Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

EXT1 (exostosin glycosyltransferase 1)

Written2021-01Jean Loup Huret
jean-loup.huret@atlasgeneticsoncology.org
This article is an update of :
2002-03Judith VMG Bovée
Afdeling Pathologie, Leids Universitair Medisch Centrum, Postbus 9600, L1-Q, 2300 RC Leiden, the Netherlands
2000-01Judith VMG Bovée
Afdeling Pathologie, Leids Universitair Medisch Centrum, Postbus 9600, L1-Q, 2300 RC Leiden, the Netherlands

Abstract EXT1 is an endoplasmic reticulum-resident type II transmembrane protein with glycosyltransferase activity, involved in chain elongation of heparan sulfate. Heparan sulfate proteoglycans bind a large number of extracellular proteins, regulating membrane signaling, consequently playing a critical role in cell determination, differentiation, and migration. Germline mutations in EXT1 are responsible for hereditary multiple exostoses (osteochondromas), and EXT1 deletion is also found in tricho-rhino-phalangeal syndrome type II (also called Langer-Giedion syndrome), a contiguous gene deletion syndrome. We also review EXT1 alterations in various cancers.

Keywords heparan sulfate biosynthesis, adding saccharides to proteoglycans; Wnt signaling; Hedgehog signalling; FGF signaling; Apoptosis ; Golgi apparatus; Metabolic pathways; Osteochondromas; Hereditary multiple exostoses; Chondrosarcomas; Tricho-rhino-phalangeal syndrome type II; Langer-Giedion syndrome; Autism; Membranous nephropathy

(Note : for Links provided by Atlas : click)

Identity

Alias (NCBI)LGCR
LGS
EC 2.4.1.224
EC 2.4.1.225
TRPS2
TTV
Exostosin 1
Langer-Giedion syndrome chromosome region
Glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N- acetylglucosaminyltransferase
N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase
Exostosin Glycosyltransferase
HGNC (Hugo) EXT1
HGNC Alias symbttv
HGNC Alias nameGlucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N- acetylglucosaminyltransferase
 N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase
HGNC Previous nameLGCR
 LGS
HGNC Previous nameLanger-Giedion syndrome chromosome region
 exostoses (multiple) 1
 exostosin 1
LocusID (NCBI) 2131
Atlas_Id 212
Location 8q24.11  [Link to chromosome band 8q24]
Location_base_pair Starts at 117794490 and ends at 118111826 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping EXT1.png]
 
  Figure 1. Probe(s) - Courtesy Mariano Rocchi
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
ADGRB1 (8q24.3)::EXT1 (8q24.11)DSCAM (21q22.2)::EXT1 (8q24.11)EEF1A1 (6q13)::EXT1 (8q24.11)
EXT1 (8q24.11)::CLUL1 (18p11.32)EXT1 (8q24.11)::DCTN6 (8p12)EXT1 (8q24.11)::EXT1 (8q24.11)
EXT1 (8q24.11)::FAM155A (13q33.3)EXT1 (8q24.11)::FAM177A1 (14q13.2)EXT1 (8q24.11)::OC90 (8q24.22)
EXT1 (8q24.11)::RSF1 (11q14.1)EXT1 (8q24.11)::SAMD12 (8q24.11)EXT1 (8q24.11)::SAMD12 (8q24.12)
EXT1 (8q24.11)::WDYHV1 (8q24.13)LRRC6 (8q24.22)::EXT1 (8q24.11)RAB28 (4p15.33)::EXT1 (8q24.11)
RAD21 (8q24.11)::EXT1 (8q24.11)

DNA/RNA

Description Genomic size: 312,457 bp; 11 exons.
Transcription Transcript (hg38) including UTRs: chr8:117,794,490 - 118,111,853, size: 317,364 bp on minus strand; coding region: chr8:117,799,712 - 118,111,046, size: 311,335 bp, according to UCSC. Another transcript has 5 exons.

Protein

Note EXT1 is a type II transmembrane protein endoplasmic reticulum-resident glycosyl transferase.
 
  Figure 2. EXT1 gene and protein domains
Description EXT1 is a 746 amino acids (aa) protein (canonical form) involved in the chain elongation of heparan sulfate biosynthesis, adding saccharides to proteoglycans. EXT1 contains from N-term to C-term a cytoplasmic domain (aa 1-7), a transmembrane region (aa 8-28), and a lumenal domain (aa 29-746) with two glycosyl transferase domains: the exostosin domain and the glycosyl-transferase domain (Figures 2, 3 and 4).
Other sites according to Prosite
- Protein kinase C phosphorylation sites: aa 35, 41, 81, 297, 344, 392, 547, 609, 641, 673, 686
- Casein kinase II phosphorylation site: aa 35, 102,1 99, 244, 310, 317, 417, 425, 563, 571, 573, 584
- conserved cysteine between EXT genes: C: aa 98, 103, 109, 298, 312, 334, 652, 704 and disulfide bond between aa 652 and aa 704
- DXD motifs: DRD aa 162-164, 313-315; DED aa 565-567; DPD aa 694-696 (The DXD motif is a short conserved motif found in many families of glycosyltransferases, that requires divalent cations (InterPro); note manganese binding site at aa 567. The GlcNAc transferase shows a preference for Mn2+ over Ca2+ or Mg2+. The GlcNAc transferase reaction (see below) proceeds across a pH range of 5-8, whereas the GlcA transferase reaction showed an optimum at pH 5.5-6.5 (Wei et al., 2000).
- N-myristoylation sites (role in membrane targeting): aa 14-19, 245-250
- N-glycosylation sites: aa 89, 330
- Amidation site XGRK (protects from proteolysis): GKK: aa 94-97, GKR: aa 267-270, GRR: aa 338-341
Exostosins family members contain:
- a glucuronyl-transferase domain ("Exostosin" domain (aa 110-396 in the case of EXT1), and therefore EXT1 belongs to the "GT47" glucuronyl (GlcA) family of GT (glycosyltransferases) (corresponding to EC 2.4.1.225), and
- an acetylglucosaminyl-transferase domain ("Glycosyl transferase" domain (aa 480-729 in the case of EXT1)), and therefore EXT1 also belongs to the "GT64" glucosaminyl (GlcNAc: glucosamine (GlcN), acetylated) family of glycosyltransferases (corresponding to EC 2.4.1.224) (see below Figures 5, 6 and 7).
 
  Figure 3. EXT1 amino acids sequence
Expression EXT1 mRNA is expressed ubiquitously, with a low cell type specificity.
Ext1-/- embryonic stem cells failed to commit to lineage differentiation in mice (Kraushaar et al., 2010). EXT1 is expressed during early embryogenesis (embryonic portion of the ectoderm, parietal and visceral endoderm, and the trophoblastic cells) and can be detected in all tissues in adult mice. EXT1 homozygous mutants mice fail to gastrulate (Lin et al., 2000), and knockdown of Ext1 causes gastrulation defects in Xenopus (Shieh et al., 2014). EXT1 mutant embryos fail to form mesoderm. Indian hedgehog, an important regulator of developmental processes, is expressed during gastrulation, and hedgehog and downstream BMPs (bone morphogenetic proteins), also markers for mesoderm differentiation, were reduced.
Ext1 and Ext2 were concomitantly expressed in hypertrophic chondrocytes of forelimb bones from 1-day-old neonatal mouse, but down-regulated in maturing chondrocytes of developing cartilage from 21-day-old mouse (Kobayashi et al., 2000). In developing foetal tooth, staining was detected in ameloblasts and in the basal lamina. In mature tooth, EXT1 was expressed in odontoblasts and the predentin but not in the dentin (Pääkkönen et al., 2017).
Proper expression of Ext1 is required for cardiogenesis in the mouse. FGF signaling is altered upon Ext1 deletion. FGF signaling controls cell proliferation of cardiac progenitors Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate (HS) modulates FGF signaling during early heart development (Zhang et al., 2015).
Ext1-/- causes severe axon guidance errors, indicating that heparan sulfate proteoglycans (see below) are important regulators of axon guidance. This resulted in defective brain morphogenesis in the embryonic mouse (Inatani and Yamaguchi, 2003). Development of the central nervous system proceeds through patterning of the neural tube, generation of neurons and their migration, extension of axons and dendrites and formation of synapses. Heparan sulfate is functionally involved in various aspects of neural development (Yamaguchi et al., 2010). Genetic alteration of heparan sulfate proteoglycans synthesis results in abnormal brain phenotypes in mice. Knockdown of Ext1 in nestin-positive (nestin: neuroectodermal stem cell marker) neural stem cells resulted in defects in neural patterning and cortical neurogenesis. Ext1-deficient neural stem cells exhibited reduced proliferation in response to FGF2 and FGF8 (Wade et al., 2014).
Ext1-/- mice exhibited altered dendritic cell homing (Bao et al., 2010).
 
