Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

del(13q) in chronic lymphocytic leukemia

Written2016-10Luis Miguel Juárez Salcedo, Samir Dalia
Principe de Asturias University Hospital, Madrid, Spain. (LMJ); Oncology and Hematology, Mercy Clinic Joplin, Joplin, MO, USA (SD)

Keywords Chronic Lymphocytic Leukemia; chromosome 1; del(13q)

(Note : for Links provided by Atlas : click)


ICD-Topo C420,C421,C424
ICD-Morpho 9823/3 Chronic lymphocytic leukaemia /small lymphocytic lymphoma
Atlas_Id 1208

Clinics and Pathology

Disease Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults, with a highly variable clinical course, ranging from very indolent cases to a very aggressive and rapidly progressing disease (Puiggros et al., 2014). Although is characterized by a relatively stable genome, acquired genetic aberrations have an important role in CLL prognosis.
The most frequent chromosomal abnormalities are partial losses of one affected chromosome (del(6q), del(11q), del(13q) or del(17p)) and gains of entire chromosomes ( trisomy 12). (Baliakas et al., 2014).
Etiology The pathogenic role of del(13q) in CLL has been related to lack of B-cell proliferation control allegedly determined by deletion of the DLEU2/ MIR15A/ MIR16-1 locus, which is known to contain negative regulators of the expression of the BCL2 gene (Cimmino et al., 2005; Klein et al., 2010).
The RB1 gene is involved in the regulation of cell cycle progression and genomic stability.
Biallelic 13q deletions are characteristically small and do not involve RB1 deletions, nevertheless their clinical impact has been controversial. Thus, the potential effect could be masked by the size of the deleted region or the inactivation of the remaining allele by other mechanism.
Related to the size of abnormal clone (detected by FISH), patients with a higher percentage of altered nuclei (cut-off point ranged from 65-90%) have a bad prognosis (van Dyke et al., 2010).
Those patients with large 13q losses showed downregulation of ten genes including TPT1 (TCTP), which in involved in prosurvival and growth signaling through inhibition of BAX-induced apoptosis and overexpression of 53 genes.
Other genetic abnormalities: GPS2 (AMF), GPI, BSG, LGALS1, PAK2, PARVBand VIM participate in cell motility, adhesion, and regulation of cell proliferation, tumor cell migration, metastasis, angiogenesis and apoptosis (Rodriguez et al., 2012).
Epidemiology Del(13q) involving the band q14, found in more than 50% of CLL patients, is the most common cytogenetic abnormality detected by FISH, and has been associated with good prognosis.
Del(13q) as the sole aberration occurs in the hemizygous state in approximately 75-80% of cases and in the homozygous state in the remaining 20-25% (Migliazza et al., 2001).
Cytology The CLL-cells characteristics are the same, independently of the chromosomal abnormalities. The peripheral blood smear of patients with CLL demonstrates a lymphocytosis. The leukemic cells are typically small, mature appearing lymphocytes with a dense nucleus, partially aggregated (clumped) chromatin, and without discernible nucleoli. There is a narrow border of clear to slightly basophilic cytoplasm.
Cytogenetics Two anatomical landmarks have been proposed for the characterization of 13q deletion in CLL:
I- The minimal deleted region (MDR), which comprised the DLEU2 gene, the MIR15A/MIR16-1 cluster, and the first exon of the DLEU1 gene. (Liu et al., 1997; Lagos-Quintana et al., 2002)
II-The RB1 gene, localized at chromosomal band 13q14.1-q14.2 that can be considered, when found deleted, as the marker of 13q deletion with larger chromosome losses (Ouillette et al., 2008; Parker et al., 2011).
Other genes located in 13q, such as DLEU7 or TRIM13 could cooperate in the tumoral suppressor activity.
Treatment Del(13q) patients, responds better to alkylating agents (fludarabine and chorambucil) and potentially can have a long term PFS with these therapies unlike del(17p) patients.
Prognosis Del(13q) in any form has a better prognosis than del(17p) (3-8% of CLL at diagnosis and up 30% in refractory CLL cases) or del(11q) (detected in 5-20% of CLL patients) (Döhner et al., 2000). It has been extensively demonstrated that large 13q losses involving RB1 gene are related to shorter time to first treatment (TTFT) and overall survival (OS) than those small deletions encompassing only MIR15A/MIR16-1.
Although CLL with 13q deletion as the sole cytogenetic abnormality usually have good prognosis, more aggressive clinical courses are documented for del(13q)-only CLL carrying higher percentage of 13q-deleted nuclei. Many published studies had demonstrated the prognosis heterogeneity that occurs in patients with this chromosomal abnormality, which can be revealed by FISH analysis of both deletion load and deletion size, suggesting the existence of additional factors (deletions of different sizes) in defining del(13q)-only CLL prognosis (Dal Bo et al., 2011).


