Atlas of Genetics and Cytogenetics in Oncology and Haematology

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

PIM1 (pim-1 oncogene)

Written2000-08Jean-Loup Huret
Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France
Updated2013-04Sai-Ching Jim Yeung
The University of Texas M. D. Anderson Cancer Center, Department of General Internal Medicine, Ambulatory Treatment, Emergency Care, Department of Endocrine Neoplasia, Hormonal Disorders, 1515 Holcombe Boulevard, Unit 437, Houston, Texas 77030, USA

(Note : for Links provided by Atlas : click)


Other aliasPIM
LocusID (NCBI) 5292
Atlas_Id 261
Location 6p21.2  [Link to chromosome band 6p21]
Location_base_pair Starts at and ends at bp from pter
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
BCL6 (3q27.3) / PIM1 (6p21.2)PIM1 (6p21.2) / BCL6 (3q27.3)PIM1 (6p21.2) / DGCR2 (22q11.21)
PIM1 (6p21.2) / GBF1 (10q24.32)


Description PIM1 is a single gene with 5 introns and 6 exons that span 5 kb of DNA in the human genome (Meeker et al., 1987). The gene starts at 37137922 and ends at 37143204 base pairs from pter. It is highly conserved evolutionarily across species.
Transcription The mRNA sequence is 2,6 kb in length with a 941 bp coding region.