  Figure 4. EXT1 crystal structure according to ModBase. "ModBase 1-429" correspond grossly to the exostosin domain, and "ModBase 475-730" to the glycosyl transferase domain.
Localisation Both EXT1 and EXT2 localize and accumulate in the Golgi apparatus. Mutated EXT1 and EXT2, as is found in hereditary multiple exostoses (HME), also localize in the Golgi (Kobayashi et al., 2000; McCormick et al., 2000), the site where heparan sulfate polymerization occurs.
Function EXT1 is an endoplasmic reticulum-resident type II transmembrane glycosyltransferase. EXT1 and EXT2 are involved in the chain elongation step (polymerisation) of heparan sulfate and heparin biosyntheses (see KEGG pathway https://www.genome.jp/kegg-bin/show_pathway?map00534+2.4.1.224) (Okada et al., 2010). Heparan sulfate and heparin are glycosaminoglycans (long polysaccharides chains made of repeating disaccharides (these disaccharides consist of one beta-D-glucuronic acid (GlcA) and one alpha-D-glucosamine (GlcN)) (Figure 5). Glycosaminoglycans are highly polar and attract water; see for review on heparan sulfate proteoglycans Sarrazin et al., 2011.
EXT1 and EXT2 form a hetero-oligomeric complex in vivo. The enzyme complex encoded by the EXT1 and EXT2 acts as bifunctional glycosyltransferases (Lind et al., 1998):
1- N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase activity (EC 2.4.1.225) and
2- glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase activity (EC 2.4.1.224), see Figure 6 and 7) (see Lind et al., 1998).
In EXT1, the N-terminal domain with GT47 activity adds GlcA residues, and the C-terminal domain with GT64 activity adds GlcNAc residues to the long glycosaminoglycans chains (proteoglycans=protein+glycosaminoglycan).
Table 1: Enzyme Nomenclature, activity, and protein domains
IUBMB EntryEnzymeSaccharide involvedProtein domainsEnzymatic activity
EC 2.4.1.225glucuronosyltransferaseglucuronic acid (GlcA)N-terminal domain: GT47 familyGT47 adds GlcA residues
EC 2.4.1.224glucosaminyltransferaseglucosamine (GlcN))C-terminal domain: GT64 familyGT64 adds GlcNAc residues

IUBMB Enzyme Nomenclature: https://www.qmul.ac.uk/sbcs/iubmb/
Carbohydrate-Active enZYmes Database: http://www.cazy.org/GT47.html and http://www.cazy.org/GT64.html :
The long heparan synthases are made of two domains. The N-terminal domain, which adds b-1,4-GlcA residues, belongs to family GT47 while the C-terminal domain, which adds a-1,4-GlcNAc residues, belongs to family GT64.
Heparan sulfate proteoglycans (HSPGs) have a critical role in cell determination, differentiation, and migration by regulating membrane signalings and growth factors. Heparan sulfate proteoglycans have been implicated in regulating the distribution and receptor binding of several members of FGF, Wnt, transforming growth factor beta (TGFB), and Hedgehog families (Koziel et al., 2004).
Ext1 mutant mice die around embryonic day 14. The mutation mainly affected heparan sulfate chain length. Embryonic fibroblasts with homozygous Ext1 mutation produced shorter heparan sulfate chains (Yamada et al., 2004). Overexpression of EXT1 resulted in increased heparan sulfate chain length, which was even more pronounced in cells coexpressing EXT2, whereas overexpression of EXT2 alone had no detectable effect on heparan sulfate chain elongation (Busse et al., 2007).
The expression of heparanase ( HPSE), an endoglycosidase that cleaves heparan sulfate proteoglycans, was enhanced in Ext-1-knockdown cells (Wang et al., 2013).
Hedgehog proteins bind heparan sulfate and EXT1 is therefore required for Hedgehog signaling. BMP2 and BMP4 are also downstream targets of Hedgehog signaling (Lin et al., 2000). Decreased Ext1 was shown to reduce the level of Wnt and Bmp4 signaling in Xenopus. Ext1-dependent synthesis of heparan sulfate proteoglycans is critical for Wnt and BMP signaling (Shieh et al., 2014).
Cell surface heparin sulfate is also known to mediate the binding of FGFs and their FGFRs. Ext1-/- results in impaired FGF signaling and aberrant differentiation commitment in embryonic stem cells (Kraushaar et al., 2010). TGFBR2 and EXT1 enhanced chemosensitivity to interferon-alpha/5-fluorouracil (IFN-α /5-FU) on advanced hepatocellular carcinoma by accelerating apoptosis. EXT1 overexpression enhanced endoplasmic reticulum stress response/signaling pathway leading to autophagy and apoptosis. Ext1 mutant fibroblasts displayed reduced ability to attach to collagen I and to contract collagen lattices, decreased phosphorylation of MAPK3 / MAPK1 (so called ERK1/2) in response to FGF2 stimulation. Cell proliferation induced by FGF2 and FGF10 is reduced in Ext1 mutant fibroblasts. (Osterholm et al., 2009).
NREP (also called P311 or C5ORF13) is down regulated in EXT1-mutated fibroblasts. The Ext1 mutation leads to a heparan sulfate defect resulting in low efficiency of the interaction between TGFB1 and its receptor, which results in disturbed Smad phosphorylation and less autoinduction of TGFB1 and less TGFB1 expression (Katta et al., 2018).
Calcitonin related polypeptides were significantly increased in patients with osteochondroma and EXT1 gene mutation. Calcitonin related polypeptides can arrest the cell cycle in G0/G1 phase, thereby inhibiting cell proliferation (Wu et al., 2018).
EXT1 was identified as a common interactor of NOTCH1 and FBXW7, regulating the NOTCH pathway in an FBXW7-dependend manner: depletion of EXT1 using small interfering RNA increased NOTCH transactivation activity; two important NOTCH1-target genes, HES1 and MYC had increased mRNA expression (Daakour et al., 2016). EXT1, down-regulated by MIR665, promotes cell apoptosis via MAPK3/MAPK1 (ERK1/2) signaling pathway in acute lymphoblastic leukemia (Liu et al., 2019). Overexpression of EXT2 enhanced the heparan sulfate sulfotransferase NDST1 expression, EXT1 had opposite effects (Prestoe et al., 2008).
 
  Figure 5. Saccharides and proteoglycans
Homology The other members of the EXT family proteins are EXT2, EXTL1, EXTL2 and EXTL3. Tout-velu (ttv) is the Drosophila homologue of EXT1 (Bellaiche and Perrimon, 1998).
 
