial growth factor (VEGF) receptor expression (Kokolakis et al., 2006) and VEGF-mediated proliferation and angiogenesis of endothelial cells (Héroult et al., 2004).

Signalling. PTN acts via various receptors (reviewed in Papadimitriou et al., 2009), like the receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) (Maeda et al., 1996; Meng et al., 2000; Ulbricht et al., 2003; Lu et al., 2005; Perez-Pinera et al., 2007b; Herradón and Ezquerra, 2009; Koutsioumpa et al., 2009; Mikelis et al., 2009; Polytarchou et al., 2009), ανβ3 integrin (Mikelis et al., 2009; Feng et al., 2010; Mikelis et al., 2011), nucleolin (Take et al., 1994; Said et al., 2005; Koutsioumpa et al., 2012), N-syndecan (Raulo et al., 1994; Nolo et al., 1995; Kinnunen et al., 1998a; Raulo et al., 2006; Landgraf et al., 2008) and anaplastic lymphoma kinase (ALK) (Stoica et al., 2001; Bowden et al., 2002; Powers et al., 2002; Lu et al., 2005; Perez-Pinera et al., 2007c; Yanagisawa et al., 2010).
PTN has been the first natural ligand identified for RPTPβ/ζ with high affinity (Maeda et al., 1996). It has been proposed that PTN binding to RPTPβ/ζ leads to dimerization of the receptor and loss of its tyrosine phosphatase activity. This subsequently increases the tyrosine phosphorylation of β-catenin, its dissociation from E-cadherin and its accumulation in the cytoplasm (Meng et al., 2000). Other downstream targets of the PTN/RPTPβ/ζ signalling are β-adducin (Pariser et al., 2005b) and a member of the Src family, Fyn (Pariser et al., 2005a), all affecting cytoskeletal integrity, adhesion and cell migration. On the other hand, it has been reported that PTN binding to RPTPβ/ζ leads to dephosphorylation and activation of c-Src kinase, focal adhesion kinase, phosphatidylinositol 3-kinase (PI3K), and Erk1/Erk2 (Souttou et al., 2001b; Polykratis et al., 2005; Hienola et al., 2006; Diamantopoulou et al., 2010; Himburg et al., 2010; Gao et al., 2011; Mikelis et al., 2011).
PTN has been also shown to directly bind ανβ3 integrin, which forms a functional complex with RPTPβ/ζ on the cell surface. In cell lines that express RPTPβ/ζ, the presence or absence of the ανβ3 integrin, determines whether PTN stimulates or inhibits cell migration (Mikelis et al., 2009). Through the RPTPβ/ζ/c-Src axis, PTN leads to β3 integrin Tyr773 phosphorylation, which is also required for PTN-induced cell migration (Mikelis et al., 2009).
PTN also binds nucleolin (Take et al., 1994; Said et al., 2005; Koutsioumpa et al., 2012). Through this binding it may inhibit human immunodeficiency virus type 1 (HIV-1) infection (Said et al., 2005). Moreover, cell surface nucleolin mediates PTN-induced endothelial cell migration (Koutsioumpa et al., 2012).
N-syndecan was the first PTN receptor identified (Raulo et al., 1994). PTN binds N-syndecan (Raulo et al., 1994; Kinnunen et al., 1998a; Raulo et al., 2005; Raulo et al., 2006) and induces neurite outgrowth (Raulo et al., 1994; Kinnunen et al., 1998b), other actions related to the nervous system (Nolo et al., 1995; Iseki et al., 2002; Landgraf et al., 2008) and development (Imai et al., 1998; Asahina et al., 2002; Tare et al., 2002). The PTN/N-syndecan pathway has been suggested to involve c-Src activation (Kinnunen et al., 1998b).
ALK is a transmembrane tyrosine kinase (Stoica et al., 2001) suggested to promote PTN-induced cell proliferation (Souttou et al., 2001a; Powers et al., 2002), survival (Bowden et al., 2002) and neuronal differentiation (Souttou et al., 2001a). The PTN/ALK pathway is supposed to activate the Ras-MAPK (Souttou et al., 2001a) or the PI3K-Akt (Bai et al., 2000; Slupianek et al., 2001) signalling pathways. However, there are also studies showing that PTN is not a ligand for ALK (Moog-Lutz et al., 2005; Mathivet et al., 2007). In line with this notion, it has been suggested that instead of PTN directly binding ALK, the latter is indirectly activated by PTN binding to RPTPβ/ζ (Perez-Pinera et al., 2007a).
Two forms of PTN have been suggested to differentially bind PTN receptors; PTN15 has been shown to bind ALK and promote proliferation of glioblastoma cells, whereas PTN18 has been shown to bind RPTPβ/ζ and promote haptotactic migration (Lu et al., 2005). In a later study, neither of the two PTN forms where able to activate ALK in neuroblastoma and glioblastoma cells (Mathivet et al., 2007). Moreover, based on the fact that PTN binding to ανβ integrin occurs through its C-terminal domain (Mikelis et al., 2011), PTN15 that lacks the C-terminal domain of the full length molecule (Lu et al., 2005) is not expected to bind ανβ3.
In fetal alveolar epithelial type II cells, PTN exerts its effects via cross-talk with Wnt/β-catenin signalling (Weng et al., 2009), although this has not been linked to any of the PTN receptors up to date.

Expression PTN expression (mRNA and protein) has been extensively studied in several cells lines and tissues, under physiological or pathological conditions (reviewed in Böhlen and Kovesdi, 1991; Deuel et al., 2002; Papadimitriou et al., 2009). PTN is expressed in a developmentally regulated manner. It is highly expressed during the embryonic and neonatal periods, while it is poorly expressed at the adult period (Kovesdi et al., 1990; Böhlen and Kovesdi, 1991; Vanderwinden et al., 1992; Rauvala et al., 1994). PTN is predominantly expressed in brain and neurons (Rauvala, 1989; Tezuka et al., 1990; Silos-Santiago et al., 1996; Chang et al., 2004; Furuta et al., 2004; Hienola et al., 2004; Jung et al., 2004). It is found in the heart (Hampton et al., 1992; Anisimov et al., 2002; Li et al., 2007), kidney (Martin et al., 2006), liver (Asahina et al., 2002), lung (Vanderwinden et al., 1992; Weng et al., 2006), uterus (Milner et al., 1989; Milhiet et al., 1998), testis (Vanderwinden et al., 1992), mammary gland (Ledoux et al., 1997), eye (Roger et al., 2006), bone and teeth (Tezuka et al., 1990; Erlandsen et al., 2012), and cartilage (Tezuka et al., 1990; Neame et al., 1993; Azizan et al., 2000). PTN has been also found to be expressed in neural (Furuta et al., 2004), mesenchymal (Ma et al., 2005) and embryonic (Soh et al., 2007) stem cells.
High levels of PTN have been detected in several cancers and cell lines derived from these tumours. Examples of such malignancies include breast (Wellstein et al., 1992; Riegel and Wellstein, 1994; Choudhuri et al., 1997; Chang et al., 2007), prostate (Vacherot et al., 1999; Hatziapostolou et al., 2005), cervical (Moon et al., 2003), colon (Souttou et al., 1998; Kong et al., 2012), pancreatic (Weber et al., 2000; Yao et al., 2009), lung (Garver et al., 1993; Jäger et al., 1997; Feng et al., 2010), and ovarian (Nakanishi et al., 1997; Collino et al., 2009; Lee et al., 2012) carcinomas, gliomas (Powers et al., 2002; Ulbricht et al., 2003; Zhang et al., 2004; Grzelinski et al., 2005; Lu et al., 2005; Grzelinski et al., 2006; Ulbricht et al., 2006; Peria et al., 2007; Mikelis et al., 2009), meningiomas (Mailleux et al., 1992), melanomas (Czubayko et al., 1996; Satyamoorthy et al., 2000; Seykora et al., 2003; Wu et al., 2005; Gao et al., 2011), multiple myeloma (Chen et al., 2007; Chen et al., 2009), choriocarcinoma (Schulte et al., 1996), and most cell lines of malignant pediatric tumours (Barthlen et al., 2003).
Localisation PTN is a secreted protein. It has been also detected in the cell nucleus (Koutsioumpa et al., 2012), but the origin (intracellular versus extracellular) of the nuclear PTN remains unknown.
Function PTN has got its name due to its pleiotrophic effects (reviewed in Deuel et al., 2002; Jin et al., 2009; Papadimitriou et al., 2009).

Growth and maturation of brain
Neurite outgrowth promoting activity was the first to be acknowledged when PTN was first identified and is considered one of the characteristic PTN functions (Kovesdi et al., 1990; Kretschmer et al., 1991; Rauvala et al., 1994; Amet et al., 2001; Chang et al., 2004; Yanagisawa et al., 2010; Yao et al., 2011). Moreover, PTN is involved in the neurite outgrowth promoting actions of the Y-P30 polypeptide, produced by peripheral blood mononuclear cells of the maternal immune system in pregnancy, during brain development of the embryo (Landgraf et al., 2008), and mediates the neuritogenic activity of embryonic brain-derived chondroitin sulphate/dermatan sulphate hybrid chains (Bao et al., 2005). Levels of PTN expression are significantly regulated by amphetamine administration and PTN seems to have important roles in the modulation of synaptic plasticity (Le Grevès, 2005), the protection of nigrostriatal pathways against amphetamine insult (Gramage et al., 2010b), and limitation of amphetamine-induced neurotoxic and rewarding effects (Gramage et al., 2010a). In the same line, levels of the endogenous expression of PTN affect cognitive deficits and long-term alterations of hippocampal long-term potentiation after adolescent amphetamine treatment (Gramage et al., 2011).

PTN has been suggested to promote proliferation of endothelial cells (Courty et al., 1991; Fang et al., 1992; Laaroubi et al., 1994), epithelial cells (Fang et al., 1992; Delbé et al., 1995; Souttou et al., 1997; Bernard-Pierrot et al., 2004), prostate cancer LNCaP cells (Hatziapostolou et al., 2005; Hatziapostolou et al., 2006), fibroblasts (Fang et al., 1992; Souttou et al., 1997), osteoblasts (Zhou et al., 1992; Yang et al., 2003), human peripheral blood mononuclear cells (Achour et al., 2001), fetal alveolar epithelial type II cells (Weng et al., 2009) and adult rat hepatocytes (Asahina et al., 2002). Moreover, it mediates the stimulatory effect of hydrogen peroxide (Polytarchou et al., 2005) and FGF2 (Hatziapostolou et al., 2006) on LNCaP cell proliferation. Immobilised PTN has been shown to stimulate proliferation of oligodendrocyte CG-4 and primary progenitor glial 0-2A cells (Rumsby et al., 1999), as well as human umbilical vein and bovine brain capillaries endothelial cells (Papadimitriou et al., 2000). Conversely, it has been proposed to inhibit the proliferation of C6 glioma cells (Parthymou et al., 2008) and the VEGF-induced proliferation of human umbilical vein endothelial cells (Heroult et al., 2004).

Cell migration
PTN has been shown to promote migration of endothelial (Papadimitriou et al., 2001; Souttou et al., 2001b; Ulbricht et al., 2003; Li et al., 2005b; Polykratis et al., 2005; Mikelis et al., 2009), glioblastoma (Ulbricht et al., 2003; Lu et al., 2005; Mikelis et al., 2009), human osteoprogenitor (Yang et al., 2003), human osteoblasts (Li et al., 2005b) and human prostate cancer LNCaP (Hatziapostolou et al., 2005) cells. PTN has been reported to mediate the stimulatory effect of hydrogen peroxide on human endothelial and prostate cancer LNCaP cell migration (Polytarchou et al., 2005; Polytarchou et al., 2009), of eNOS/NO on human endothelial and prostate cancer cell migration (Polytarchou et al., 2009), of aprotinin on human endothelial cell migration (Koutsioumpa et al., 2009) and of FGF2 on LNCaP cell migration (Hatziapostolou et al., 2006). Conversely, it has been suggested to inhibit C6 glioma cell migration (Parthymou et al., 2008) and the VEGF-induced migration of human umbilical vein endothelial cells (Heroult et al., 2004; Polykratis et al., 2004).

PTN has been reported to play a negative role during adipogenesis (Gu et al., 2007; Yi et al., 2011) and to inhibit fetal alveolar epithelial type II cell differentiation into type I cells (Weng et al., 2009).