Description Size: 313 amino acids; molecular weight: 36 kDa.
The PIM1 gene has six exons, but there are two isoforms of PIM1 protein, 34 kDa and 44 kDa, due to protein synthesis using alternative sites of translation initiation (Saris et al., 1991). Both proteins show comparable kinase activities in vitro, but the 44 kDa isoform contains an N-terminal proline-rich motif that binds the ETK SH3 domain, and is recruited to the plasma membrane (Xie et al., 2006).
Expression The kinase activity of all the PIM proteins is constitutively active, and there are no regulatory domains in the amino acid sequences of the PIM proteins. Thus, unlike other kinases that are regulated by phosphorylation or binding to the plasma membrane, the activity of PIM1 is regulated primarily by transcription, translation and proteosomal degradation (Amaravadi and Thompson, 2005). The gene expression of PIM1 is increased by various cytokines, mitogens and hormones such as G-CSF, GM-CSF, erythropoietin, interleukins, Con A, PMA, interferons, and prolactin (Wang et al., 2001; Hogan et al., 2008; White, 2003). These factors act through the JAK/STAT pathway. The upregulation of PIM1 gene expression results from the binding site of STAT3 or STAT5 to the PIM1 gene promoter, and the ISFR/GAS-sequence (IFN-γ activation sequence) is an important binding site (Block et al., 2012; Matikainen et al., 1999; Yip-Schneider et al., 1995). PIM1 phosphorylates and stabilizes SOCS proteins (suppressor of cytokine signaling) to provide negative feedback regulation of the JAK/STAT pathway (Peltola et al., 2004).
NF-κB, as a downstream transcription factors, could also activate PIM1. In solid tumors, hypoxia would induce the PIM1 expression, independently of HIF1α and by Krueppel-like factor 5 (KLF5) upon DNA damage (Chen et al., 2009a). ERG, as a transcription factors, also plays a role in PIM1 expression in the initial stages of prostate carcinogenesis (Magistroni et al., 2011).
Because of multiple copies of AUUU(A) motifs in the 3'UTR and GC-rich regions in the 5'UTR, mRNA of PIM genes are short lived (Wang et al., 2005). Translation of PIM1 seems to be cap-dependent, and overexpression of elF4E would increase PIM1 protein level (Hoover et al., 1997). PIM RNA transcripts are regulatory targets of different miRNAs such as microRNAs miR1, miR-210, miR-33a, and miR328, implicating another layer of PIM expression regulation (Eiring et al., 2010; Huang et al., 2009; Nasser et al., 2008; Thomas et al., 2012).
At the post-translational level, the short half-life of PIM1 is primarily regulated by proteasomal degradation. PIM1 protein can be stabilized by the binding to HSP90 (Mizuno et al., 2001). On the other hand, binding to HSP70 would induce the ubiquitylation of PIM1 and proteasomal degradation (Shay et al., 2005). Also, in hypoxia, ubiquitin-mediated proteasomal degradation of PIM is prevented by HSP90 (Mizuno et al., 2001). PIM1 protein stability is further regulated by its phosphorylation status. PIM1 is able to autophosphorylate (Bullock et al., 2005). Phosphorylation by itself and/or other unknown kinases is important for PIM1 protein stability and function because PP2A phosphatase negatively regulates PIM1 stability (Losman et al., 2003).
Localisation PIM1 is highly expressed in lymphoid and hematopoietic tissues (bone marrow, thymus, spleen, and fetal liver) (Eichmann et al., 2000) as well as in some non-hematopoietic tissues (e.g., hippocampus, oral epithelium, and the prostate gland). In some myeloid and lymphoid leukemia cell lines, prostate cancer cell lines, and also HeLa cells, PIM have also been detected. The PIM1 protein can be detected subcellularly in the cytoplasm and the nucleus.
Function PIM1 phosphorylates a large subset of cellular substrates and thus regulates many different cellular processes such as cell cycle progression, cellular division, differentiation and apoptosis.
One of the cell-cycle-related targets of PIM1 is p21waf1 (Wang et al., 2002; Zhang et al., 2007). By phosphorylating the CDK inhibitor p21waf1 on T145, PIM1 lead to the nuclear export and inactivation of p21waf1. Phosphorylation of another CDK inhibitor p27Kip1 at Thr157 and Thr198 would induce its proteasomal degradation and cell cycle progression. Moreover, PIM1 seems to phosphorylate and inactivate the transcription factors of p27Kip1, FoxO1a and FoxO3a (Morishita et al., 2008). Another mechanism of p27Kip1 regulation is the phosphorylation of SKP2 at Thr417, which control its stability and ability to degrade p27 (Cen et al., 2010). Additionally, the phosphorylation of Cdc25A and Cdc25C would induce G1/S and G2/M transition, respectively (Bachmann et al., 2004). PIM1 also implicate in mitosis promotion by interacts with dynein/dynactin and HP1β (Magnuson et al., 2010).
Moreover, PIM1 is involved in genomic instability. By interaction with NuMA (nuclear mitotic apparatus protein), overexpression of PIM1 causes the loss of checkpoint control (Bhattacharya et al., 2002). Consequently, cells with abnormal mitotic spindles are not arrested in mitosis, producing polyploid and multinucleated daughter cells.
PIM1 can also act as an oncogenic survival factor because of its function in blocking apoptotic cell death. It is consensus that phosphorylation of BAD at S112 would induce its proteasomal degradation and thus shifts the apoptosis threshold (Peltola et al., 2004). The proapoptotic activity of ASK1 and PRAS40 would also be impaired by PIM1 phosphorylation (Gu et al., 2009; Zhang et al., 2009). Through inactivation of ASK1 and subsequently less phosphorylation of the stress kinases JNK and p38, caspase-3 activation would be less and thus reduce cell death. Moreover, the block of MDM2 and p53 degradation by PIM1 may induce senescence in embryonic fibroblasts and cancer cells (Hogan et al., 2008).
When bound to MYC at the E-box, PIM1 would participate in the complex's phosphorylation of histone H3 at S10 and thus participate in the stimulation of transcription of a specific subset of MYC-dependent genes (Zippo et al., 2007).
Additionally, PIM1 influences the activity of a number of transcriptional regulators, such as HP-1, PAP-1, TFAF2/SNX6, NFATc1, p100, RUNX, SOCS1, RelA/p65 and c-Myb (Bhattacharya et al., 2002; Evans and Fox, 2007; Ishibashi et al., 2001; Kim et al., 2010; Rainio et al., 2002; Winn et al., 2003).
PIM kinases also phosphorylate 4E-BP1, inhibiting its binding to elF-4E. Since elF-4E is a rate-limiting factor in protein synthesis, PIM kinases may also regulate 5' cap-dependent translation (Beharry et al., 2011).