  Figure 6. Glucuronosyl transferase activity
 
  Figure 7. Glucosaminyl transferase activity

Mutations

Germinal Most hereditary multiple exostoses patients bear a heterozygous mutation in the genes encoding exostosin glycosyltransferase EXT1 or EXT2, leading to a systemic heparan sulfate deficiency of about 50%. About 10% of the patients have de novo mutations. The prevalence in western population is 1 to 2 out of 100,000. The penetrance is close to 100%. Mutations include nucleotide substitutions (54%), small deletions (27%) and small insertions (16%), of which the majority is predicted to result in a truncated or non-functional protein (review in Reijnders and Bovée, 2009; Cousminer et al., 2016; D'Arienzo et al., 2019).

Implicated in

Note High expression is an unfavorable prognostic marker in lung cancer, thyroid cancer, and cervical cancer, according to the Human Protein Atlas (TCGA studies).
Table 2: EXT1 alterations in various cancers Main data from TCGA PanCan studies, according to BioPortal (rounded numbers; too small data were discarded).
Cancer type% with gene changeMutationAmplification
Ovary23% of 584 cases22%
Breast13% of 1084 cases12%
Esophagus 12% of 182 cases9%
Stomach11% of 440 cases4%6%
Liver11% of 372 cases11%
Uterus10% of 529 cases5%5%
Pancreas9% of 184 cases8%
Bladder8% of 411 cases2%5%
Prostate7% of 494 cases6%
Colon6% of 594 cases3%3%
Head and neck6% of 523 cases6%
Melanoma6% of 444 cases2%3%
Lung adenocarc.5% of 566 cases2%3%
Sarcoma (NOS?) 5% of 255 cases4%
Low-Grade Glioma5% of 514 cases4%
Lung (squamous cell)5% of 487 cases1%3%
Cervix 2% of 297 cases2%
Uveal melanoma5% of 80 cases
Renal (clear cell)1% of 511 cases
  
Entity Bone development
Note Ext1-dependent heparan sulfate regulates Indian hedgehog (Ihh) signaling during endochondral ossification. During bone development, wild-type embryos display well-organized zones of proliferating and hypertrophic chondrocytes. In contrast, Ext1-/- mutants reveal joint fusions and a severe delay in hypertrophic differentiation. Ext1-/- mice synthesize reduced amounts of heparan sulfate, which leads to enhanced Indian Hedgehog diffusion. Heparan sulfate restricts Ihh propagation in mice, negatively regulating Ihh signaling. Ext1-/- mutants have an elevated range of Ihh signaling during embryonic chondrocyte differentiation (Koziel et al., 2004; Hilton et al., 2005). Bones: Ext1 expression and heparan sulfate production are needed to maintain the phenotype and function of joint-forming cells and coordinate local signaling by BMP, hedgehog and Wnt/β-catenin (CTNNB1) pathways, critical for skeletogenesis (Mundy et al., 2011). EXT1-synthesized glycosaminoglycans also interact with FGFs and their receptors and affect their regulatory functions in bone development (Lin et al., 2000). Ablation of Ext1 in limb bud mesenchyme causes severe skeletal defects (shortening and broadening) in mice, embryos. Loss of heparan sulfate expression altered spatial range of BMP signaling and localization of BMP2 protein. BMP signaling plays a major role in the development of mesenchymal condensation, compromised in the absence of heparan sulfate (Matsumoto et al., 2010). Loss of Ext1 combined with loss of cell cycle regulators Tp53 and Cdkn2a promotes peripheral chondrosarcomagenesis in the mouse (de Andrea et al., 2015).
Ext1 knock-down decreases canonical Wnt signaling activation during chondrogenesis in cultured chondrogenic mouse cells and Ext1 overexpression enhances canonical Wnt signaling activation. Activation of Wnt signaling using a GSK3 inhibitor resulted in a down-regulation of Ext1 expression. Conversely, a Wnt inhibitor up-regulated Ext1 expression. This suggest the existence of a regulatory loop between EXT1 and Wnt signaling during chondrogenesis (Wang et al., 2019).
  
  
Entity Hereditary multiple exostoses (HME) or Hereditary multiple osteochondromas.
Disease HME is inherited in an autosomal dominant manner that affects about 1 in 50,000 children. Osteochondromas are the most common benign bone tumors, representing approximately 50% of all primary benign tumors of bone. They gradually develop and increase in size in the first decade of life (Reijnders and Bovée 2008).
EXT1 accounts for 45%-65% of HME-causing mutations, and EXT2 for 30%. Mutations in EXT1 are distributed over all the 11 exons. Inactivating mutations (nonsense, frame shift, and splice-site mutations) represent the majority of multiple osteochondromas causing mutations. Mutations and variants are reported in the online Multiple Osteochondromas Mutation Database at http://medgen.ua.ac.be/LOVD (Jennes et al., 2009). A germline mutation combined with loss of the remaining wild type allele support the Knudson's two hit model for tumor suppressor genes in osteochondroma development. These results indicate that in cartilaginous cells of the growth plate, inactivation of both copies of the EXT1-gene is required for osteochondroma formation in hereditary cases (Bovée 2002).
Compound heterozygous Ext1+/-;Ext2+/- mutant mice develop multiple osteochondromas (Zak et al., 2011).
EXT genes and heparan sulfate are needed to establish and maintain perichondrium's phenotype and border function, restrain pro-chondrogenic signaling (hedgehog and BMP signaling) and restrict chondrogenesis. Normal EXT expression and heparan sulfate levels restrain BMP signaling and promote FGF signaling, a major anti-chondrogenic pathway expressed in various non-cartilaginous tissues including perichondrium. Loss of EXT expression and/or heparan sulfate level promote BMP signaling and impair FGF signaling, inducing osteochondroma development (Huegel et al., 2013; Pacifici 2018; note: see Figure 2 in Pacifici 2018).
Prognosis Recurrent pain was found in 60 and 80% of children and adults respectively, with an impact on quality of life (Goud et al., 2012). Short stature, deformities, functional limitation, coxa valga and scoliosis are frequently observed with systemic consequences on the health, well-being, social interactions and personal perception in patients. Osteochondromas may be located in potentially dangerous and delicate locations: osteochondromas in the intracanal surface of the vertebrae can cause nerve damage and progressive impediment of motion (Pacifici 2017; Pacifici 2018).
Oncogenesis Malignant transformation into chondrosarcoma, is low in solitary osteochondromas (<1%) but is estimated to occur in 0.5-5% of cases of multiple osteochondroma (Reijnders and Bovée 2008).
  
  
Entity Solitary osteochondromas
Note 85% of all osteochondromas are solitary (nonhereditary) lesions.
Osteochondromas originate in proliferating chondrocytes. Postnatal inactivation of Ext1 generates osteochondromas in mice and homozygous loss of ext1 is required for osteochondromagenesis (Jones et al., 2009). Loss of heterozygosity of EXT1 is common in solitary osteochondroma. Ext1 +/- or Ext2 +/- mutant mice were found to be largely normal. In multiple osteochondroma-related osteochondroma (see above), additional identified genetic changes include LOH and aneuploidy. LOH causes loss of the remaining wild-type allele, resulting in EXT1 or EXT2-null cells. Homozygous EXT1 deletions were present only in the cartilage cap of osteochondroma (Hameetman et al., 2007; Wilpshaar and Bovée, 2018).
  
  
Entity Breast cancer
Note Estrogen receptor (ER)-negative tumors had increased expression of enzymes involved in the extension of heparan sulfate chains including EXT1. EXT1 was also overexpressed in tumors of patients who subsequently developed distant metastasis (Julien et al., 2011), whereas, in a study of 15 estrogen receptor-positive breast cancer patients with metastases, the expression of EXT1 was significantly decreased in the metastatic group compared to the control group (Taghavi et al., 2016). Knockdown of EXT1 repressed cancer cell stemness and downregulated epithelial mesenchymal transition (EMT) markers and migratory behavior in a human breast cancer cell line. Overexpression of EXT1 enhanced cell surface heparan sulfate, promoted EMT overexpression and transformed normal breast epithelial cells to the malignant form. This report implies a tissue-or cell-type specific role of EXT1 as a suppressor or promoter of cancer growth (Manandhar et al., 2017).
  