Skeletal system
Initially, PTN mRNA was found during development in bone and cartilage progenitors and in dental pulp (Tezuka et al., 1990; Vanderwinden et al., 1992). One biological function that was early attributed to PTN is the promotion of osteoblast attachment to the extracellular bone matrix through its C-terminal domain (Gieffers et al., 1993). It was later shown that bone mass loss observed due to oestrogen deficiency is compensated in transgenic mice over-expressing PTN (Masuda et al., 1997). PTN is prominently expressed in the cell matrices that act as target substrates for bone formation and may play an important role in bone formation, probably by mediating recruitment and attachment of osteoblasts/osteoblast precursors to the appropriate substrates for deposition of new bone (Imai et al., 1998). PTN has the ability to promote adhesion, migration, expansion, and differentiation of human osteoprogenitor cells (Yang et al., 2003) and to regulate periosteal bone formation and resorption in response to four-point bending of right tibias in C57BL/6J mice (Xing et al., 2005), although it was more recently suggested by using PTN knockout mice that it is not a key upstream mediator of the anabolic effects of mechanical loading on the skeleton (Kesavan and Mohan, 2008). Interestingly, the PTN transgenic mice develop a phenotype characterized by higher bone mineral content and density (Imai et al., 1998) and increased bone growth (Tare et al., 2002); however, a more recent study with targeted PTN over-expression in mouse bone suggests that although PTN mice have advanced bone growth in length and maturation during early stages of bone development, the difference is diminished in later life and the bones become brittle (Li et al., 2005a). On the other hand, although PTN-deficient mice seem to have normal bone formation (Lehmann et al., 2004), they show growth retardation in the weight-bearing bones by two months of age and low bone formation and osteopenia, as well as resistance to immobilization-dependent bone remodelling, during adulthood (Imai et al., 2009).

Injury repair, survival and regeneration in several systems
PTN levels in human serum (Weiss et al., 2009) and rat bone (Petersen et al., 2004) are increased during fracture healing (Petersen et al., 2004; Li et al., 2005a; Weiss et al., 2009).
Treatment with PTN chimaeras after canine carotid artery balloon angioplasty injury resulted in endothelial healing (Brewster et al., 2006). Up-regulation of PTN in heart failure and cardiac ischemia may contribute to the revascularization of the injured heart (Christman et al., 2005; Li et al., 2007). PTN has been reported to facilitate wound healing of injured fetal alveolar epithelial type II cells (Weng et al., 2009).
PTN has been suggested to play a role in the survival of hematopoietic stem cells (Himburg et al., 2010), and the survival and regeneration of dopaminergic neurons (Hida et al., 2003; Jung et al., 2004; Hida et al., 2007). PTN is highly expressed within the injured nerve suggesting a role in peripheral nerve regeneration (Blondet et al., 2005; Jin et al., 2009), in macrophages, astrocytes and endothelial cells after neuronal injury (Takeda et al., 1995; Yeh et al., 1998), in neurons and glial cells after spinal cord injury in rats (Wang et al., 2004), and in denervated nerve and muscle suggestive of a role in axonal regeneration (Mi et al., 2007).

Bacterial growth
PTN has been shown to have bactericidal properties through an unknown, up to date, mechanism (Svensson et al., 2010).

PTN prevents apoptosis of SW-13 epithelial cells (Bowden et al., 2002) and spermatocytes (Zhang et al., 1999a), and inhibits transforming growth factor β1-induced apoptosis in hepatoma cell lines (Park et al., 2008). Similarly, the functions of PTN/RPTPβ/ζ on human embryonic stem cells seem to depend mainly on its anti-apoptotic effect (Soh et al., 2007). Conversely, PTN potentiates cardiomyocyte apoptosis (Li et al., 2007).

Homology Homologs. PTN and midkine are the two members of a heparin-binding growth factor family. Common characteristics are reviewed in Muramatsu, 2002; Kadomatsu and Muramatsu, 2004:
- approximately 50% amino acid residue identity,
- basic amino acid rich proteins,
- 10 conserved cysteine residues,
- consist of N- and C-terminal domains,
- C-terminal domain is evolutionary conserved,
- N-terminal domain of the zebrafish midkine and of the human PTN has dominant negative effects.

Orthologs. PTN is a basic amino acid (24%) and cysteine rich protein. Its 10 cysteine residues are conserved in vertebrates and all form disulfide bonds (Hulmes et al., 1993). PTN exhibits high sequence conservation among species (reviewed in Rauvala et al., 2000 and references therein). The PTN C-terminal domain is the most conserved domain evolutionarily (Svensson et al., 2010) (dbSNP, HomoloGene).


Note Mutants
Two SNPs (rs322236 and rs3959914) within the first intron of the gene encoding PTN have been associated with volumetric bone mass density (Zmuda et al., 2011). Polymorphisms in the PTN gene promoter have been also mentioned to affect bone density and might be implicated in osteoporosis (Mencej-Bedrac et al., 2011). Four SNPs and five mutations (COSMIC) have been mentioned, but they have not been linked to expression or function.

Peptides/chimaeras and structure-function relationship
Several PTN peptides and truncated PTN constructs have been studied in an attempt to elucidate the structure/function relationship of PTN:
- The truncated construct P1-40 (dominant negative effector through its ability to form dimers with PTN) has been shown to prevent PTN-induced transformation of the mouse embryonic fibroblast NIH 3T3 cell line and the formation of tumours in the human breast cancer MDA-MB-231 cell line (Zhang et al., 1997).
- Peptides P1-21 and P121-139 have been demonstrated to stimulate endothelial tube formation, proliferation and in vivo angiogenesis (Papadimitriou et al., 2000; Papadimitriou et al., 2001).
- Peptides P9-59 and P60-110 have been reported to induce endothelial cell migration and tube formation, while P9-110 to inhibit migration. All three peptides caused an increase of endothelial adhesion (Polykratis et al., 2004). In a different study, the truncated constructs P9-59 and P60-110 (equivalents of the two out of the three fragments that are produced after MMP-2 cleavage) have been shown to promote or inhibit NIH 3T3 cell proliferation, respectively (Dean et al., 2007).
- The peptide P65-97 has been demonstrated to inhibit the mitogenic, tumourigenic and angiogenic activities of PTN (Hamma-Kourbali et al., 2008).
- The truncated construct P1-110 has been extensively studied. It has been reported to prevent proliferation and tumour formation in NIH 3T3 cells (Bernard-Pierrot et al., 2001), bind ALK, inhibit in vitro and in vivo PTN-induced angiogenesis of endothelial cells, in vitro and in vivo PTN-induced transforming activity of MDA-MB 231 cells (Bernard-Pierrot et al., 2002), to inhibit in vitro and in vivo proliferation of U87 MG glioblastoma cell line, in vivo angiogenesis, and growth and angiogenesis of U87 MG xenografts in nude mice (Dos Santos et al., 2010), and inhibit PTN-induced MDA-MB-231 breast tumour and endothelial cell proliferation and growth (Ducès et al., 2008).
- The peptide P111-136 has been shown to inhibit PTN-mediated PC-3 cell growth and angiogenesis (Hamma-Kourbali et al., 2011).
- The peptide P112-136 has been demonstrated to inhibit PTN binding to ανβ3, but not RPTPβ/ζ, inhibit in vivo angiogenesis and the PTN-induced migration and tube formation of human endothelial cells (Mikelis et al., 2011).
- The peptide P122-131 has been reported to inhibit adhesion, proliferation and migration of DU145 and LNCaP cells and in vivo angiogenesis (Diamantopoulou et al., 2010).
- Peptides generated after proteolysis with plasmin were shown to have stimulatory or inhibitory effects on endothelial migration and tube formation, and only stimulatory on cell adhesion (Polykratis et al., 2004).
- Chimaeras of PTN and FGF have been demonstrated to induce re-endothelialization after angioplasty injury (Brewster et al., 2006).

PTN knock-out and PTN-over-expressing mice
PTN-deficient mice are born without major anatomical defects and exhibit enhanced hippocampal long-term potentiation (Amet et al., 2001). However, mice deficient in both PTN and midkine have been shown to exhibit severe auditory deficit (Zou et al., 2006), have high mortality rates within a month of their birth (Muramatsu, 2010) and exhibit female infertility (Muramatsu et al., 2006).
PTN-over-expressing mice exhibit abnormalities in bone formation (Masuda et al., 1997; Hashimoto-Gotoh et al., 2004; Li et al., 2005a) and show decreased hippocampal long-term potentiation (Pavlov et al., 2002).