Recurrent mutations refine prognosis in chronic lymphocytic leukemia
Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N, Larrayoz M, Kminkova J, Agathangelidis A, Davis Z, Tausch E, Stalika E, Kantorova B, Mansouri L, Scarfò L, Cortese D, Navrkalova V, Rose-Zerilli MJ, Smedby KE, Juliusson G, Anagnostopoulos A, Makris AM, Navarro A, Delgado J, Oscier D, Belessi C, Stilgenbauer S, Ghia P, Pospisilova S, Gaidano G, Campo E, Strefford JC, Stamatopoulos K, Rosenquist R; European Research Initiative on CLL (ERIC)
Leukemia 2015 Feb;29(2):329-36
miR-15 and miR-16 induce apoptosis by targeting BCL2
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM
Proc Natl Acad Sci U S A 2005 Sep 27;102(39):13944-9
PMID 16166262
13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia
Dal Bo M, Rossi FM, Rossi D, Deambrogi C, Bertoni F, Del Giudice I, Palumbo G, Nanni M, Rinaldi A, Kwee I, Tissino E, Corradini G, Gozzetti A, Cencini E, Ladetto M, Coletta AM, Luciano F, Bulian P, Pozzato G, Laurenti L, Forconi F, Di Raimondo F, Marasca R, Del Poeta G, Gaidano G, Foà R, Guarini A, Gattei V
Genes Chromosomes Cancer 2011 Aug;50(8):633-43
PMID 21563234
The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia
Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, Dalla-Favera R
Cancer Cell 2010 Jan 19;17(1):28-40
PMID 20060366
Identification of novel genes coding for small expressed RNAs
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T
Science 2001 Oct 26;294(5543):853-8
PMID 11679670
Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia
Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grandér D, Iyengar A, Baranova A, Kashuba V, Merup M, Wu X, Gardiner A, Mullenbach R, Poltaraus A, Hultström AL, Juliusson G, Chapman R, Tiller M, Cotter F, Gahrton G, Yankovsky N, Zabarovsky E, Einhorn S, Oscier D
Oncogene 1997 Nov 13;15(20):2463-73
PMID 9395242
Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia
Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E, Guccione E, Qu X, Chien M, Murty VV, Gaidano G, Inghirami G, Zhang P, Fischer S, Kalachikov SM, Russo J, Edelman I, Efstratiadis A, Dalla-Favera R
Blood 2001 Apr 1;97(7):2098-104
PMID 11264177
Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14
Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN
Cancer Res 2008 Feb 15;68(4):1012-21
PMID 18281475
13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia
Parker H, Rose-Zerilli MJ, Parker A, Chaplin T, Wade R, Gardiner A, Griffiths M, Collins A, Young BD, Oscier DG, Strefford JC
Leukemia 2011 Mar;25(3):489-97
PMID 21151023
Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go
Puiggros A, Blanco G, Espinet B
Biomed Res Int 2014;2014:435983
PMID 24967369
Molecular characterization of chronic lymphocytic leukemia patients with a high number of losses in 13q14
Rodríguez AE, Hernández J, Benito R, Gutiérrez NC, García JL, Hernández-Sánchez M, Risueño A, Sarasquete ME, Fermin E, Fisac R, de Coca AG, Martín-Núñez G, de Las Heras N, Recio I, Gutiérrez O, De Las Rivas J, González M, Hernández-Rivas JM
PLoS One 2012;7(11):e48485
PMID 23152777
A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia
Van Dyke DL, Shanafelt TD, Call TG, Zent CS, Smoley SA, Rabe KG, Schwager SM, Sonbert JC, Slager SL, Kay NE
Br J Haematol 2010 Feb;148(4):544-50
PMID 19895615


This paper should be referenced as such :
Luis Miguel Juarez Salcedo, Samir Dalia
del(13q) in chronic lymphocytic leukemia
Atlas Genet Cytogenet Oncol Haematol. 2017;21(8):292-293.
Free journal version : [ pdf ]   [ DOI ]
On line version :

Other genes implicated (Data extracted from papers in the Atlas) [ 1 ]

Genes ATM

Translocations implicated (Data extracted from papers in the Atlas)

 del(13q) in CLL

External links

Mitelman databasedel(13q)
arrayMap (UZH-SIB Zurich)Morph ( 9823/3) -   [auto + random 100 samples .. if exist ]   [tabulated segments]
REVIEW articlesautomatic search in PubMed
Last year articlesautomatic search in PubMed
All articlesautomatic search in PubMed

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Oct 8 16:35:16 CEST 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us