  
Entity Lung adenocarcinoma
Note Lung adenocarcinoma cell lines/stromal fibroblasts composite spheroid with a mutation in Ext1 and thus a low heparan sulfate content showed impaired cell migration and a lower proliferation rate. Ext1-levels modulate tumor cell proliferation (&OUML;sterholm et al., 2012).
Among the 522 patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database, 6.4% had deletions in EXT1. However, a 9-gene signature ( HMMR, B4GALT1, SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, and AGRN) has been identified as an independent prognostic factor and associated with metastasis (Zhang et al., 2019).
  
  
Entity Hepatocellular carcinoma
Note EXT1 was identified as 5-FU-sensitizing gene, through activation of TGFB-enhancing chemosensitivity to 5-FU, in advanced hepatocellular carcinoma (Sakabe et al., 2013). In patients with high EXT1 expression, the median disease-free survival was 18 months. The 1-, 2-, and 5-year disease-free survival rates were 61%, 39%, and 0% respectively. In the low EXT1 expression group, the median disease-free survival was 50 months. The 1-, 2-, and 5-year disease-free survival rates were 78%, 64%, and 44%, respectively (Dong et al., 2018).
  
  
Entity Cholangiocarcinoma
Note The EXT1 expression level in the plasma of human and hamster cholangiocarcinomas were significantly higher compared to healthy controls (Khoontawad et al. 2014).
  
  
Entity Brain tumors
Note Heparan sulfate synthesized by EXT1 regulates receptor tyrosine kinase signaling and promotes resistance to EGFR inhibitors in glioblastoma multiforme. Signaling from receptor tyrosine kinases contributes to therapeutic resistance in glioblastoma multiforme. Heparan sulfate-null cells had decreased proliferation, invasion, and reduced activation of multiple receptor tyrosine kinases (Ohkawa et al., 2020).
Activity of the heparan sulfate biosynthetic system was decreased by 1.5-2-fold in gliomas Grade II-III and by 1.5-2-fold in glioblastoma multiforme compared with the para-tumorous brain tissue. The most significant contribution to the overall inhibition of the system was due to down-regulation of the expression of genes responsible for elongation of the heparan sulfate chains (exostosin glycosyltransferases EXT1 and EXT2) and its sulfation (Ushakov et al., 2017).
  
  
Entity Prostate carcinoma
Note Heparan sulfate biosynthesis is impaired in benign prostate hyperplasia and prostate adenocarcinomas. Genes involved in both synthesis and modification/degradation of heparan sulfate were studied. Their expression was reduced, but EXT1 expression was relatively less reduced than others (EXT2, HPSE, sulfatases .) (Suhovskih et al., 2014).
  
  
Entity Acute lymphoblastic leukemia (ALL)
Note EXT1 expression is downregulated in childhood and adult ALL. Low EXT1 and high MIR665 expression in adult ALL bone marrow are correlated with poor patient survival. Overexpression of EXT1 markedly inhibited cell proliferation. (Liu et al., 2019). EXT1 promoter CpG island hypermethylation leads to gene silencing in leukemia cell lines, whereas all normal tissues analyzed (lymphocytes, bone marrow, breast, colon and skin) were completely unmethylated at the EXT1 and EXT2 promoters. The epigenetic inactivation of EXT1 leads to the loss of heparan sulfate synthesis. The highest prevalence of EXT1 hypermethylation was found in acute lymphoblastic leukemia (32% of 37 cell lines) and acute promyelocytic leukemia (25% of 31 cell lines), followed at a more moderate rate by acute myeloblastic leukemia (7 % of 27 cell lines). Reactivation of EXT1 expression by a demethylating agent restores heparan sulfate synthesis and showed tumor-suppressor-like properties (Ropero et al., 2004).
  
  
Entity Multiple myeloma
Note A high EXT1 expression was associated with a worse overall survival in multiple myeloma (Bret et al., 2009). EXT1 knockdown inhibited the in vivo multiple myeloma tumor growth, resulting in a significantly extended survival. Heparan sulfate proteoglycans act as multifunctional scaffolds regulating important biologic processes, including cell adhesion and migration, tissue morphogenesis, and angiogenesis. Heparan sulfate chains are crucial for the growth and survival of multiple myeloma cells (Reijmers et al., 2010).
  
  
Entity "Non-melanoma" skin cancers
Note Hypermethylation of EXT1 promotor, leading to gene silencing, was found in 14% of 28 non-melanoma skin cancers cell lines (Ropero et al., 2004).
  
  
Entity Tricho-rhino-phalangeal syndrome type II (also called Langer-Giedion syndrome)
Disease Tricho-rhino-phalangeal syndrome type II is a contiguous gene deletion syndrome caused by the deletion of both TRPS1 (8q23.3, 115408496-115668975 bp) and EXT1 (8q24.11, 117794490-118111826 bp) genes (see Figure 8). It combines signs of Tricho-rhino-phalangeal syndrome type I (sparse hair, bulbous tip of nose, long philtrum, thin upper vermilion border and large ears, brachydactyly, hip dysplasia, and short stature), due to the deletion of TRPS1, multiple osteochondromas (EXT1 deletion), and mild intellectual disability.
 
Figure 8. Location of TRPS1 and EXT1 (montage from UCSC pictures).
  
  
Entity Autism spectrum disorder
Note Heparan sulfate was eliminated from postnatal neurons by conditionally inactivating Ext1 in mice. Mutant mice showed autistic symptoms, including impairments in social interaction, expression of stereotyped, repetitive behavior, and impairments in ultrasonic vocalization. The behavioral defects were accompanied by impaired glutamatergic transmission (Irie et al., 2012).
Two unrelated boys presented with hereditary multiple exostoses and autism associated with mental retardation. A deletion 1742delTGT-G in exon 9 of EXT1, causing a frameshift, was detected in one case, and a deletion 2093delTT in exon 11 of EXT1, causing transcription termination, was detected in the other case. The authors pointed that EXT1 is expressed in the brain, and that both EXT1 and EXT2 are required for the biosynthesis of heparan sulfate, which also has activity in the brain (Li et al., 2002).
A patient presented with Langer-Giedion syndrome and high-functioning autism. The karyotype found a microdeletion in mosaic 46,XY/46,XY,del(8)(q24.1q24.3) (Miyuru and Shehan 2018).
A meta-analysis of genome-wide association studies of over 16,000 individuals with autism spectrum disorder identified a significant association of ASD with EXT1 (Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, 2017).
  
  
Entity Membranous nephropathy
Note A subset of membranous nephropathy is associated with accumulation of EXT1 and EXT2 in the glomerular basement membrane. Autoimmune disease is common in this group of patients (Sethi et al., 2019).
A case of familial nephropathy in which a steroid-sensitive nephrotic syndrome and multiple exostoses due to mutation of EXT1 has been described. There was a glomerular basement membrane deposition of fibrillar collagen. (Roberts and Gleadle, 2008).
  