Implicated in

Entity Various cancers
Note Enhanced PTN serum levels have been reported from patients with tumour types such as colorectal (Kong et al., 2012), pancreatic (Souttou et al., 1998; Klomp et al., 2002), lung (Jäger et al., 2002; Ostroff et al., 2010), colon (Souttou et al., 1998), testicular (Aigner et al., 2003), multiple myeloma (Yeh et al., 2006; Chen et al., 2007), melanoma (Wu et al., 2005) and a variety of cancers (Soulié et al., 2004) (also see "Expression").
PTN can be potentially used as a marker of the presence of malignancies. It has been shown that patients with pancreatic or colon cancer have elevated serum PTN levels (Souttou et al., 1998; Kong et al., 2012), which drop after successful tumour removal (Souttou et al., 1998). PTN expression is increased in pancreatic cancer tissues compared to inflammatory or normal tissues (Klomp et al., 2002) and may be also linked to the increased perineural invasion and poor prognosis of pancreatic cancer (Yao et al., 2009). PTN has been also mentioned as a new diagnostic marker for testicular cancer with high sensitivity even in early-stage testicular cancer (Aigner et al., 2003).
The role of PTN in cancer is considered to be both direct by being an autocrine stimulator of tumour cells, and indirect by affecting tumour angiogenesis.
Over-expression of PTN in NIH 3T3 cells leads to anchorage-independent growth in vitro and tumour formation in nude mice in vivo (Chauhan et al., 1993). Human adrenal carcinoma cells expressing PTN acquire autonomous growth in vitro and in vivo (Fang et al., 1992). On the other hand, over-expression of a dominant-negative PTN form in human breast cancer MDA-MB-231 cells decreases their ability to form colonies in soft agar and tumours in nude mice (Zhang et al., 1997). PTN-targeting ribozymes in human melanoma WM852 (Czubayko et al., 1994) or 1205Lu cells (Czubayko et al., 1996; Malerczyk et al., 2005), as well as Colo357 pancreatic cancer (Weber et al., 2000), choriocarcinoma (Schulte et al., 1996) and glioblastoma (Grzelinski et al., 2005) cells suppress tumour growth in vivo and in vitro. Similarly, a replication-deficient recombinant adenovirus expressing antisense PTN at high efficiency decreases melanoma cell growth in vitro and in vivo (Satyamoorthy et al., 2000), and an RNA-interference PTN gene silencing approach decreases glioblastoma xenografts growth (Grzelinski et al., 2006). Antisense PTN expression in human prostate LNCaP cells decreases cell migration, as well as anchorage-dependent and independent growth in vitro (Hatziapostolou et al., 2005) and abolishes the stimulatory effect of FGF2 (Hatziapostolou et al., 2006) or signalling concentrations of hydrogen peroxide (Polytarchou et al., 2005) in the same cells.
Conversely, antisense PTN expression in rat glioma C6 cells increases cell migration, as well as anchorage-dependent and independent growth in vitro (Parthymou et al., 2008) and increased PTN expression is associated with poor vasculature and better prognosis in neuroblastomas (Calvet et al., 2006). PTN has been also shown to inhibit migration of several glioma cell lines in vitro (Lu et al., 2005; Mikelis et al., 2009).
The role of PTN in tumour angiogenesis has been initially suggested by the observation that culture supernatants derived from PTN transfected human adrenal carcinoma cells (Fang et al., 1992), lung cancer cells (Jäger et al., 1997) or PTN transfected MCF-7 human breast cancer cells (Choudhuri et al., 1997) possess mitogenic activities for endothelial cells. It also increases the angiogenic potential of multiple myeloma (Chen et al., 2009).
Ribozyme targeting of PTN in a human melanoma cell line decreases vessel formation in the primary tumour, as well as metastases (Czubayko et al., 1996), and antisense PTN expression in human prostate LNCaP cells decreases prostate cancer cell-induced angiogenesis in vitro and in vivo (Hatziapostolou et al., 2005).
Conversely, antisense PTN expression in rat glioma C6 cells decreases prostate cancer cell-induced angiogenesis in vitro and in vivo (Parthymou et al., 2008), and PTN seems to act as an angiostatic factor in an in vivo neuroblastoma model that is resistant to irinotecan (Calvet et al., 2006).
Entity Disorders of the central nervous system
Note PTN has been suggested to provide neuroprotection, prevent drug of abuse-induced neurotoxicity and addiction, and recover the dopaminergic system in Parkinson's disease (Mourlevat et al., 2005; Marchionini et al., 2007; Sotogaku et al., 2007; Ferrario et al., 2008; Moses et al., 2008; Herradón and Ezquerra, 2009; Gramage and Herradón, 2011; Gombash et al., 2012).
PTN has been shown to be deposited in senile plaques in both Alzheimer's disease and Down's syndrome (Wisniewski et al., 1996).
Entity Memory
Note Mice over-expressing PTN showed attenuated long-term potentiation and were demonstrated to learn faster in behavioural studies (Pavlov et al., 2002). PTN has been reported to inhibit hippocampal long-term potentiation, suggesting a positive role of PTN in memory and learning (del Olmo et al., 2009), and regulation of synaptic plasticity (Lauri et al., 1998; Amet et al., 2001; Pavlov et al., 2006).
Entity Pain
Note PTN has been presented as a promising candidate to limit neuropathic pain development (Martin et al., 2011).
Entity Auditory function
Note In mice doubly deficient in the midkine and PTN genes, expression of β-tectorin mRNA requires either midkine or PTN and these mice exhibited very severe auditory deficits. Mice deficient in either midkine or PTN gene were also impaired in their auditory response, but the level of the deficit was generally low or moderate (Zou et al., 2006).
Entity Angiogenesis
Note Besides the effect of PTN on proliferation and migration of endothelial cells (described in "Function"), PTN has been shown to promote in vitro formation of tube-like structures in collagen gels (Papadimitriou et al., 2001; Souttou et al., 2001b), fibrin gels or matrigel (Papadimitriou et al., 2001), and to stimulate in vivo angiogenesis of the chick embryo chorioallantoic membrane (Papadimitriou et al., 2001; Koutsioumpa et al., 2012), and in matrigel implants in mice (Bernard-Pierrot et al., 2001). Besides a direct effect on endothelial cells, PTN induces transdifferentiation of monocytes into functional endothelial cells (Sharifi et al., 2006; Chen et al., 2009). Conversely, PTN has been reported to inhibit VEGF-induced angiogenesis (Heroult et al., 2004). PTN has also a significant role in cancer angiogenesis (see "Various cancers").
Entity Haematopoiesis
Note PTN has been recently identified as a new regulator of both haematopoietic stem cells expansion in vitro and regeneration in vivo through PI3K signalling (Himburg et al., 2010). Haematopoietic regeneration seems to be independent of β-catenin and includes cyclin D1 and C/EBPα (Istvanffy et al., 2011).
Entity Cardiovascular conditions
Note PTN expression has been reported in vascularized human atherosclerotic plaques (Li et al., 2010b). PTN has been also suggested as a diagnostic marker and a therapeutic target for heart failure (reviewed in Asakura and Kitakaze, 2009).
Entity Inflammatory conditions and autoimmune diseases
Note Induction of inflammatory cytokines expression by PTN suggests a role of PTN in inflammatory processes (Achour et al., 2008). Moreover, PTN expression is up-regulated by cytokines in inflammatory processes, such as atherosclerosis (Li et al., 2010b) and systemic lupus erythematosus (Ramos et al., 2011), as well as hypoxia (Antoine et al., 2005). Up-regulation of PTN appears to play a role in fibrosis and inflammation during peritoneal injury (Yokoi et al., 2012). PTN has been also reported to be the most highly expressed gene in Peyronie's disease plaque (Magee et al., 2002). PTN up-regulation coincided with clinical recovery in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (Liu et al., 1998), and is observed in patients with rheumatoid arthritis (Pufe et al., 2003).
Entity Immune system related conditions
Note PTN has been demonstrated to induce (HIV-1) expression in peripheral blood mononuclear cells from AIDS patients (M'Bika et al., 2010). Conversely, PTN has been demonstrated to inhibit HIV-1 infection (Said et al., 2005).
Entity Bone and joint diseases
Note PTN has been identified as a candidate gene for osteoporosis by using a microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts (Trost et al., 2010). Preliminary work has suggested that the PTN gene promoter polymorphism -1227C>T and CT haplotype affects bone density and might be implicated in osteoporosis (Mencej-Bedrac et al., 2011). Two SNPs (rs322236 and rs3959914) in distinct linkage disequilibrium blocks within the first intron of the gene encoding PTN have been associated with volumetric bone mass density (Zmuda et al., 2011).
During fracture healing, PTN is immunolocalised on both osteoblasts and endothelial cells in the well vascularized, newly formed woven bone (Petersen et al., 2004) and recombinant human PTN has chemotactic effects on both human osteoblastic and endothelial cells (Li et al., 2005b). Moreover, fracture healing was impaired in the adult PTN mice and this may be due to inhibitory effects of PTN over-expression on bone morphogenetic protein-2 mediated bone induction (Li et al., 2005b).
PTN is slightly up-regulated in patients with osteoarthritis (Pufe et al., 2003; Pufe et al., 2007; Kaspiris et al., 2010) and has been suggested as a potential therapeutic factor (reviewed in Mentlein, 2007), although evidence is still limited.

To be noted

The authors apologise if they unintentionally omitted the work of some scientists.


The angiogenic factor heparin affin regulatory peptide (HARP) induces proliferation of human peripheral blood mononuclear cells.
Achour A, Laaroubi D, Caruelle D, Barritault D, Courty J.
Cell Mol Biol (Noisy-le-grand). 2001;47 Online Pub:OL73-7.
PMID 11936877
Pleiotrophin induces expression of inflammatory cytokines in peripheral blood mononuclear cells.
Achour A, M'bika JP, Baudouin F, Caruelle D, Courty J.
Biochimie. 2008 Nov-Dec;90(11-12):1791-5. Epub 2008 Apr 27.
PMID 18486628
Marked increase of the growth factors pleiotrophin and fibroblast growth factor-2 in serum of testicular cancer patients.
Aigner A, Brachmann P, Beyer J, Jager R, Raulais D, Vigny M, Neubauer A, Heidenreich A, Weinknecht S, Czubayko F, Zugmaier G.
Ann Oncol. 2003 Oct;14(10):1525-9.
PMID 14504053
Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule.
Amet LE, Lauri SE, Hienola A, Croll SD, Lu Y, Levorse JM, Prabhakaran B, Taira T, Rauvala H, Vogt TF.
Mol Cell Neurosci. 2001 Jun;17(6):1014-24.
PMID 11414790
SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro.
Anisimov SV, Tarasov KV, Riordon D, Wobus AM, Boheler KR.
Mech Dev. 2002 Sep;117(1-2):25-74.
PMID 12204248
Upregulation of pleiotrophin expression in rat hepatic stellate cells by PDGF and hypoxia: implications for its role in experimental biliary liver fibrogenesis.
Antoine M, Tag CG, Wirz W, Borkham-Kamphorst E, Sawitza I, Gressner AM, Kiefer P.
Biochem Biophys Res Commun. 2005 Dec 2;337(4):1153-64. Epub 2005 Oct 6.
PMID 16226713
Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver.
Asahina K, Sato H, Yamasaki C, Kataoka M, Shiokawa M, Katayama S, Tateno C, Yoshizato K.
Am J Pathol. 2002 Jun;160(6):2191-205.
PMID 12057922
Global gene expression profiling in the failing myocardium.
Asakura M, Kitakaze M.
Circ J. 2009 Sep;73(9):1568-76. Epub 2009 Jul 29. (REVIEW)
PMID 19638707
Chondromodulin I and pleiotrophin gene expression in bovine cartilage and epiphysis.
Azizan A, Gaw JU, Govindraj P, Tapp H, Neame PJ.
Matrix Biol. 2000 Nov;19(6):521-31.
PMID 11068206
Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway.
Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J.
Blood. 2000 Dec 15;96(13):4319-27.
PMID 11110708
Heparin-binding growth factor, pleiotrophin, mediates neuritogenic activity of embryonic pig brain-derived chondroitin sulfate/dermatan sulfate hybrid chains.
Bao X, Mikami T, Yamada S, Faissner A, Muramatsu T, Sugahara K.
J Biol Chem. 2005 Mar 11;280(10):9180-91. Epub 2005 Jan 4.
PMID 15632143
Significance of heparin-binding growth factor expression on cells of solid pediatric tumors.
Barthlen W, Flaadt D, Girgert R, Conzelmann J, Schweizer P, Zugmaier G, Buck M, Knabbe C.
J Pediatr Surg. 2003 Sep;38(9):1296-304.
PMID 14523809
Heparin affin regulatory peptide in milk: its involvement in mammary gland homeostasis.
Bernard-Pierrot I, Delbe J, Heroult M, Rosty C, Soulie P, Barritault D, Milhiet PE, Courty J.
Biochem Biophys Res Commun. 2004 Jan 30;314(1):277-82.
PMID 14715276
Expression of the HBNF (heparin-binding neurite-promoting factor) gene in the brain of fetal, neonatal and adult rat: an in situ hybridization study.
Bloch B, Normand E, Kovesdi I, Bohlen P.
Brain Res Dev Brain Res. 1992 Dec 18;70(2):267-78.
PMID 1477961
Pleiotrophin cellular localization in nerve regeneration after peripheral nerve injury.
Blondet B, Carpentier G, Lafdil F, Courty J.
J Histochem Cytochem. 2005 Aug;53(8):971-7.
PMID 16055750
HBNF and MK, members of a novel gene family of heparin-binding proteins with potential roles in embryogenesis and brain function.
Bohlen P, Kovesdi I.
Prog Growth Factor Res. 1991;3(2):143-57. (REVIEW)
PMID 1773041
Isolation from bovine brain and structural characterization of HBNF, a heparin-binding neurotrophic factor.
Bohlen P, Muller T, Gautschi-Sova P, Albrecht U, Rasool CG, Decker M, Seddon A, Fafeur V, Kovesdi I, Kretschmer P.
Growth Factors. 1991;4(2):97-107.
PMID 2049182
Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase.
Bowden ET, Stoica GE, Wellstein A.
J Biol Chem. 2002 Sep 27;277(39):35862-8. Epub 2002 Jul 9.
PMID 12107166
Improving endothelial healing with novel chimeric mitogens.
Brewster L, Brey EM, Addis M, Xue L, Husak V, Ellinger J, Haudenschild CC, Greisler HP.
Am J Surg. 2006 Nov;192(5):589-93.
PMID 17071189
HB-GAM/Pleiotrophin and Midkine are differently expressed and distributed during retinoic acid-induced neural differentiation of P19 cells.
Brunet-de Carvalho N, Raulais D, Rauvala H, Souttou B, Vigny M.
Growth Factors. 2003 Sep-Dec;21(3-4):139-49.
PMID 14708942
Pleiotrophin, a candidate gene for poor tumor vasculature and in vivo neuroblastoma sensitivity to irinotecan.
Calvet L, Geoerger B, Regairaz M, Opolon P, Machet L, Morizet J, Joseph JM, Elie N, Vassal G.
Oncogene. 2006 May 25;25(22):3150-9.
PMID 16501609
Zebrafish heparin-binding neurotrophic factor enhances neurite outgrowth during its development.
Chang MH, Huang CJ, Hwang SP, Lu IC, Lin CM, Kuo TF, Chou CM.
Biochem Biophys Res Commun. 2004 Aug 20;321(2):502-9.
PMID 15358204
Secretion of pleiotrophin stimulates breast cancer progression through remodeling of the tumor microenvironment.
Chang Y, Zuka M, Perez-Pinera P, Astudillo A, Mortimer J, Berenson JR, Deuel TF.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10888-93. Epub 2007 Jun 19.
PMID 17578909
Pleiotrophin transforms NIH 3T3 cells and induces tumors in nude mice.
Chauhan AK, Li YS, Deuel TF.
Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):679-82.
PMID 8421705
Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis.
Chen H, Campbell RA, Chang Y, Li M, Wang CS, Li J, Sanchez E, Share M, Steinberg J, Berenson A, Shalitin D, Zeng Z, Gui D, Perez-Pinera P, Berenson RJ, Said J, Bonavida B, Deuel TF, Berenson JR.
Blood. 2009 Feb 26;113(9):1992-2002. Epub 2008 Dec 5.
PMID 19060246
Pleiotrophin is highly expressed by myeloma cells and promotes myeloma tumor growth.
Chen H, Gordon MS, Campbell RA, Li M, Wang CS, Lee HJ, Sanchez E, Manyak SJ, Gui D, Shalitin D, Said J, Chang Y, Deuel TF, Baritaki S, Bonavida B, Berenson JR.
Blood. 2007 Jul 1;110(1):287-95. Epub 2007 Mar 16.
PMID 17369488
Identification of transcriptional targets of HOXA5.
Chen H, Rubin E, Zhang H, Chung S, Jie CC, Garrett E, Biswal S, Sukumar S.
J Biol Chem. 2005 May 13;280(19):19373-80. Epub 2005 Mar 9.
PMID 15757903
An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis.
Choudhuri R, Zhang HT, Donnini S, Ziche M, Bicknell R.
Cancer Res. 1997 May 1;57(9):1814-9.
PMID 9135027
Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer.
Christman KL, Fang Q, Yee MS, Johnson KR, Sievers RE, Lee RJ.
Biomaterials. 2005 Apr;26(10):1139-44.
PMID 15451633
Epithelial-mesenchymal transition of ovarian tumor cells induces an angiogenic monocyte cell population.
Collino F, Revelli A, Massobrio M, Katsaros D, Schmitt-Ney M, Camussi G, Bussolati B.
Exp Cell Res. 2009 Oct 15;315(17):2982-94. Epub 2009 Jun 16.
PMID 19538958
Mitogenic properties of a new endothelial cell growth factor related to pleiotrophin.
Courty J, Dauchel MC, Caruelle D, Perderiset M, Barritault D.
Biochem Biophys Res Commun. 1991 Oct 15;180(1):145-51.
PMID 1819274
Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin.
Czubayko F, Schulte AM, Berchem GJ, Wellstein A.
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14753-8.
PMID 8962127
Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.
Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR, Courty J, Overall CM.
Mol Cell Biol. 2007 Dec;27(24):8454-65. Epub 2007 Oct 1.
PMID 17908800
Effect of heparin on bovine epithelial lens cell proliferation induced by heparin affin regulatory peptide.
Delbe J, Vacherot F, Laaroubi K, Barritault D, Courty J.
J Cell Physiol. 1995 Jul;164(1):47-54.
PMID 7790396
Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway.
Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY.
Arch Biochem Biophys. 2002 Jan 15;397(2):162-71. (REVIEW)
PMID 11795867
A Pleiotrophin C-terminus peptide induces anti-cancer effects through RPTPbeta/zeta.
Diamantopoulou Z, Bermek O, Polykratis A, Hamma-Kourbali Y, Delbe J, Courty J, Katsoris P.
Mol Cancer. 2010 Aug 25;9:224.
PMID 20738847
Antitumorigenic effects of a mutant of the heparin affin regulatory peptide on the U87 MG glioblastoma cell line.
Dos Santos C, Karaky R, Renoir D, Hamma-Kourbali Y, Albanese P, Gobbo E, Griscelli F, Opolon P, Dalle S, Perricaudet M, Courty J, Delbe J.
Int J Cancer. 2010 Sep 1;127(5):1038-51.
PMID 20013808
16-kDa fragment of pleiotrophin acts on endothelial and breast tumor cells and inhibits tumor development.
Duces A, Karaky R, Martel-Renoir D, Mir L, Hamma-Kourbali Y, Bieche I, Opolon P, Delbe J, Courty J, Perricaudet M, Griscelli F.
Mol Cancer Ther. 2008 Sep;7(9):2817-27.
PMID 18790762
Miple1 and miple2 encode a family of MK/PTN homologues in Drosophila melanogaster.
Englund C, Birve A, Falileeva L, Grabbe C, Palmer RH.
Dev Genes Evol. 2006 Jan;216(1):10-8. Epub 2005 Oct 12.
PMID 16220264
Pleiotrophin expression during odontogenesis.
Erlandsen H, Ames JE, Tamkenath A, Mamaeva O, Stidham K, Wilson ME, Perez-Pinera P, Deuel TF, Macdougall M.
J Histochem Cytochem. 2012 May;60(5):366-75. Epub 2012 Feb 29.
PMID 22382872
Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer.
Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A.
J Biol Chem. 1992 Dec 25;267(36):25889-97.
PMID 1464602
Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP beta/zeta signaling by menin.
Feng ZJ, Gao SB, Wu Y, Xu XF, Hua X, Jin GH.
Oncogene. 2010 Sep 30;29(39):5416-26. Epub 2010 Jul 19.
PMID 20639902
Pleiotrophin receptor RPTP-zeta/beta expression is up-regulated by L-DOPA in striatal medium spiny neurons of parkinsonian rats.
Ferrario JE, Rojas-Mayorquin AE, Saldana-Ortega M, Salum C, Gomes MZ, Hunot S, Raisman-Vozari R.
J Neurochem. 2008 Oct;107(2):443-52. Epub 2008 Sep 16.
PMID 18752647
Increased keratinocyte proliferation by JUN-dependent expression of PTN and SDF-1 in fibroblasts.
Florin L, Maas-Szabowski N, Werner S, Szabowski A, Angel P.
J Cell Sci. 2005 May 1;118(Pt 9):1981-9. Epub 2005 Apr 19.
PMID 15840658
Identification of pleiotrophin in conditioned medium secreted from neural stem cells by SELDI-TOF and SELDI-tandem mass spectrometry.
Furuta M, Shiraishi T, Okamoto H, Mineta T, Tabuchi K, Shiwa M.
Brain Res Dev Brain Res. 2004 Sep 17;152(2):189-97.
PMID 15351507
Menin represses malignant phenotypes of melanoma through regulating multiple pathways.
Gao SB, Feng ZJ, Xu B, Chen Y, Zheng HH, Yin P, Hua X, Jin GH.
J Cell Mol Med. 2011 Nov;15(11):2353-63. doi: 10.1111/j.1582-4934.2010.01222.x.
PMID 21129151
Reciprocal expression of pleiotrophin and midkine in normal versus malignant lung tissues.
Garver RI Jr, Chan CS, Milner PG.
Am J Respir Cell Mol Biol. 1993 Nov;9(5):463-6.
PMID 8217186
Receptor binding of osteoblast-specific factor 1 (OSF-1/HB-GAM) to human osteosarcoma cells promotes cell attachment.
Gieffers C, Engelhardt W, Brenzel G, Matsuishi T, Frey J.
Eur J Cell Biol. 1993 Dec;62(2):352-61.
PMID 7925491
Striatal pleiotrophin overexpression provides functional and morphological neuroprotection in the 6-hydroxydopamine model.
Gombash SE, Lipton JW, Collier TJ, Madhavan L, Steece-Collier K, Cole-Strauss A, Terpstra BT, Spieles-Engemann AL, Daley BF, Wohlgenant SL, Thompson VB, Manfredsson FP, Mandel RJ, Sortwell CE.
Mol Ther. 2012 Mar;20(3):544-54. doi: 10.1038/mt.2011.216. Epub 2011 Oct 18.
PMID 22008908
Periadolescent amphetamine treatment causes transient cognitive disruptions and long-term changes in hippocampal LTP depending on the endogenous expression of pleiotrophin.
Gramage E, Del Olmo N, Fole A, Martin YB, Herradon G.
Addict Biol. 2011 Aug 4. doi: 10.1111/j.1369-1600.2011.00362.x. [Epub ahead of print]
PMID 21812875
Connecting Parkinson's disease and drug addiction: common players reveal unexpected disease connections and novel therapeutic approaches.
Gramage E, Herradon G.
Curr Pharm Des. 2011;17(5):449-61. (REVIEW)
PMID 21375485
The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from pleiotrophin knockout mice.
Gramage E, Putelli A, Polanco MJ, Gonzalez-Martin C, Ezquerra L, Alguacil LF, Perez-Pinera P, Deuel TF, Herradon G.
Addict Biol. 2010a Oct;15(4):403-12. doi: 10.1111/j.1369-1600.2009.00202.x.
PMID 20192945
Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum.
Gramage E, Rossi L, Granado N, Moratalla R, Herradon G.
Neuroscience. 2010b Sep 29;170(1):308-16. Epub 2010 Jul 8.
PMID 20620199
RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.
Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Hobel S, Czubayko F, Aigner A.