Breakpoints

 
  Figure 9. EXT1 translocations/fusion partners
Note Table 3: EXT1 and 13 translocations/fusion partners
EXT1 partner genePartner location (bp)
EXT1 location: 117794490 -118111826
TranslocationCancer type
TINAGL1 t(1:8)(p35;q24)Breast carcinoma
RSF1 t(8;11)(q24;q14)Breast carcinoma
FAM155A t(8;13)(q24;q33) Bladder urothelial carcinoma
SAMD12 118377988-118621945(8q24)Breast carcinoma
Head and Neck squamous cell carcinoma
Ovarian adenocarcinoma
Stomach adenocarcinoma 
WDYHV1123416725-123442240(8q24)Bladder urothelial carcinoma
TMEM65 124310918-124372699(8q24)Lung squamous cell carcinoma
NSMCE2 125091860-125367120(8q24)Sarcoma
PVT1127794533-128101253(8q24)Lung squamous cell carcinoma
OC90 132024216 -132059382(8q24)Lung adenocarcinoma
LRRC6 132570419-132675617(8q24)Breast carcinoma
PTK2 140657900-141001282(8q24)Ovarian serous cystadenocarcinoma
TSNARE1 142212080-142403182(8q24)Esophageal carcinoma
ADGRB1 142449649-142545007(8q24)Low grade glioma

References: Yoshihara et al., 2015; Gao et al., 2018; Calabrese et al., 2020.

Bibliography

Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia
Mol Autism 2017 May 22;8:21.
PMID 28540026
 
Genomic basis for RNA alterations in cancer
, Calabrese C, Davidson NR, Demirciolu D, Fonseca NA, He Y, Kahles A, Lehmann KV, Liu F, Shiraishi Y, Soulette CM, Urban L, Greger L, Li S, Liu D, Perry MD, Xiang Q, Zhang F, Zhang J, Bailey P, Erkek S, Hoadley KA, Hou Y, Huska MR, Kilpinen H, Korbel JO, Marin MG, Markowski J, Nandi T, Pan-Hammarström Q, Pedamallu CS, Siebert R, Stark SG, Su H, Tan P, Waszak SM, Yung C, Zhu S, Awadalla P, Creighton CJ, Meyerson M, Ouellette BFF, Wu K, Yang H, , Brazma A, Brooks AN, Göke J, Rätsch G, Schwarz RF, Stegle O, Zhang Z,
Nature 2020 Feb;578(7793):129-136.
PMID 32025019
 
Fibroblast EXT1-levels influence tumor cell proliferation and migration in composite spheroids
Österholm C, Lu N, Lidén Å, Karlsen TV, Gullberg D, Reed RK, Kusche-Gullberg M
PLoS One 2012;7(7):e41334.
PMID 22848466
 
Bone: Osteochondroma
Atlas Genet Cytogenet Oncol Haematol. 2019;23(5):133-136.
 
Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes
Bao X, Moseman EA, Saito H, Petryniak B, Thiriot A, Hatakeyama S, Ito Y, Kawashima H, Yamaguchi Y, Lowe JB, von Andrian UH, Fukuda M
Immunity 2010 Nov 24;33(5):817-29.
PMID 21093315
 
Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion
Bellaiche Y, The I, Perrimon N
Nature 1998 Jul 2;394(6688):85-8.
PMID 9665133
 
EXT1 (exostoses (multiple) 1)
Bovée, JVMG
Atlas Genet Cytogenet Oncol Haematol. 2002;6(3):184-185.
 
Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells
Bret C, Hose D, Reme T, Sprynski AC, Mahtouk K, Schved JF, Quittet P, Rossi JF, Goldschmidt H, Klein B
Br J Haematol 2009 May;145(3):350-68.
PMID 19298595
 
Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation
Busse M, Feta A, Presto J, Wilén M, Grønning M, Kjellén L, Kusche-Gullberg M
J Biol Chem 2007 Nov 9;282(45):32802-10.
PMID 17761672
 
High-functioning autism in a Sri Lankan youth with Langer-Giedion syndrome
Chandradasa M, Williams S
Psychiatr Genet 2018 Jun;28(3):55-57.
PMID 29538090
 
Assessing the general population frequency of rare coding variants in the EXT1 and EXT2 genes previously implicated in hereditary multiple exostoses
Cousminer DL, Arkader A, Voight BF, Pacifici M, Grant SFA
Bone 2016 Nov;92:196-200.
PMID 27616605
 
Hereditary Multiple Exostoses: Current Insights
D', Arienzo A, Andreani L, Sacchetti F, Colangeli S, Capanna R
Orthop Res Rev 2019 Dec 13;11:199-211.
PMID 31853203
 
Systematic interactome mapping of acute lymphoblastic leukemia cancer gene products reveals EXT-1 tumor suppressor as a Notch1 and FBWX7 common interactor
Daakour S, Hajingabo LJ, Kerselidou D, Devresse A, Kettmann R, Simonis N, Dequiedt F, Twizere JC
BMC Cancer 2016 May 26;16:335.
PMID 27229929
 
Increased EXT1 gene copy number correlates with increased mRNA level predicts short disease-free survival in hepatocellular carcinoma without vascular invasion
Dong S, Wu Y, Yu S, Yang Y, Lu L, Fan S
Medicine (Baltimore) 2018 Sep;97(39):e12625.
PMID 30278583
 
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers
Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, Liao WW, Reynolds SM, Wyczalkowski MA, Yao L, Yu L, Sun SQ, , , Chen K, Lazar AJ, Fields RC, Wendl MC, Van Tine BA, Vij R, Chen F, Nykter M, Shmulevich I, Ding L
Cell Rep 2018 Apr 3;23(1):227-238.e3.
PMID 29617662
 
Pain, physical and social functioning, and quality of life in individuals with multiple hereditary exostoses in The Netherlands: a national cohort study
Goud AL, de Lange J, Scholtes VA, Bulstra SK, Ham SJ
J Bone Joint Surg Am 2012 Jun 6;94(11):1013-20.
PMID 22637207
 
The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions
Hameetman L, Szuhai K, Yavas A, Knijnenburg J, van Duin M, van Dekken H, Taminiau AH, Cleton-Jansen AM, Bovée JV, Hogendoorn PC
J Natl Cancer Inst 2007 Mar 7;99(5):396-406.
PMID 17341731
 
EXT1 regulates chondrocyte proliferation and differentiation during endochondral bone development
Hilton MJ, Gutiérrez L, Martinez DA, Wells DE
Bone 2005 Mar;36(3):379-86.
PMID 15777636
 
Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses
Huegel J, Mundy C, Sgariglia F, Nygren P, Billings PC, Yamaguchi Y, Koyama E, Pacifici M
Dev Biol 2013 May 1;377(1):100-12.
PMID 23458899
 
Mammalian brain morphogenesis and midline axon guidance require heparan sulfate
Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y
Science 2003 Nov 7;302(5647):1044-6.
PMID 14605369
 
Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate
Irie F, Badie-Mahdavi H, Yamaguchi Y
Proc Natl Acad Sci U S A 2012 Mar 27;109(13):5052-6.
PMID 22411800
 
Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb)
Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, Casey B, Bakker B, Sangiorgi L, Wuyts W
Hum Mutat 2009 Dec;30(12):1620-7.
PMID 19810120
 
A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes
Jones KB, Piombo V, Searby C, Kurriger G, Yang B, Grabellus F, Roughley PJ, Morcuende JA, Buckwalter JA, Capecchi MR, Vortkamp A, Sheffield VC
Proc Natl Acad Sci U S A 2010 Feb 2;107(5):2054-9.
PMID 20080592
 
Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers
Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, Picco G, Gillett C, Papp SL, Schaffer L, Tutt A, Taylor-Papadimitriou J, Pinder SE, Burchell JM
Cancer Res 2011 Dec 15;71(24):7683-93.
PMID 22025563
 
Potential role for Ext1-dependent heparan sulfate in regulating P311 gene expression in A549 carcinoma cells
Katta K, Sembajwe LF, Kusche-Gullberg M
Biochim Biophys Acta Gen Subj 2018 Jun;1862(6):1472-1481.
PMID 29580921
 