Hum Gene Ther. 2006 Jul;17(7):751-66.
PMID 16839274
The effect of pleiotrophin signaling on adipogenesis.
Gu D, Yu B, Zhao C, Ye W, Lv Q, Hua Z, Ma J, Zhang Y.
FEBS Lett. 2007 Feb 6;581(3):382-8. Epub 2007 Jan 19.
PMID 17239862
The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells.
Hamma-Kourbali Y, Bermek O, Bernard-Pierrot I, Karaky R, Martel-Renoir D, Frechault S, Courty J, Delbe J.
BMC Cancer. 2011 May 30;11:212.
PMID 21624116
Structural and functional characterization of full-length heparin-binding growth associated molecule.
Hampton BS, Marshak DR, Burgess WH.
Mol Biol Cell. 1992 Jan;3(1):85-93.
PMID 1550956
Bone mass increase specific to the female in a line of transgenic mice overexpressing human osteoblast stimulating factor-1.
Hashimoto-Gotoh T, Ohnishi H, Tsujimura A, Tsunezuka H, Imai K, Masuda H, Nakamura T.
J Bone Miner Metab. 2004;22(3):278-82.
PMID 15108072
Heparin affin regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells.
Hatziapostolou M, Polytarchou C, Katsoris P, Courty J, Papadimitriou E.
J Biol Chem. 2006 Oct 27;281(43):32217-26. Epub 2006 Aug 29.
PMID 16940294
Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis.
Heroult M, Bernard-Pierrot I, Delbe J, Hamma-Kourbali Y, Katsoris P, Barritault D, Papadimitriou E, Plouet J, Courty J.
Oncogene. 2004 Mar 4;23(9):1745-53.
PMID 15001987
Blocking receptor protein tyrosine phosphatase beta/zeta: a potential therapeutic strategy for Parkinson's disease.
Herradon G, Ezquerra L.
Curr Med Chem. 2009;16(25):3322-9. (REVIEW)
PMID 19548869
Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro.
Hida H, Jung CG, Wu CZ, Kim HJ, Kodama Y, Masuda T, Nishino H.
Eur J Neurosci. 2003 May;17(10):2127-34.
PMID 12786979
Pleiotrophin promotes functional recovery after neural transplantation in rats.
Hida H, Masuda T, Sato T, Kim TS, Misumi S, Nishino H.
Neuroreport. 2007 Jan 22;18(2):179-83.
PMID 17301686
HB-GAM inhibits proliferation and enhances differentiation of neural stem cells.
Hienola A, Pekkanen M, Raulo E, Vanttola P, Rauvala H.
Mol Cell Neurosci. 2004 May;26(1):75-88.
PMID 15121180
N-syndecan deficiency impairs neural migration in brain.
Hienola A, Tumova S, Kulesskiy E, Rauvala H.
J Cell Biol. 2006 Aug 14;174(4):569-80.
PMID 16908672
Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells.
Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P, Chi JT, Salter AB, Lento WE, Reya T, Chao NJ, Chute JP.
Nat Med. 2010 Apr;16(4):475-82. Epub 2010 Mar 21.
PMID 20305662
Amino-terminal sequences of a novel heparin-binding protein from human, bovine, rat, and chick brain: high interspecies homology.
Huber D, Gautschi-Sova P, Bohlen P.
Neurochem Res. 1990 Apr;15(4):435-9.
PMID 2388713
Comparison of the disulfide bond arrangements of human recombinant and bovine brain heparin binding neurite-promoting factors.
Hulmes JD, Seddon AP, Decker MM, Bohlen P.
Biochem Biophys Res Commun. 1993 Apr 30;192(2):738-46.
PMID 8484780
Osteocyte-derived HB-GAM (pleiotrophin) is associated with bone formation and mechanical loading.
Imai S, Heino TJ, Hienola A, Kurata K, Buki K, Matsusue Y, Vaananen HK, Rauvala H.
Bone. 2009 May;44(5):785-94. Epub 2009 Jan 15.
PMID 19442624
Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM).
Imai S, Kaksonen M, Raulo E, Kinnunen T, Fages C, Meng X, Lakso M, Rauvala H.
J Cell Biol. 1998 Nov 16;143(4):1113-28.
PMID 9817766
Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue.
Iseki K, Hagino S, Mori T, Zhang Y, Yokoya S, Takaki H, Tase C, Murakawa M, Wanaka A.
Glia. 2002 Jul;39(1):1-9.
PMID 12112370
Stromal pleiotrophin regulates repopulation behavior of hematopoietic stem cells.
Istvanffy R, Kroger M, Eckl C, Gitzelmann S, Vilne B, Bock F, Graf S, Schiemann M, Keller UB, Peschel C, Oostendorp RA.
Blood. 2011 Sep 8;118(10):2712-22. Epub 2011 Jul 25.
PMID 21791434
Serum levels of the angiogenic factor pleiotrophin in relation to disease stage in lung cancer patients.
Jager R, List B, Knabbe C, Souttou B, Raulais D, Zeiler T, Wellstein A, Aigner A, Neubauer A, Zugmaier G.
Br J Cancer. 2002 Mar 18;86(6):858-63.
PMID 11953815
Differential expression and biological activity of the heparin-binding growth-associated molecule (HB-GAM) in lung cancer cell lines.
Jager R, Noll K, Havemann K, Pfluger KH, Knabbe C, Rauvala H, Zugmaier G.
Int J Cancer. 1997 Nov 14;73(4):537-43.
PMID 9389569
Pleiotrophin and peripheral nerve injury.
Jin L, Jianghai C, Juan L, Hao K.
Neurosurg Rev. 2009 Oct;32(4):387-93. Epub 2009 May 8. (REVIEW)
PMID 19424734
Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cell-derived nestin-positive cells.
Jung CG, Hida H, Nakahira K, Ikenaka K, Kim HJ, Nishino H.
FASEB J. 2004 Aug;18(11):1237-9. Epub 2004 Jun 4.
PMID 15180956
Midkine and pleiotrophin in neural development and cancer.
Kadomatsu K, Muramatsu T.
Cancer Lett. 2004 Feb 20;204(2):127-43. (REVIEW)
PMID 15013213
Expression of the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta (RPTPb/z) in patients with osteoarthritis.
Kaspiris A, Mikelis C, Khaldi L, Kouvaras I, Dangas S, Vasiliadis E, Papadimitriou E.
Osteoarthritis Cartilage 2010; 18: 155.
Lack of anabolic response to skeletal loading in mice with targeted disruption of the pleiotrophin gene.
Kesavan C, Mohan S.
BMC Res Notes. 2008 Dec 1;1:124.
PMID 19046452
Heparin-binding growth-associated molecule contains two heparin-binding beta -sheet domains that are homologous to the thrombospondin type I repeat.
Kilpelainen I, Kaksonen M, Kinnunen T, Avikainen H, Fath M, Linhardt RJ, Raulo E, Rauvala H.
J Biol Chem. 2000 May 5;275(18):13564-70.
PMID 10788472
N-syndecan and HB-GAM (heparin-binding growth-associated molecule) associate with early axonal tracts in the rat brain.
Kinnunen A, Kinnunen T, Kaksonen M, Nolo R, Panula P, Rauvala H.
Eur J Neurosci. 1998a Feb;10(2):635-48.
PMID 9749725
Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth.
Kinnunen T, Kaksonen M, Saarinen J, Kalkkinen N, Peng HB, Rauvala H.
J Biol Chem. 1998b Apr 24;273(17):10702-8.
PMID 9553134
Significance of the expression of the growth factor pleiotrophin in pancreatic cancer patients.
Klomp HJ, Zernial O, Flachmann S, Wellstein A, Juhl H.
Clin Cancer Res. 2002 Mar;8(3):823-7.
PMID 11895915
Effect of heparin affin regulatory peptide on the expression of vascular endothelial growth factor receptors in endothelial cells.
Kokolakis G, Mikelis C, Papadimitriou E, Courty J, Karetsou E, Katsoris P.
In Vivo. 2006 Sep-Oct;20(5):629-35.
PMID 17091770
Pleiotrophin is a potential colorectal cancer prognostic factor that promotes VEGF expression and induces angiogenesis in colorectal cancer.
Kong Y, Bai PS, Nan KJ, Sun H, Chen NZ, Qi XG.
Int J Colorectal Dis. 2012 Mar;27(3):287-98. Epub 2011 Nov 9.
PMID 22065111
Pleiotrophin expression and role in physiological angiogenesis in vivo: potential involvement of nucleolin.
Koutsioumpa M, Drosou G, Mikelis C, Theochari K, Vourtsis D, Katsoris P, Giannopoulou E, Courty J, Petrou C, Magafa V, Cordopatis P, Papadimitriou E.
Vasc Cell. 2012 Mar 16;4:4.
PMID 22423616
Heparin-binding neurotrophic factor (HBNF) and MK, members of a new family of homologous, developmentally regulated proteins.
Kovesdi I, Fairhurst JL, Kretschmer PJ, Bohlen P.
Biochem Biophys Res Commun. 1990 Oct 30;172(2):850-4.
PMID 1700712
Genomic organization of the human HBNF gene and characterization of an HBNF variant protein as a splice mutant.
Kretschmer PJ, Fairhurst JL, Hulmes JD, Popjes ML, Bohlen P, Kovesdi I.
Biochem Biophys Res Commun. 1993 Apr 30;192(2):420-9.
PMID 8484754
Amino acid sequence and characterization of a heparin-binding neurite-promoting factor (p18) from bovine brain.
Kuo MD, Oda Y, Huang JS, Huang SS.
J Biol Chem. 1990 Nov 5;265(31):18749-52.
PMID 2229039
Biochemical and mitogenic properties of the heparin-binding growth factor HARP.
Laaroubi K, Vacherot F, Delbe J, Caruelle D, Barritault D, Courty J.
Prog Growth Factor Res. 1995;6(1):25-34. (REVIEW)
PMID 8714367
Structure of the human heparin-binding growth factor gene pleiotrophin.
Lai S, Czubayko F, Riegel AT, Wellstein A.
Biochem Biophys Res Commun. 1992 Sep 16;187(2):1113-22.
PMID 1530608
The survival-promoting peptide Y-P30 enhances binding of pleiotrophin to syndecan-2 and -3 and supports its neuritogenic activity.
Landgraf P, Wahle P, Pape HC, Gundelfinger ED, Kreutz MR.
J Biol Chem. 2008 Sep 5;283(36):25036-45. Epub 2008 Jul 3.
PMID 18599487
Effect of heparin-binding growth-associated molecule (HB-GAM) on synaptic transmission and early LTP in rat hippocampal slices.
Lauri SE, Rauvala H, Kaila K, Taira T.
Eur J Neurosci. 1998 Jan;10(1):188-94.
PMID 9753126
Pleiotrophin gene transcription in the rat nucleus accumbens is stimulated by an acute dose of amphetamine.
Le Greves P.
Brain Res Bull. 2005 May 30;65(6):529-32. Epub 2005 Apr 11.
PMID 15862925
Cellular distribution of the angiogenic factor heparin affin regulatory peptide (HARP) mRNA and protein in the human mammary gland.
Ledoux D, Caruelle D, Sabourin JC, Liu J, Crepin M, Barritault D, Courty J.
J Histochem Cytochem. 1997 Sep;45(9):1239-45.
PMID 9283611
Chicken pleiotrophin: regulation of tissue specific expression by estrogen in the oviduct and distinct expression pattern in the ovarian carcinomas.
Lee JY, Jeong W, Lim W, Kim J, Bazer FW, Han JY, Song G.
PLoS One. 2012;7(4):e34215. Epub 2012 Apr 4.
PMID 22496782
Absence of mouse pleiotrophin does not affect bone formation in vivo.
Lehmann W, Schinke T, Schilling AF, Catala-Lehnen P, Gebauer M, Pogoda P, Gerstenfeld LC, Rueger JM, Einhorn TA, Amling M.
Bone. 2004 Dec;35(6):1247-55.
PMID 15589206
Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches.
Li F, Nandini CD, Hattori T, Bao X, Murayama D, Nakamura T, Fukushima N, Sugahara K.
J Biol Chem. 2010a Sep 3;285(36):27673-85. Epub 2010 Jun 28.
PMID 20584902
Pleiotrophin (PTN) is expressed in vascularized human atherosclerotic plaques: IFN-{gamma}/JAK/STAT1 signaling is critical for the expression of PTN in macrophages.
Li F, Tian F, Wang L, Williamson IK, Sharifi BG, Shah PK.
FASEB J. 2010b Mar;24(3):810-22. Epub 2009 Nov 16.
PMID 19917672
Effects of pleiotrophin (PTN) over-expression on mouse long bone development, fracture healing and bone repair.
Li G, Bunn JR, Mushipe MT, He Q, Chen X.
Calcif Tissue Int. 2005a Apr;76(4):299-306. Epub 2005 Apr 11.
PMID 15812580
rhBMP-2, rhVEGF(165), rhPTN and thrombin-related peptide, TP508 induce chemotaxis of human osteoblasts and microvascular endothelial cells.
Li G, Cui Y, McIlmurray L, Allen WE, Wang H.
J Orthop Res. 2005b May;23(3):680-5. Epub 2005 Apr 7.
PMID 15885491
PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin.
Li G, Hu Y, Huo Y, Liu M, Freeman D, Gao J, Liu X, Wu DC, Wu H.
J Biol Chem. 2006 Apr 21;281(16):10663-8. Epub 2006 Feb 28.
PMID 16507572
The pro-angiogenic cytokine pleiotrophin potentiates cardiomyocyte apoptosis through inhibition of endogenous AKT/PKB activity.
Li J, Wei H, Chesley A, Moon C, Krawczyk M, Volkova M, Ziman B, Margulies KB, Talan M, Crow MT, Boheler KR.
J Biol Chem. 2007 Nov 30;282(48):34984-93. Epub 2007 Oct 9.
PMID 17925408
Pleiotrophin gene expression is highly restricted and is regulated by platelet-derived growth factor.
Li YS, Gurrieri M, Deuel TF.
Biochem Biophys Res Commun. 1992a Apr 15;184(1):427-32.
PMID 1373617
Characterization of the human pleiotrophin gene. Promoter region and chromosomal localization.
Li YS, Hoffman RM, Le Beau MM, Espinosa R 3rd, Jenkins NA, Gilbert DJ, Copeland NG, Deuel TF.
J Biol Chem. 1992b Dec 25;267(36):26011-6.
PMID 1464612
Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity.
Li YS, Milner PG, Chauhan AK, Watson MA, Hoffman RM, Kodner CM, Milbrandt J, Deuel TF.
Science. 1990 Dec 21;250(4988):1690-4.
PMID 2270483
Mechanical regulation of HB-GAM expression in bone cells.
Liedert A, Augat P, Ignatius A, Hausser HJ, Claes L.
Biochem Biophys Res Commun. 2004 Jul 2;319(3):951-8.
PMID 15184074
Basic FGF and FGF receptor 1 are expressed in microglia during experimental autoimmune encephalomyelitis: temporally distinct expression of midkine and pleiotrophin.
Liu X, Mashour GA, Webster HF, Kurtz A.
Glia. 1998 Dec;24(4):390-7.
PMID 9814819
Differential induction of glioblastoma migration and growth by two forms of pleiotrophin.
Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, Yoshimoto K, Wang MY, Cloughesy TF, Nelson SF, Mischel PS.
J Biol Chem. 2005 Jul 22;280(29):26953-64. Epub 2005 May 20.
PMID 15908427
Host factor pleiotrophin induces human immunodeficiency virus type 1 replication associated with inflammatory cytokine expression.