Increase of exostosin 1 in plasma as a potential biomarker for opisthorchiasis-associated cholangiocarcinoma
Khoontawad J, Hongsrichan N, Chamgramol Y, Pinlaor P, Wongkham C, Yongvanit P, Pairojkul C, Khuntikeo N, Roytrakul S, Boonmars T, Pinlaor S
Tumour Biol 2014 Feb;35(2):1029-39.
PMID 24018821
 
Association of EXT1 and EXT2, hereditary multiple exostoses gene products, in Golgi apparatus
Kobayashi S, Morimoto K, Shimizu T, Takahashi M, Kurosawa H, Shirasawa T
Biochem Biophys Res Commun 2000 Feb 24;268(3):860-7.
PMID 10679296
 
Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification
Koziel L, Kunath M, Kelly OG, Vortkamp A
Dev Cell 2004 Jun;6(6):801-13.
PMID 15177029
 
Heparan sulfate is required for embryonic stem cells to exit from self-renewal
Kraushaar DC, Yamaguchi Y, Wang L
J Biol Chem 2010 Feb 19;285(8):5907-16.
PMID 20022960
 
Association of autism in two patients with hereditary multiple exostoses caused by novel deletion mutations of EXT1
Li H, Yamagata T, Mori M, Momoi MY
J Hum Genet 2002;47(5):262-5.
PMID 12032595
 
Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice
Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM
Dev Biol 2000 Aug 15;224(2):299-311.
PMID 10926768
 
The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate
Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K
J Biol Chem 1998 Oct 9;273(41):26265-8.
PMID 9756849
 
EXT1, Regulated by MiR-665, Promotes Cell Apoptosis via ERK1/2 Signaling Pathway in Acute Lymphoblastic Leukemia
Liu NW, Huang X, Liu S, Lu Y
Med Sci Monit 2019 Aug 29;25:6491-6503.
PMID 31465316
 
Exostosin 1 regulates cancer cell stemness in doxorubicin-resistant breast cancer cells
Manandhar S, Kim CG, Lee SH, Kang SH, Basnet N, Lee YM
Oncotarget 2017 Jul 31;8(41):70521-70537.
PMID 29050299
 
Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenic protein signaling and severe skeletal defects
Matsumoto Y, Matsumoto K, Irie F, Fukushi J, Stallcup WB, Yamaguchi Y
J Biol Chem 2010 Jun 18;285(25):19227-34.
PMID 20404326
 
The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate
McCormick C, Duncan G, Goutsos KT, Tufaro F
Proc Natl Acad Sci U S A 2000 Jan 18;97(2):668-73.
PMID 10639137
 
Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine
Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M
Dev Biol 2011 Mar 1;351(1):70-81.
PMID 21185280
 
Heparan Sulfate Synthesized by Ext1 Regulates Receptor Tyrosine Kinase Signaling and Promotes Resistance to EGFR Inhibitors in GBM
Ohkawa Y, Wade A, Lindberg OR, Chen KY, Tran VM, Brown SJ, Kumar A, Kalita M, James CD, Phillips JJ
Mol Cancer Res 2020 Oct 7.
PMID 33028660
 
Biosynthesis of heparan sulfate in EXT1-deficient cells
Okada M, Nadanaka S, Shoji N, Tamura J, Kitagawa H
Biochem J 2010 May 27;428(3):463-71.
PMID 20377530
 
Mutation in the heparan sulfate biosynthesis enzyme EXT1 influences growth factor signaling and fibroblast interactions with the extracellular matrix
Osterholm C, Barczyk MM, Busse M, Grønning M, Reed RK, Kusche-Gullberg M
J Biol Chem 2009 Dec 11;284(50):34935-43.
PMID 19850926
 
Exostosin 1 is expressed in human odontoblasts
Pækkönen V, Saraniemi S, Bleicher F, Nevo Z, Tjäderhane L
Arch Oral Biol 2017 Aug;80:175-179.
PMID 28448806
 
The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses
Pacifici M
Matrix Biol 2018 Oct;71-72:28-39.
PMID 29277722
 
Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation
Presto J, Thuveson M, Carlsson P, Busse M, Wilén M, Eriksson I, Kusche-Gullberg M, Kjellén L
Proc Natl Acad Sci U S A 2008 Mar 25;105(12):4751-6.
PMID 18337501
 
Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma
Reijmers RM, Groen RW, Rozemuller H, Kuil A, de Haan-Kramer A, Csikós T, Martens AC, Spaargaren M, Pals ST
Blood 2010 Jan 21;115(3):601-4.
PMID 19965677
 
Multiple osteochondromas (MO)
Reijnders, CMA ; Bovée, JVMG
Atlas Genet Cytogenet Oncol Haematol. 2009;13(8):605-607.
 
Familial nephropathy and multiple exostoses with exostosin-1 (EXT1) gene mutation
Roberts IS, Gleadle JM
J Am Soc Nephrol 2008 Mar;19(3):450-3.
PMID 18216313
 
Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells
Ropero S, Setien F, Espada J, Fraga MF, Herranz M, Asp J, Benassi MS, Franchi A, Patiño A, Ward LS, Bovee J, Cigudosa JC, Wim W, Esteller M
Hum Mol Genet 2004 Nov 15;13(22):2753-65.
PMID 15385438
 
Identification of the genes chemosensitizing hepatocellular carcinoma cells to interferon-α/5-fluorouracil and their clinical significance
Sakabe T, Tsuchiya H, Kanki K, Azumi J, Gonda K, Mizuta Y, Yamada D, Wada H, Shomori K, Nagano H, Shiota G
PLoS One 2013;8(2):e56197.
PMID 23457527
 
Heparan sulfate proteoglycans
Sarrazin S, Lamanna WC, Esko JD
Cold Spring Harb Perspect Biol 2011 Jul 1;3(7):a004952.
PMID 21690215
 
Exostosin 1/Exostosin 2-Associated Membranous Nephropathy
Sethi S, Madden BJ, Debiec H, Charlesworth MC, Gross L, Ravindran A, Hummel AM, Specks U, Fervenza FC, Ronco P
J Am Soc Nephrol 2019 Jun;30(6):1123-1136.
PMID 31061139
 
Transcriptional Activity of Heparan Sulfate Biosynthetic Machinery is Specifically Impaired in Benign Prostate Hyperplasia and Prostate Cancer
Suhovskih AV, Tsidulko AY, Kutsenko OS, Kovner AV, Aidagulova SV, Ernberg I, Grigorieva EV
Front Oncol 2014 Apr 15;4:79.
PMID 24782989
 
Gene expression profiling of the 8q22-24 position in human breast cancer: TSPYL5, MTDH, ATAD2 and CCNE2 genes are implicated in oncogenesis, while WISP1 and EXT1 genes may predict a risk of metastasis
Taghavi A, Akbari ME, Hashemi-Bahremani M, Nafissi N, Khalilnezhad A, Poorhosseini SM, Hashemi-Gorji F, Yassaee VR
Oncol Lett 2016 Nov;12(5):3845-3855.
PMID 27895739
 
Heparan Sulfate Biosynthetic System Is Inhibited in Human Glioma Due to EXT1/2 and HS6ST1/2 Down-Regulation
Ushakov VS, Tsidulko AY, de La Bourdonnaye G, Kazanskaya GM, Volkov AM, Kiselev RS, Kobozev VV, Kostromskaya DV, Gaytan AS, Krivoshapkin AL, Aidagulova SV, Grigorieva EV
Int J Mol Sci 2017 Nov 1;18(11):2301.
PMID 29104277
 
Matrix regulators in neural stem cell functions
Wade A, McKinney A, Phillips JJ
Biochim Biophys Acta 2014 Aug;1840(8):2520-5.
PMID 24447567
 
Exostosin-1 enhances canonical Wnt signaling activity during chondrogenic differentiation
Wang X, Cornelis FMF, Lories RJ, Monteagudo S
Osteoarthritis Cartilage 2019 Nov;27(11):1702-1710.
PMID 31330188
 
Involvement of Ext1 and heparanase in migration of mouse FBJ osteosarcoma cells
Wang Y, Yang X, Yamagata S, Yamagata T, Sato T
Mol Cell Biochem 2013 Jan;373(1-2):63-72.
PMID 23054193
 
Location of the glucuronosyltransferase domain in the heparan sulfate copolymerase EXT1 by analysis of Chinese hamster ovary cell mutants
Wei G, Bai X, Gabb MM, Bame KJ, Koshy TI, Spear PG, Esko JD
J Biol Chem 2000 Sep 8;275(36):27733-40.
PMID 10864928
 
The role of EXT1 gene mutation and its high expression of calcitonin gene-related peptide in the development of multiple exostosis
Wu ZY, Wang Y, Wang JW, Chen YZ, Guo Y
Biochem Biophys Res Commun 2018 Nov 10;505(4):959-965.
PMID 30262140
 
Roles of heparan sulfate in mammalian brain development current views based on the findings from Ext1 conditional knockout studies
Yamaguchi Y, Inatani M, Matsumoto Y, Ogawa J, Irie F
Prog Mol Biol Transl Sci 2010;93:133-52.
PMID 20807644
 
The landscape and therapeutic relevance of cancer-associated transcript fusions
Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG
Oncogene 2015 Sep 10;34(37):4845-54.
PMID 25500544
 
Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones
Zak BM, Schuksz M, Koyama E, Mundy C, Wells DE, Yamaguchi Y, Pacifici M, Esko JD
Bone 2011 May 1;48(5):979-87.
PMID 21310272
 
Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma
Zhang L, Zhang Z, Yu Z
J Transl Med 2019 Dec 17;17(1):423.
PMID 31847905
 
Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling
Zhang R, Cao P, Yang Z, Wang Z, Wu JL, Chen Y, Pan Y
PLoS One 2015 Aug 21;10(8):e0136518.
PMID 26295701
 
Cell cycle deregulation and mosaic loss of Ext1 drive peripheral chondrosarcomagenesis in the mouse and reveal an intrinsic cilia deficiency
de Andrea CE, Zhu JF, Jin H, Bovée JV, Jones KB
J Pathol 2015 Jun;236(2):210-8.
PMID 25644707
 

Citation

This paper should be referenced as such :
Huret JL
EXT1 (exostosin glycosyltransferase 1);
Atlas Genet Cytogenet Oncol Haematol. in press
History of this paper:
Bovée, JVMG. EXT1 (exostoses (multiple) 1). Atlas Genet Cytogenet Oncol Haematol. 2000;4(1):3-4. FILENAME EXT1ID212.txt
http://documents.irevues.inist.fr/bitstream/handle/2042/37575/01-2000-EXT1ID212.pdf
Boée, JVMG. EXT1 (exostoses (multiple) 1). Atlas Genet Cytogenet Oncol Haematol. 2002;6(3):184-185.
http://documents.irevues.inist.fr/bitstream/handle/2042/37860/03-2002-EXT1ID212.pdf


Other Cancer prone implicated (Data extracted from papers in the Atlas) [ 1 ]
  Multiple osteochondromas (MO)


External links

 