M'Bika JP, Baudouin F, Courty J, Achour A.
J Gen Virol. 2010 May;91(Pt 5):1346-53. Epub 2009 Dec 23.
PMID 20032204
Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells.
Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH.
Chin Med J (Engl). 2005 Dec 5;118(23):1987-93.
PMID 16336835
6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM).
Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M.
J Biol Chem. 1996 Aug 30;271(35):21446-52.
PMID 8702927
Gene expression profiles in the Peyronie's disease plaque.
Magee TR, Qian A, Rajfer J, Sander FC, Levine LA, Gonzalez-Cadavid NF.
Urology. 2002 Mar;59(3):451-7.
PMID 11880101
The new growth factor pleiotrophin (HB-GAM) mRNA is selectively present in the meningothelial cells of human meningiomas.
Mailleux P, Vanderwinden JM, Vanderhaeghen JJ.
Neurosci Lett. 1992 Aug 3;142(1):31-5.
PMID 1407714
Ribozyme targeting of the growth factor pleiotrophin in established tumors: a gene therapy approach.
Malerczyk C, Schulte AM, Czubayko F, Bellon L, Macejak D, Riegel AT, Wellstein A.
Gene Ther. 2005 Feb;12(4):339-46.
PMID 15496960
Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson's disease.
Marchionini DM, Lehrmann E, Chu Y, He B, Sortwell CE, Becker KG, Freed WJ, Kordower JH, Collier TJ.
Brain Res. 2007 May 25;1147:77-88. Epub 2007 Feb 22.
PMID 17368428
The pluripotent cytokine pleiotrophin is induced by wounding in human mesangial cells.
Martin J, Bowen T, Steadman R.
Kidney Int. 2006 Nov;70(9):1616-22. Epub 2006 Sep 20.
PMID 16985521
Uncovering new pharmacological targets to treat neuropathic pain by understanding how the organism reacts to nerve injury.
Martin YB, Herradon G, Ezquerra L.
Curr Pharm Des. 2011;17(5):434-48. (REVIEW)
PMID 21375486
Adipocyte derived paracrine mediators of mammary ductal morphogenesis controlled by retinoic acid receptors.
Marzan CV, Kupumbati TS, Bertran SP, Samuels T, Leibovitch B, Mira-y-Lopez R, Ossowski L, Farias EF.
Dev Biol. 2011 Jan 15;349(2):125-36. Epub 2010 Oct 23.
PMID 20974122
Bone mass loss due to estrogen deficiency is compensated in transgenic mice overexpressing human osteoblast stimulating factor-1.
Masuda H, Tsujimura A, Yoshioka M, Arai Y, Kuboki Y, Mukai T, Nakamura T, Tsuji H, Nakagawa M, Hashimoto-Gotoh T.
Biochem Biophys Res Commun. 1997 Sep 18;238(2):528-33.
PMID 9299545
In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)?
Mathivet T, Mazot P, Vigny M.
Cell Signal. 2007 Dec;19(12):2434-43. Epub 2007 Jul 25.
PMID 17904822
-1227C>T polymorphism in the pleiotrophin gene promoter influences bone mineral density in postmenopausal women.
Mencej-Bedrac S, Prezelj J, Komadina R, Vindisar F, Marc J.
Mol Genet Metab. 2011 May;103(1):76-80. Epub 2011 Feb 3.
PMID 21353611
Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta.
Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF.
Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2603-8.
PMID 10706604
Targeting pleiotropin to treat osteoarthritis.
Mentlein R.
Expert Opin Ther Targets. 2007 Jul;11(7):861-7. (REVIEW)
PMID 17614755
Molecular cloning of the 18-kDa growth-associated protein of developing brain.
Merenmies J, Rauvala H.
J Biol Chem. 1990 Oct 5;265(28):16721-4.
PMID 2170351
Pleiotrophin is a neurotrophic factor for spinal motor neurons.
Mi R, Chen W, Hoke A.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4664-9. Epub 2007 Mar 5.
PMID 17360581
A peptide corresponding to the C-terminal region of pleiotrophin inhibits angiogenesis in vivo and in vitro.
Mikelis C, Lamprou M, Koutsioumpa M, Koutsioubas AG, Spyranti Z, Zompra AA, Spiliopoulos N, Vradis AA, Katsoris P, Spyroulias GA, Cordopatis P, Courty J, Papadimitriou E.
J Cell Biochem. 2011 Jun;112(6):1532-43. doi: 10.1002/jcb.23066.
PMID 21344482
Integrin alpha(v)beta(3) is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase beta/zeta.
Mikelis C, Sfaelou E, Koutsioumpa M, Kieffer N, Papadimitriou E.
FASEB J. 2009 May;23(5):1459-69. Epub 2009 Jan 13.
PMID 19141530
Upregulation of the angiogenic factor heparin affin regulatory peptide by progesterone in rat uterus.
Milhiet PE, Vacherot F, Caruelle JP, Barritault D, Caruelle D, Courty J.
J Endocrinol. 1998 Sep;158(3):389-99.
PMID 9846168
A novel 17 kD heparin-binding growth factor (HBGF-8) in bovine uterus: purification and N-terminal amino acid sequence.
Milner PG, Li YS, Hoffman RM, Kodner CM, Siegel NR, Deuel TF.
Biochem Biophys Res Commun. 1989 Dec 29;165(3):1096-103.
PMID 2610682
Cloning, nucleotide sequence, and chromosome localization of the human pleiotrophin gene.
Milner PG, Shah D, Veile R, Donis-Keller H, Kumar BV.
Biochemistry. 1992 Dec 8;31(48):12023-8.
PMID 1457401
The large functional spectrum of the heparin-binding cytokines MK and HB-GAM in continuously growing organs: the rodent incisor as a model.
Mitsiadis TA, Caton J, De Bari C, Bluteau G.
Dev Biol. 2008 Aug 1;320(1):256-66. Epub 2008 May 22.
PMID 18582856
Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin.
Moog-Lutz C, Degoutin J, Gouzi JY, Frobert Y, Brunet-de Carvalho N, Bureau J, Creminon C, Vigny M.
J Biol Chem. 2005 Jul 15;280(28):26039-48. Epub 2005 May 10.
PMID 15886198
Immunohistochemical and quantitative competitive PCR analyses of midkine and pleiotrophin expression in cervical cancer.
Moon HS, Park WI, Sung SH, Choi EA, Chung HW, Woo BH.
Gynecol Oncol. 2003 Mar;88(3):289-97.
PMID 12648577
Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo.
Moses D, Drago J, Teper Y, Gantois I, Finkelstein DI, Horne MK.
Neuroscience. 2008 Jun 23;154(2):606-20. Epub 2008 Apr 8.
PMID 18472226
Pleiotrophin mediates the neurotrophic effect of cyclic AMP on dopaminergic neurons: analysis of suppression-subtracted cDNA libraries and confirmation in vitro.
Mourlevat S, Debeir T, Ferrario JE, Delbe J, Caruelle D, Lejeune O, Depienne C, Courty J, Raisman-Vozari R, Ruberg M.
Exp Neurol. 2005 Jul;194(1):243-54.
PMID 15899261
Female infertility in mice deficient in midkine and pleiotrophin, which form a distinct family of growth factors.
Muramatsu H, Zou P, Kurosawa N, Ichihara-Tanaka K, Maruyama K, Inoh K, Sakai T, Chen L, Sato M, Muramatsu T.
Genes Cells. 2006 Dec;11(12):1405-17.
PMID 17121547
Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases.
Muramatsu T.
Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(4):410-25. (REVIEW)
PMID 20431264
Expression of midkine and pleiotropin in ovarian tumors.
Nakanishi T, Kadomatsu K, Okamoto T, Tomoda Y, Muramatsu T.
Obstet Gynecol. 1997 Aug;90(2):285-90.
PMID 9241309
Pleiotrophin is an abundant protein in dissociative extracts of bovine fetal epiphyseal cartilage and nasal cartilage from newborns.
Neame PJ, Young CN, Brock CW, Treep JT, Ganey TM, Sasse J, Rosenberg LC.
J Orthop Res. 1993 Jul;11(4):479-91.
PMID 8340821
Co-expression of heparin-binding growth-associated molecule (HB-GAM) and N-syndecan (syndecan-3) in developing rat brain.
Nolo R, Kaksonen M, Raulo E, Rauvala H.
Neurosci Lett. 1995 May 19;191(1-2):39-42.
PMID 7659286
Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer.
Ostroff RM, Bigbee WL, Franklin W, Gold L, Mehan M, Miller YE, Pass HI, Rom WN, Siegfried JM, Stewart A, Walker JJ, Weissfeld JL, Williams S, Zichi D, Brody EN.
PLoS One. 2010 Dec 7;5(12):e15003.
PMID 21170350
Roles of pleiotrophin in tumor growth and angiogenesis.
Papadimitriou E, Mikelis C, Lampropoulou E, Koutsioumpa M, Theochari K, Tsirmoula S, Theodoropoulou C, Lamprou M, Sfaelou E, Vourtsis D, Boudouris P.
Eur Cytokine Netw. 2009 Dec;20(4):180-90. (REVIEW)
PMID 20167557
Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin.
Pariser H, Ezquerra L, Herradon G, Perez-Pinera P, Deuel TF.
Biochem Biophys Res Commun. 2005a Jul 8;332(3):664-9.
PMID 15925565
Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta.
Pariser H, Perez-Pinera P, Ezquerra L, Herradon G, Deuel TF.
Biochem Biophys Res Commun. 2005b Sep 16;335(1):232-9.
PMID 16105548
Pleiotrophin inhibits transforming growth factor beta1-induced apoptosis in hepatoma cell lines.
Park TJ, Jeong BR, Tateno C, Kim HS, Ogawa T, Lim IK, Yoshizato K.
Mol Carcinog. 2008 Oct;47(10):784-96.
PMID 18381592
Heparin affin regulatory peptide/pleiotrophin negatively affects diverse biological activities in C6 glioma cells.
Parthymou A, Lampropoulou E, Mikelis C, Drosou G, Papadimitriou E.
Eur J Cell Biol. 2008 Jan;87(1):17-29. Epub 2007 Sep 18.
PMID 17881084
Enhanced hippocampal GABAergic inhibition in mice overexpressing heparin-binding growth-associated molecule.
Pavlov I, Rauvala H, Taira T.
Neuroscience. 2006 May 12;139(2):505-11. Epub 2006 Feb 13.
PMID 16473473
Role of heparin-binding growth-associated molecule (HB-GAM) in hippocampal LTP and spatial learning revealed by studies on overexpressing and knockout mice.
Pavlov I, Voikar V, Kaksonen M, Lauri SE, Hienola A, Taira T, Rauvala H.
Mol Cell Neurosci. 2002 Jun;20(2):330-42.
PMID 12093164
Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation.
Perez-Pinera P, Zhang W, Chang Y, Vega JA, Deuel TF.
J Biol Chem. 2007c Sep 28;282(39):28683-90. Epub 2007 Aug 6.
PMID 17681947
Pleiotrophin expression in astrocytic and oligodendroglial tumors and it's correlation with histological diagnosis, microvascular density, cellular proliferation and overall survival.
Peria FM, Neder L, Marie SK, Rosemberg S, Oba-Shinjo SM, Colli BO, Gabbai AA, Malheiros SM, Zago MA, Panepucci RA, Moreira-Filho CA, Okamoto OK, Carlotti CG Jr.
J Neurooncol. 2007 Sep;84(3):255-61. Epub 2007 Apr 19.
PMID 17443289
The angiogenic peptide pleiotrophin (PTN/HB-GAM) is expressed in fracture healing: an immunohistochemical study in rats.
Petersen W, Wildemann B, Pufe T, Raschke M, Schmidmaier G.
Arch Orthop Trauma Surg. 2004 Nov;124(9):603-7. Epub 2003 Oct 30.
PMID 14586627
Serum stimulates Pleiotrophin gene expression in an AP-1-dependent manner in human endothelial and glioblastoma cells.
Poimenidi E, Hatziapostolou M, Papadimitriou E.
Anticancer Res. 2009 Jan;29(1):349-54.
PMID 19331172
Characterization of heparin affin regulatory peptide signaling in human endothelial cells.
Polykratis A, Katsoris P, Courty J, Papadimitriou E.
J Biol Chem. 2005 Jun 10;280(23):22454-61. Epub 2005 Mar 28.
PMID 15797857
Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase beta/zeta.
Polytarchou C, Hatziapostolou M, Poimenidi E, Mikelis C, Papadopoulou A, Parthymou A, Papadimitriou E.
Int J Cancer. 2009 Apr 15;124(8):1785-93.
PMID 19058221
Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth.
Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A.
J Biol Chem. 2002 Apr 19;277(16):14153-8. Epub 2002 Jan 23.
PMID 11809760
Expression of pleiotrophin, an embryonic growth and differentiation factor, in rheumatoid arthritis.
Pufe T, Bartscher M, Petersen W, Tillmann B, Mentlein R.
Arthritis Rheum. 2003 Mar;48(3):660-7.
PMID 12632418
Effects of pleiotrophin, a heparin-binding growth factor, on human primary and immortalized chondrocytes.
Pufe T, Groth G, Goldring MB, Tillmann B, Mentlein R.
Osteoarthritis Cartilage. 2007 Feb;15(2):155-62. Epub 2006 Sep 1.
PMID 16949312
Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus.
Ramos PS, Williams AH, Ziegler JT, Comeau ME, Guy RT, Lessard CJ, Li H, Edberg JC, Zidovetzki R, Criswell LA, Gaffney PM, Graham DC, Graham RR, Kelly JA, Kaufman KM, Brown EE, Alarcon GS, Petri MA, Reveille JD, McGwin G, Vila LM, Ramsey-Goldman R, Jacob CO, Vyse TJ, Tsao BP, Harley JB, Kimberly RP, Alarcon-Riquelme ME, Langefeld CD, Moser KL.
Arthritis Rheum. 2011 Jul;63(7):2049-57. doi: 10.1002/art.30356.
PMID 21437871
A new heparin binding protein regulated by retinoic acid from chick embryo.
Raulais D, Lagente-Chevallier O, Guettet C, Duprez D, Courtois Y, Vigny M.
Biochem Biophys Res Commun. 1991 Jan 31;174(2):708-15.
PMID 1993066
Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3).
Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H.
J Biol Chem. 1994 Apr 29;269(17):12999-3004.
PMID 8175719
The two thrombospondin type I repeat domains of HB-GAM display a cooperative function in N-syndecan binding and regulation of synaptic plasticity.
Raulo E, Tumova S, Pavlov I, Hienola A, Lauri S, Taira T, Rauvala H.
ScientificWorldJournal. 2006 Mar 29;6:406-9.
PMID 16583116
Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility.
Rauvala H, Huttunen HJ, Fages C, Kaksonen M, Kinnunen T, Imai S, Raulo E, Kilpelainen I.
Matrix Biol. 2000 Sep;19(5):377-87. (REVIEW)
PMID 10980414
Expression of HB-GAM (heparin-binding growth-associated molecules) in the pathways of developing axonal processes in vivo and neurite outgrowth in vitro induced by HB-GAM.
Rauvala H, Vanhala A, Castren E, Nolo R, Raulo E, Merenmies J, Panula P.
Brain Res Dev Brain Res. 1994 Jun 17;79(2):157-76.
PMID 7955315
An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors.
Rauvala H.
EMBO J. 1989 Oct;8(10):2933-41.
PMID 2583087
The potential role of the heparin-binding growth factor pleiotrophin in breast cancer.
Riegel AT, Wellstein A.
Breast Cancer Res Treat. 1994;31(2-3):309-14. (REVIEW)
PMID 7533562
Involvement of Pleiotrophin in CNTF-mediated differentiation of the late retinal progenitor cells.
Roger J, Brajeul V, Thomasseau S, Hienola A, Sahel JA, Guillonneau X, Goureau O.
Dev Biol. 2006 Oct 15;298(2):527-39. Epub 2006 Jul 12.
PMID 16914133
Substratum of pleiotrophin (HB-GAM) stimulates rat CG-4 line oligodendrocytes to adopt a bipolar morphology and disperse: primary O-2A progenitor glial cells disperse similarly on pleiotrophin.
Rumsby M, Suggitt F, Haynes L, Hughson E, Kidd D, McNulty S.
Glia. 1999 Jun;26(4):361-7.
PMID 10383055
Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin.
Said EA, Courty J, Svab J, Delbe J, Krust B, Hovanessian AG.
FEBS J. 2005 Sep;272(18):4646-59.
PMID 16156786
An antisense strategy for inhibition of human melanoma growth targets the growth factor pleiotrophin.
Satyamoorthy K, Oka M, Herlyn M.
Pigment Cell Res. 2000;13 Suppl 8:87-93.
PMID 11041363
Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus.
Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A.
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14759-64.
PMID 8962128
Gene expression profiling of melanocytic lesions.
Seykora JT, Jih D, Elenitsas R, Horng WH, Elder DE.
Am J Dermatopathol. 2003 Feb;25(1):6-11.
PMID 12544092
Pleiotrophin induces transdifferentiation of monocytes into functional endothelial cells.
Sharifi BG, Zeng Z, Wang L, Song L, Chen H, Qin M, Sierra-Honigmann MR, Wachsmann-Hogiu S, Shah PK.
Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1273-80. Epub 2006 Apr 13.
PMID 16614316
Localization of pleiotrophin and its mRNA in subpopulations of neurons and their corresponding axonal tracts suggests important roles in neural-glial interactions during development and in maturity.
Silos-Santiago I, Yeh HJ, Gurrieri MA, Guillerman RP, Li YS, Wolf J, Snider W, Deuel TF.
J Neurobiol. 1996 Nov;31(3):283-96.
PMID 8910787
Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis.
Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L, Morris SW, Wasik MA, Skorski T.
Cancer Res. 2001 Mar 1;61(5):2194-9.
PMID 11280786
Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells.
Soh BS, Song CM, Vallier L, Li P, Choong C, Yeo BH, Lim EH, Pedersen RA, Yang HH, Rao M, Lim B.
Stem Cells. 2007 Dec;25(12):3029-37. Epub 2007 Sep 6.
PMID 17823238
Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons.
Sotogaku N, Tully SE, Gama CI, Higashi H, Tanaka M, Hsieh-Wilson LC, Nishi A.
J Neurochem. 2007 Oct;103(2):749-60. Epub 2007 Aug 6.
PMID 17680989
Correlation of elevated plasma levels of two structurally related growth factors, heparin affin regulatory peptide and midkine, in advanced solid tumor patients.
Soulie P, Heroult M, Bernard-Pierrot I, Caruelle D, Oglobine J, Barritault D, Courty J.
Cancer Detect Prev. 2004;28(5):319-24.
PMID 15542254
Signal transduction pathways involved in the mitogenic activity of pleiotrophin. Implication of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways.
Souttou B, Ahmad S, Riegel AT, Wellstein A.
J Biol Chem. 1997 Aug 1;272(31):19588-93.
PMID 9235965
Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway.
Souttou B, Carvalho NB, Raulais D, Vigny M.
J Biol Chem. 2001a Mar 23;276(12):9526-31. Epub 2000 Dec 19.
PMID 11121404
Relationship between serum concentrations of the growth factor pleiotrophin and pleiotrophin-positive tumors.
Souttou B, Juhl H, Hackenbruck J, Rockseisen M, Klomp HJ, Raulais D, Vigny M, Wellstein A.
J Natl Cancer Inst. 1998 Oct 7;90(19):1468-73.
PMID 9776412
Pleiotrophin induces angiogenesis: involvement of the phosphoinositide-3 kinase but not the nitric oxide synthase pathways.
Souttou B, Raulais D, Vigny M.
J Cell Physiol. 2001b Apr;187(1):59-64.
PMID 11241349
Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin.
Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, Caughey DJ, Wen D, Karavanov A, Riegel AT, Wellstein A.
J Biol Chem. 2001 May 18;276(20):16772-9. Epub 2001 Feb 8.
PMID 11278720
Midkine and pleiotrophin have bactericidal properties: preserved antibacterial activity in a family of heparin-binding growth factors during evolution.
Svensson SL, Pasupuleti M, Walse B, Malmsten M, Morgelin M, Sjogren C, Olin AI, Collin M, Schmidtchen A, Palmer R, Egesten A.
J Biol Chem. 2010 May 21;285(21):16105-15. Epub 2010 Mar 22.
PMID 20308059
Identification of nucleolin as a binding protein for midkine (MK) and heparin-binding growth associated molecule (HB-GAM).
Take M, Tsutsui J, Obama H, Ozawa M, Nakayama T, Maruyama I, Arima T, Muramatsu T.
J Biochem. 1994 Nov;116(5):1063-8.
PMID 7896734
Induction of heparin-binding growth-associated molecule expression in reactive astrocytes following hippocampal neuronal injury.
Takeda A, Onodera H, Sugimoto A, Itoyama Y, Kogure K, Rauvala H, Shibahara S.
Neuroscience. 1995 Sep;68(1):57-64.
PMID 7477935
1alpha,25-Dihydroxyvitamin D(3) down-regulates pleiotrophin messenger RNA expression in osteoblast-like cells.
Tamura M, Ichikawa F, Guillerman RP, Deuel TF, Nodal M.
Endocrine. 1995 Jan;3(1):21-4.
PMID 21153232
Effects of targeted overexpression of pleiotrophin on postnatal bone development.
Tare RS, Oreffo RO, Sato K, Rauvala H, Clarke NM, Roach HI.
Biochem Biophys Res Commun. 2002 Nov 1;298(3):324-32.
PMID 12413943
Isolation of mouse and human cDNA clones encoding a protein expressed specifically in osteoblasts and brain tissues.
Tezuka K, Takeshita S, Hakeda Y, Kumegawa M, Kikuno R, Hashimoto-Gotoh T.
Biochem Biophys Res Commun. 1990 Nov 30;173(1):246-51.
PMID 1701634
A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts.
Trost Z, Trebse R, Prezelj J, Komadina R, Logar DB, Marc J.
Bone. 2010 Jan;46(1):72-80. Epub 2009 Sep 23.
PMID 19781675
RNA interference targeting protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta suppresses glioblastoma growth in vitro and in vivo.
Ulbricht U, Eckerich C, Fillbrandt R, Westphal M, Lamszus K.
J Neurochem. 2006 Sep;98(5):1497-506.
PMID 16923162
Involvement of heparin affin regulatory peptide in human prostate cancer.
Vacherot F, Caruelle D, Chopin D, Gil-Diez S, Barritault D, Caruelle JP, Courty J.
Prostate. 1999 Feb 1;38(2):126-36.
PMID 9973098
Cellular distribution of the new growth factor pleiotrophin (HB-GAM) mRNA in developing and adult rat tissues.
Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ.
Anat Embryol (Berl). 1992 Sep;186(4):387-406.
PMID 1416088
Upregulation of heparin-binding growth-associated molecule after spinal cord injury in adult rats.
Wang YT, Han S, Zhang KH, Jin Y, Xu XM, Lu PH.
Acta Pharmacol Sin. 2004 May;25(5):611-6.
PMID 15132827
Pleiotrophin can be rate-limiting for pancreatic cancer cell growth.
Weber D, Klomp HJ, Czubayko F, Wellstein A, Juhl H.
Cancer Res. 2000 Sep 15;60(18):5284-8.
PMID 11016659
The systemic angiogenic response during bone healing.
Weiss S, Zimmermann G, Pufe T, Varoga D, Henle P.
Arch Orthop Trauma Surg. 2009 Jul;129(7):989-97. Epub 2008 Nov 27.
PMID 19037648
A heparin-binding growth factor secreted from breast cancer cells homologous to a developmentally regulated cytokine.
Wellstein A, Fang WJ, Khatri A, Lu Y, Swain SS, Dickson RB, Sasse J, Riegel AT, Lippman ME.
J Biol Chem. 1992 Feb 5;267(4):2582-7.
PMID 1733956
Gene expression profiling identifies regulatory pathways involved in the late stage of rat fetal lung development.
Weng T, Chen Z, Jin N, Gao L, Liu L.
Am J Physiol Lung Cell Mol Physiol. 2006 Nov;291(5):L1027-37. Epub 2006 Jun 23.
PMID 16798779
Pleiotrophin regulates lung epithelial cell proliferation and differentiation during fetal lung development via beta-catenin and Dlk1.
Weng T, Gao L, Bhaskaran M, Guo Y, Gou D, Narayanaperumal J, Chintagari NR, Zhang K, Liu L.
J Biol Chem. 2009 Oct 9;284(41):28021-32. Epub 2009 Aug 6.
PMID 19661059
HB-GAM is a cytokine present in Alzheimer's and Down's syndrome lesions.
Wisniewski T, Lalowski M, Baumann M, Rauvala H, Raulo E, Nolo R, Frangione B.
Neuroreport. 1996 Jan 31;7(2):667-71.
PMID 8730853
Pleiotrophin expression correlates with melanocytic tumor progression and metastatic potential.
Wu H, Barusevicius A, Babb J, Klein-Szanto A, Godwin A, Elenitsas R, Gelfand JM, Lessin S, Seykora JT.
J Cutan Pathol. 2005 Feb;32(2):125-30.
PMID 15606670
Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice.
Xing W, Baylink D, Kesavan C, Hu Y, Kapoor S, Chadwick RB, Mohan S.
J Cell Biochem. 2005 Dec 1;96(5):1049-60.
PMID 16149068
Pleiotrophin induces neurite outgrowth and up-regulates growth-associated protein (GAP)-43 mRNA through the ALK/GSK3beta/beta-catenin signaling in developing mouse neurons.
Yanagisawa H, Komuta Y, Kawano H, Toyoda M, Sango K.
Neurosci Res. 2010 Jan;66(1):111-6. Epub 2009 Oct 13.
PMID 19833155
Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering.
Yang X, Tare RS, Partridge KA, Roach HI, Clarke NM, Howdle SM, Shakesheff KM, Oreffo RO.
J Bone Miner Res. 2003 Jan;18(1):47-57.
PMID 12510805
Pleiotrophin expression in human pancreatic cancer and its correlation with clinicopathological features, perineural invasion, and prognosis.
Yao J, Ma Q, Wang L, Zhang M.
Dig Dis Sci. 2009 Apr;54(4):895-901. Epub 2008 Aug 21.
PMID 18716876
PAd-shRNA-PTN reduces pleiotrophin of pancreatic cancer cells and inhibits neurite outgrowth of DRG.
Yao J, Zhang M, Ma QY, Wang Z, Wang LC, Zhang D.
World J Gastroenterol. 2011 Jun 7;17(21):2667-73.
PMID 21677838
Upregulation of pleiotrophin gene expression in developing microvasculature, macrophages, and astrocytes after acute ischemic brain injury.
Yeh HJ, He YY, Xu J, Hsu CY, Deuel TF.
J Neurosci. 1998 May 15;18(10):3699-707.
PMID 9570800
Serum pleiotrophin levels are elevated in multiple myeloma patients and correlate with disease status.
Yeh HS, Chen H, Manyak SJ, Swift RA, Campbell RA, Wang C, Li M, Lee HJ, Waterman G, Gordon MS, Ma J, Bonavida B, Berenson JR.
Br J Haematol. 2006 Jun;133(5):526-9.
PMID 16681640
MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin.
Yi C, Xie WD, Li F, Lv Q, He J, Wu J, Gu D, Xu N, Zhang Y.
FEBS Lett. 2011 Oct 20;585(20):3303-9. Epub 2011 Sep 19.
PMID 21945314
Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis.
Yokoi H, Kasahara M, Mori K, Ogawa Y, Kuwabara T, Imamaki H, Kawanishi T, Koga K, Ishii A, Kato Y, Mori KP, Toda N, Ohno S, Muramatsu H, Muramatsu T, Sugawara A, Mukoyama M, Nakao K.
Kidney Int. 2012 Jan;81(2):160-9. doi: 10.1038/ki.2011.305. Epub 2011 Aug 31.
PMID 21881556
Overexpression of heparin-binding growth-associated molecule in malignant glioma cells.
Zhang L, Mabuchi T, Satoh E, Maeda S, Nukui H, Naganuma H.
Neurol Med Chir (Tokyo). 2004 Dec;44(12):637-43; discussion 644-5.
PMID 15684595
A dominant-negative pleiotrophin mutant introduced by homologous recombination leads to germ-cell apoptosis in male mice.
Zhang N, Yeh HJ, Zhong R, Li YS, Deuel TF.
Proc Natl Acad Sci U S A. 1999a Jun 8;96(12):6734-8.
PMID 10359781
Identification of the angiogenesis signaling domain in pleiotrophin defines a mechanism of the angiogenic switch.
Zhang N, Zhong R, Perez-Pinera P, Herradon G, Ezquerra L, Wang ZY, Deuel TF.
Biochem Biophys Res Commun. 2006 May 5;343(2):653-8. Epub 2006 Mar 10.
PMID 16554021
Effects of a bone lysine-rich 18 kDa protein on osteoblast-like MC3T3-E1 cells.
Zhou HY, Ohnuma Y, Takita H, Fujisawa R, Mizuno M, Kuboki Y.
Biochem Biophys Res Commun. 1992 Aug 14;186(3):1288-93.
PMID 1510662
Genetic analysis of vertebral trabecular bone density and cross-sectional area in older men.
Zmuda JM, Yerges-Armstrong LM, Moffett SP, Klei L, Kammerer CM, Roeder K, Cauley JA, Kuipers A, Ensrud KE, Nestlerode CS, Hoffman AR, Lewis CE, Lang TF, Barrett-Connor E, Ferrell RE, Orwoll ES; Osteoporotic Fractures in Men (MrOS) Study Group.
Osteoporos Int. 2011 Apr;22(4):1079-90. Epub 2010 Dec 9.
PMID 21153022
Mice doubly deficient in the midkine and pleiotrophin genes exhibit deficits in the expression of beta-tectorin gene and in auditory response.
Zou P, Muramatsu H, Sone M, Hayashi H, Nakashima T, Muramatsu T.
Lab Invest. 2006 Jul;86(7):645-53. Epub 2006 Apr 17.
PMID 16619002
Pleiotrophin inhibits hippocampal long-term potentiation: a role of pleiotrophin in learning and memory.
del Olmo N, Gramage E, Alguacil LF, Perez-Pinera P, Deuel TF, Herradon G.
Growth Factors. 2009 Jun;27(3):189-94.
PMID 19384682