Nomenclature
HGNC (Hugo)EXT1   3512
LRG (Locus Reference Genomic)LRG_493
Cards
AtlasEXT1ID212
Entrez_Gene (NCBI)EXT1    exostosin glycosyltransferase 1
AliasesEXT; LGCR; LGS; TRPS2; 
TTV
GeneCards (Weizmann)EXT1
Ensembl hg19 (Hinxton)ENSG00000182197 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000182197 [Gene_View]  ENSG00000182197 [Sequence]  chr8:117794490-118111826 [Contig_View]  EXT1 [Vega]
ICGC DataPortalENSG00000182197
TCGA cBioPortalEXT1
AceView (NCBI)EXT1
Genatlas (Paris)EXT1
SOURCE (Princeton)EXT1
Genetics Home Reference (NIH)EXT1
Genomic and cartography
GoldenPath hg38 (UCSC)EXT1  -     chr8:117794490-118111826 -  8q24.11   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)EXT1  -     8q24.11   [Description]    (hg19-Feb_2009)
GoldenPathEXT1 - 8q24.11 [CytoView hg19]  EXT1 - 8q24.11 [CytoView hg38]
ImmunoBaseENSG00000182197
Genome Data Viewer NCBIEXT1 [Mapview hg19]  
OMIM133700   215300   608177   
Gene and transcription
Genbank (Entrez)AK130054 AK313129 BC001174 S79639
RefSeq transcript (Entrez)NM_000127
Consensus coding sequences : CCDS (NCBI)EXT1
Gene ExpressionEXT1 [ NCBI-GEO ]   EXT1 [ EBI - ARRAY_EXPRESS ]   EXT1 [ SEEK ]   EXT1 [ MEM ]
Gene Expression Viewer (FireBrowse)EXT1 [ Firebrowse - Broad ]
GenevisibleExpression of EXT1 in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)2131
GTEX Portal (Tissue expression)EXT1
Human Protein AtlasENSG00000182197-EXT1 [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtQ16394   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtQ16394  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProQ16394
Catalytic activity : Enzyme2.4.1.224 [ Enzyme-Expasy ]   2.4.1.2242.4.1.224 [ IntEnz-EBI ]   2.4.1.224 [ BRENDA ]   2.4.1.224 [ KEGG ]   [ MEROPS ]
PhosPhoSitePlusQ16394
Domains : Interpro (EBI)Exostosin    Exostosin-1    Exostosin_GT47    GT64    Nucleotide-diphossugar_trans   
Domain families : Pfam (Sanger)Exostosin (PF03016)    Glyco_transf_64 (PF09258)   
Domain families : Pfam (NCBI)pfam03016    pfam09258   
Conserved Domain (NCBI)EXT1
SuperfamilyQ16394
AlphaFold pdb e-kbQ16394   
Human Protein Atlas [tissue]ENSG00000182197-EXT1 [tissue]
HPRD00598
Protein Interaction databases
DIP (DOE-UCLA)Q16394
IntAct (EBI)Q16394
BioGRIDEXT1
STRING (EMBL)EXT1
ZODIACEXT1
Ontologies - Pathways
QuickGOQ16394
Ontology : AmiGOGolgi membrane  skeletal system development  ossification  endochondral ossification  blood vessel remodeling  glandular epithelial cell differentiation  hypersensitivity  heart field specification  chondrocyte hypertrophy  endochondral bone growth  endoplasmic reticulum  endoplasmic reticulum membrane  Golgi apparatus  Golgi apparatus  glycosaminoglycan biosynthetic process  glycosaminoglycan biosynthetic process  protein glycosylation  vacuole organization  signal transduction  gastrulation  axon guidance  endoderm development  mesoderm development  regulation of blood pressure  acetylglucosaminyltransferase activity  acetylglucosaminyltransferase activity  fibroblast growth factor receptor signaling pathway  response to light intensity  gene expression  neural crest cell differentiation  heparan sulfate proteoglycan biosynthetic process  heparan sulfate proteoglycan biosynthetic process  heparan sulfate proteoglycan biosynthetic process, polysaccharide chain biosynthetic process  glucuronosyltransferase activity  glucuronosyltransferase activity  integral component of membrane  glycosyltransferase activity  glycosyltransferase activity  stem cell division  antigen processing and presentation  optic nerve development  olfactory bulb development  protein catabolic process  integral component of endoplasmic reticulum membrane  collagen fibril organization  chondroitin sulfate metabolic process  heparin biosynthetic process  BMP signaling pathway  hair follicle morphogenesis  glomerular basement membrane development  cell adhesion mediated by integrin  cellular polysaccharide biosynthetic process  social behavior  synaptic transmission, glutamatergic  multicellular organism growth  chondrocyte proliferation  limb joint morphogenesis  dendritic cell migration  lymphocyte adhesion to endothelial cell of high endothelial venule  fluid transport  wound healing  vasodilation  heparan sulfate N-acetylglucosaminyltransferase activity  fear response  protein homodimerization activity  ossification involved in bone maturation  cell fate commitment  synapse  bone resorption  metal ion binding  protein heterodimerization activity  sebaceous gland development  glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase activity  glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase activity  N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase activity  N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase activity  multicellular organismal water homeostasis  leukocyte tethering or rolling  sulfation  sodium ion homeostasis  heart contraction  canonical Wnt signaling pathway  hematopoietic stem cell differentiation  cartilage development involved in endochondral bone morphogenesis  epithelial tube branching involved in lung morphogenesis  smoothened signaling pathway involved in lung development  developmental growth involved in morphogenesis  sweat gland development  hematopoietic stem cell homeostasis  motor behavior  perichondral bone morphogenesis  stomach development  protein-containing complex assembly  dendrite self-avoidance  response to heparin  vocalization behavior  basement membrane organization  TNFSF11-mediated signaling pathway  glomerular visceral epithelial cell differentiation  embryonic skeletal joint development  lymphocyte migration into lymphoid organs  hematopoietic stem cell migration to bone marrow  cellular response to virus  tight junction organization  mesenchymal cell differentiation involved in bone development  cranial skeletal system development  response to leukemia inhibitory factor  
Ontology : EGO-EBIGolgi membrane  skeletal system development  ossification  endochondral ossification  blood vessel remodeling  glandular epithelial cell differentiation  hypersensitivity  heart field specification  chondrocyte hypertrophy  endochondral bone growth  endoplasmic reticulum  endoplasmic reticulum membrane  Golgi apparatus  Golgi apparatus  glycosaminoglycan biosynthetic process  glycosaminoglycan biosynthetic process  protein glycosylation  vacuole organization  signal transduction  gastrulation  axon guidance  endoderm development  mesoderm development  regulation of blood pressure  acetylglucosaminyltransferase activity  acetylglucosaminyltransferase activity  fibroblast growth factor receptor signaling pathway  response to light intensity  gene expression  neural crest cell differentiation  heparan sulfate proteoglycan biosynthetic process  heparan sulfate proteoglycan biosynthetic process  heparan sulfate proteoglycan biosynthetic process, polysaccharide chain biosynthetic process  glucuronosyltransferase activity  glucuronosyltransferase activity  integral component of membrane  glycosyltransferase activity  glycosyltransferase activity  stem cell division  antigen processing and presentation  optic nerve development  olfactory bulb development  protein catabolic process  integral component of endoplasmic reticulum membrane  collagen fibril organization  chondroitin sulfate metabolic process  heparin biosynthetic process  BMP signaling pathway  hair follicle morphogenesis  glomerular basement membrane development  cell adhesion mediated by integrin  cellular polysaccharide biosynthetic process  social behavior  synaptic transmission, glutamatergic  multicellular organism growth  chondrocyte proliferation  limb joint morphogenesis  dendritic cell migration  lymphocyte adhesion to endothelial cell of high endothelial venule  fluid transport  wound healing  vasodilation  heparan sulfate N-acetylglucosaminyltransferase activity  fear response  protein homodimerization activity  ossification involved in bone maturation  cell fate commitment  synapse  bone resorption  metal ion binding  protein heterodimerization activity  sebaceous gland development  glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase activity  glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase activity  N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase activity  N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase activity  multicellular organismal water homeostasis  leukocyte tethering or rolling  sulfation  sodium ion homeostasis  heart contraction  canonical Wnt signaling pathway  hematopoietic stem cell differentiation  cartilage development involved in endochondral bone morphogenesis  epithelial tube branching involved in lung morphogenesis  smoothened signaling pathway involved in lung development  developmental growth involved in morphogenesis  sweat gland development  hematopoietic stem cell homeostasis  motor behavior  perichondral bone morphogenesis  stomach development  protein-containing complex assembly  dendrite self-avoidance  response to heparin  vocalization behavior  basement membrane organization  TNFSF11-mediated signaling pathway  glomerular visceral epithelial cell differentiation  embryonic skeletal joint development  lymphocyte migration into lymphoid organs  hematopoietic stem cell migration to bone marrow  cellular response to virus  tight junction organization  mesenchymal cell differentiation involved in bone development  cranial skeletal system development  response to leukemia inhibitory factor  
Pathways : KEGGGlycosaminoglycan biosynthesis - heparan sulfate / heparin   
REACTOMEQ16394 [protein]
REACTOME PathwaysR-HSA-3656253 [pathway]   
NDEx NetworkEXT1
Atlas of Cancer Signalling NetworkEXT1
Wikipedia pathwaysEXT1
Orthology - Evolution
OrthoDB2131
GeneTree (enSembl)ENSG00000182197
Phylogenetic Trees/Animal Genes : TreeFamEXT1
Homologs : HomoloGeneEXT1
Homology/Alignments : Family Browser (UCSC)EXT1
Gene fusions - Rearrangements
Fusion : MitelmanADGRB1::EXT1 [8q24.3/8q24.11]  
Fusion : MitelmanEXT1::FAM155A [8q24.11/13q33.3]  
Fusion : MitelmanEXT1::OC90 [8q24.11/8q24.22]  
Fusion : MitelmanEXT1::RSF1 [8q24.11/11q14.1]  
Fusion : MitelmanEXT1::SAMD12 [8q24.11/8q24.12]  
Fusion : MitelmanEXT1::WDYHV1 [8q24.11/8q24.13]  
Fusion : MitelmanLRRC6::EXT1 [8q24.22/8q24.11]  
Fusion : FusionGDB2.4.1.224|2.4.1.225   
Fusion : QuiverEXT1
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerEXT1 [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)EXT1
dbVarEXT1
ClinVarEXT1
MonarchEXT1
1000_GenomesEXT1 
Exome Variant ServerEXT1
GNOMAD BrowserENSG00000182197
Varsome BrowserEXT1
ACMGEXT1 variants
VarityQ16394
Genomic Variants (DGV)EXT1 [DGVbeta]
DECIPHEREXT1 [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisEXT1 
Mutations
ICGC Data PortalEXT1 
TCGA Data PortalEXT1 
Broad Tumor PortalEXT1
OASIS PortalEXT1 [ Somatic mutations - Copy number]
Cancer Gene: CensusEXT1 
Somatic Mutations in Cancer : COSMICEXT1  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DEXT1
Mutations and Diseases : HGMDEXT1
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
BioMutaEXT1
DgiDB (Drug Gene Interaction Database)EXT1
DoCM (Curated mutations)EXT1
CIViC (Clinical Interpretations of Variants in Cancer)EXT1
OncoKBEXT1
NCG (London)EXT1
Cancer3DEXT1
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM133700    215300    608177   
Orphanet526    3247    10762   
DisGeNETEXT1
MedgenEXT1
Genetic Testing Registry EXT1
NextProtQ16394 [Medical]
GENETestsEXT1
Target ValidationEXT1
Huge Navigator EXT1 [HugePedia]
ClinGenEXT1 (curated)
Clinical trials, drugs, therapy
MyCancerGenomeEXT1
Protein Interactions : CTDEXT1
Pharm GKB GenePA27924
PharosQ16394
Clinical trialEXT1
Miscellaneous
canSAR (ICR)EXT1
HarmonizomeEXT1
DataMed IndexEXT1
Probes
Litterature
PubMed115 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
EVEXEXT1
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Oct 8 21:17:33 CEST 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.