This paper should be referenced as such :
Pantazaka, E ; Papadimitriou, E
PTN (pleiotrophin)
Atlas Genet Cytogenet Oncol Haematol. 2012;16(11):821-837.
Free journal version : [ pdf ]   [ DOI ]
On line version :

External links

HGNC (Hugo)PTN   9630
Entrez_Gene (NCBI)PTN  5764  pleiotrophin
GeneCards (Weizmann)PTN
Ensembl hg19 (Hinxton)ENSG00000105894 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000105894 [Gene_View]  ENSG00000105894 [Sequence]  chr7:137227346-137343990 [Contig_View]  PTN [Vega]
ICGC DataPortalENSG00000105894
TCGA cBioPortalPTN
Genatlas (Paris)PTN
SOURCE (Princeton)PTN
Genetics Home Reference (NIH)PTN
Genomic and cartography
GoldenPath hg38 (UCSC)PTN  -     chr7:137227346-137343990 -  7q33   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)PTN  -     7q33   [Description]    (hg19-Feb_2009)
GoldenPathPTN - 7q33 [CytoView hg19]  PTN - 7q33 [CytoView hg38]
Mapping of homologs : NCBIPTN [Mapview hg19]  PTN [Mapview hg38]
Gene and transcription
Genbank (Entrez)AK290488 AK313424 AU138017 AW020400 BC005916
RefSeq transcript (Entrez)NM_001321386 NM_001321387 NM_002825
RefSeq genomic (Entrez)
Consensus coding sequences : CCDS (NCBI)PTN
Cluster EST : UnigeneHs.371249 [ NCBI ]
CGAP (NCI)Hs.371249
Alternative Splicing GalleryENSG00000105894
Gene ExpressionPTN [ NCBI-GEO ]   PTN [ EBI - ARRAY_EXPRESS ]   PTN [ SEEK ]   PTN [ MEM ]
Gene Expression Viewer (FireBrowse)PTN [ Firebrowse - Broad ]
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
GenevestigatorExpression in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)5764
GTEX Portal (Tissue expression)PTN
Human Protein AtlasENSG00000105894-PTN [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP21246   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtP21246  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProP21246
Splice isoforms : SwissVarP21246
Domaine pattern : Prosite (Expaxy)PTN_MK_1 (PS00619)    PTN_MK_2 (PS00620)   
Domains : Interpro (EBI)Midkine_heparin-bd_GF    PTN/MK_C_dom    PTN/MK_C_dom_sf    PTN/MK_diS_sf    PTN/MK_N_dom    PTN/MK_N_dom_sf    PTN_MK_heparin-bd_GF_CS   
Domain families : Pfam (Sanger)PTN_MK_C (PF01091)    PTN_MK_N (PF05196)   
Domain families : Pfam (NCBI)pfam01091    pfam05196   
Domain families : Smart (EMBL)PTN (SM00193)  
Domain structure : Prodom (Prabi Lyon)PTN_MK_hepar_bd (PD005592)   
Conserved Domain (NCBI)PTN
DMDM Disease mutations5764
Blocks (Seattle)PTN
PDB Europe2N6F   
PDB (PDBSum)2N6F   
PDB (IMB)2N6F   
Structural Biology KnowledgeBase2N6F   
SCOP (Structural Classification of Proteins)2N6F   
CATH (Classification of proteins structures)2N6F   
Human Protein Atlas [tissue]ENSG00000105894-PTN [tissue]
Peptide AtlasP21246
IPIIPI00412264   IPI00927644   
Protein Interaction databases
IntAct (EBI)P21246
Ontologies - Pathways
Ontology : AmiGOliver development  protein phosphatase inhibitor activity  extracellular region  basement membrane  extracellular space  endoplasmic reticulum  transmembrane receptor protein tyrosine phosphatase signaling pathway  nervous system development  heart development  learning  growth factor activity  growth factor activity  heparin binding  positive regulation of cell proliferation  regulation of cell shape  cell surface  regulation of signaling receptor activity  positive regulation of cell-substrate adhesion  positive regulation of neuron projection development  response to activity  membrane  negative regulation of angiogenesis  protein kinase binding  spinal cord development  cerebellum development  thalamus development  bone mineralization  lung development  negative regulation of cell migration  neuromuscular junction  response to estradiol  negative regulation of phosphoprotein phosphatase activity  response to progesterone  protein-containing complex  cellular response to UV  chondroitin sulfate proteoglycan binding  chondroitin sulfate binding  cellular response to platelet-derived growth factor stimulus  vascular endothelial growth factor binding  positive regulation of apoptotic process  estrous cycle  endothelial cell differentiation  negative regulation of membrane potential  perinuclear region of cytoplasm  negative regulation of epithelial cell proliferation  positive regulation of cell division  retinal rod cell differentiation  negative regulation of glial cell proliferation  long-term synaptic potentiation  cellular response to vitamin D  cellular response to hypoxia  negative regulation of mesenchymal cell proliferation  presynapse  postsynapse  response to kainic acid  rod bipolar cell differentiation  response to ciliary neurotrophic factor  positive regulation of skeletal muscle acetylcholine-gated channel clustering  negative regulation of neuromuscular junction development  heparan sulfate binding  response to nerve growth factor  positive regulation of hepatocyte proliferation  
Ontology : EGO-EBIliver development  protein phosphatase inhibitor activity  extracellular region  basement membrane  extracellular space  endoplasmic reticulum  transmembrane receptor protein tyrosine phosphatase signaling pathway  nervous system development  heart development  learning  growth factor activity  growth factor activity  heparin binding  positive regulation of cell proliferation  regulation of cell shape  cell surface  regulation of signaling receptor activity  positive regulation of cell-substrate adhesion  positive regulation of neuron projection development  response to activity  membrane  negative regulation of angiogenesis  protein kinase binding  spinal cord development  cerebellum development  thalamus development  bone mineralization  lung development  negative regulation of cell migration  neuromuscular junction  response to estradiol  negative regulation of phosphoprotein phosphatase activity  response to progesterone  protein-containing complex  cellular response to UV  chondroitin sulfate proteoglycan binding  chondroitin sulfate binding  cellular response to platelet-derived growth factor stimulus  vascular endothelial growth factor binding  positive regulation of apoptotic process  estrous cycle  endothelial cell differentiation  negative regulation of membrane potential  perinuclear region of cytoplasm  negative regulation of epithelial cell proliferation  positive regulation of cell division  retinal rod cell differentiation  negative regulation of glial cell proliferation  long-term synaptic potentiation  cellular response to vitamin D  cellular response to hypoxia  negative regulation of mesenchymal cell proliferation  presynapse  postsynapse  response to kainic acid  rod bipolar cell differentiation  response to ciliary neurotrophic factor  positive regulation of skeletal muscle acetylcholine-gated channel clustering  negative regulation of neuromuscular junction development  heparan sulfate binding  response to nerve growth factor  positive regulation of hepatocyte proliferation  
NDEx NetworkPTN
Atlas of Cancer Signalling NetworkPTN
Wikipedia pathwaysPTN
Orthology - Evolution
GeneTree (enSembl)ENSG00000105894
Phylogenetic Trees/Animal Genes : TreeFamPTN
Homologs : HomoloGenePTN
Homology/Alignments : Family Browser (UCSC)PTN
Gene fusions - Rearrangements
Fusion : FusionGDB17874    19243    19901    25396    28045    29057   
Fusion : Fusion_HubAC078842.1--PTN    AC078842.3--PTN    CD34--PTN    CDK14--PTN    CHCHD3--PTN    DGKI--PTN    FGF1--PTN    GLT25D1--PTN    ITGB4--PTN    JUP--PTN    KRT15--PTN    LMNA--PTN    OIP5-AS1--PTN    PKM2--PTN    POSTN--PTN   
PSAP--PTN    PTN--DGKI    PTN--MDK    PTN--SRPK2    PTN--TPD52    PTN--TPK1    SHFM1--PTN   
Fusion : QuiverPTN
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerPTN [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)PTN
Exome Variant ServerPTN
ExAC (Exome Aggregation Consortium)ENSG00000105894
GNOMAD BrowserENSG00000105894
Varsome BrowserPTN
Genetic variants : HAPMAP5764
Genomic Variants (DGV)PTN [DGVbeta]
DECIPHERPTN [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisPTN 
ICGC Data PortalPTN 
TCGA Data PortalPTN 
Broad Tumor PortalPTN
OASIS PortalPTN [ Somatic mutations - Copy number]
Somatic Mutations in Cancer : COSMICPTN  [overview]  [genome browser]  [tissue]  [distribution]  
Mutations and Diseases : HGMDPTN
LOVD (Leiden Open Variation Database)Whole genome datasets
LOVD (Leiden Open Variation Database)LOVD - Leiden Open Variation Database
LOVD (Leiden Open Variation Database)LOVD 3.0 shared installation
BioMutasearch PTN
DgiDB (Drug Gene Interaction Database)PTN
DoCM (Curated mutations)PTN (select the gene name)
CIViC (Clinical Interpretations of Variants in Cancer)PTN (select a term)
NCG5 (London)PTN
Cancer3DPTN(select the gene name)
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Genetic Testing Registry PTN
NextProtP21246 [Medical]
Target ValidationPTN
Huge Navigator PTN [HugePedia]
snp3D : Map Gene to Disease5764
BioCentury BCIQPTN
Clinical trials, drugs, therapy
Chemical/Protein Interactions : CTD5764
Chemical/Pharm GKB GenePA33974
Clinical trialPTN
canSAR (ICR)PTN (select the gene name)
DataMed IndexPTN
PubMed144 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Mon Jul 8 15:20:08 CEST 2019

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us