Implicated in

Entity t(3;6)(q27;p21.2) in diffuse large B-cell lymphoma (DLCL); chimeric BCL6 /PIM1
Note Only 1 case to date.
Hybrid/Mutated Gene 5' PIM1 fused to 3' BCL6; the substitution of the promoter of BCL6 causes deregulation of BCL6.
Entity Myeloid and lymphoid leukemias and other lymphomas
Oncogenesis PIM1 induces anti-apoptotic oncogenes such as BCR/ABL, FLT2, CBL or JAK2 (Adam et al., 2006; Mizuki et al., 2003; Naramura et al., 2011; Nieborowska-Skorska et al., 2002; Wernig et al., 2008). PIM1 mRNA is upregulated in acute myeloid leukemia (AML) along with MLL gene rearrangements, e.g., MLL/AF9 or MLL/ENL (Chen et al., 2008). The reason for PIM1 levels increase seems to be the constitutive activation of FLT3 or Hoxa9 (Hu et al., 2007). Additionally, PIM1 also involve in the several B-cell developmental disorders that are related to Kaposi sarcoma associated herpesvirus (KSHV) or the Epstein-Barr virus (EBV) (Bajaj et al., 2006; Cheng et al., 2009).
Entity Prostate cancer
Prognosis In more half of the prostate cancer samples, PIM1 is showed a relatively overexpression compared to benign lesions and the expression elevation correlated with a poor therapeutic outcome (Dhanasekaran et al., 2001).
Oncogenesis In mouse model, the synergistic effects of PIM1 and MYC showed obvious co-regulation in prostate cancer. The molecular mechanism for the oncogenic activity might because PIM1 phosphorylation of c-MYC would increase its half-life and also because PIM1 enhancement of transcriptional activity of c-MYC (Chen et al., 2009b; Mumenthaler et al., 2009). Moreover, PIM1 kinase is related to chemoresistance in prostate cancer cells, which is related to relatively aggressive or hormone-refractory prostate cancers. The high level of expression of PIM1 in high grade prostate intraepithelial neoplasia may indicate a role of PIM1 in the early prostate carcinogenesis. PIM1 is also found to be upregulated in patients undergoing androgen ablation therapy (van der Poel et al., 2010).
Entity Pancreatic cancer
Note Hypoxia-promoted genetic instability
Oncogenesis PIM1 increases in hypoxic condition, independently of HIF-1α (Reiser-Erkan et al., 2008). It is now proposed as a prognostic marker. Increase in PIM1 expression may partly account for resistance to chemotherapy.
Entity Sporadic malignant tumors
Oncogenesis Overexpression of PIM1 is founded in gastric carcinoma, squamous cell carcinoma, colorectal carcinoma, liver carcinoma (Shah et al., 2008), liposarcoma (Nga et al., 2010), and bladder cancer (Guo et al., 2010).


Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL.
Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn MC, Duyster J, Fox CJ, Thompson CB, Cools J, Schwaller J.
Cancer Res. 2006 Apr 1;66(7):3828-35.
PMID 16585210
The survival kinases Akt and Pim as potential pharmacological targets.
Amaravadi R, Thompson CB.
J Clin Invest. 2005 Oct;115(10):2618-24. (REVIEW)
PMID 16200194
The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint.
Bachmann M, Hennemann H, Xing PX, Hoffmann I, Moroy T.
J Biol Chem. 2004 Nov 12;279(46):48319-28. Epub 2004 Aug 19.
PMID 15319445
KSHV encoded LANA upregulates Pim-1 and is a substrate for its kinase activity.
Bajaj BG, Verma SC, Lan K, Cotter MA, Woodman ZL, Robertson ES.
Virology. 2006 Jul 20;351(1):18-28. Epub 2006 Apr 27.
PMID 16647097
The Pim protein kinases regulate energy metabolism and cell growth.
Beharry Z, Mahajan S, Zemskova M, Lin YW, Tholanikunnel BG, Xia Z, Smith CD, Kraft AS.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):528-33. doi: 10.1073/pnas.1013214108. Epub 2010 Dec 27.
PMID 21187426
Pim-1 associates with protein complexes necessary for mitosis.
Bhattacharya N, Wang Z, Davitt C, McKenzie IF, Xing PX, Magnuson NS.
Chromosoma. 2002 Jul;111(2):80-95. Epub 2002 May 15.
PMID 12111331
IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines.
Block KM, Hanke NT, Maine EA, Baker AF.
Pancreas. 2012 Jul;41(5):773-81. doi: 10.1097/MPA.0b013e31823cdd10.
PMID 22273698
Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase.
Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S.
J Med Chem. 2005 Dec 1;48(24):7604-14.
PMID 16302800
Regulation of Skp2 levels by the Pim-1 protein kinase.
Cen B, Mahajan S, Zemskova M, Beharry Z, Lin YW, Cramer SD, Lilly MB, Kraft AS.
J Biol Chem. 2010 Sep 17;285(38):29128-37. doi: 10.1074/jbc.M110.137240. Epub 2010 Jul 27.
PMID 20663873
Pim-1 plays a pivotal role in hypoxia-induced chemoresistance.
Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Yeung SC, Lee MH.
Oncogene. 2009b Jul 16;28(28):2581-92. doi: 10.1038/onc.2009.124. Epub 2009 Jun 1.
PMID 19483729
Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells.
Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA, Lund EA, Sam TN, Kersey JH.
Cancer Cell. 2008 May;13(5):432-40. doi: 10.1016/j.ccr.2008.03.005.
PMID 18455126
KSHV reactivation from latency requires Pim-1 and Pim-3 kinases to inactivate the latency-associated nuclear antigen LANA.
Cheng F, Weidner-Glunde M, Varjosalo M, Rainio EM, Lehtonen A, Schulz TF, Koskinen PJ, Taipale J, Ojala PM.
PLoS Pathog. 2009 Mar;5(3):e1000324. doi: 10.1371/journal.ppat.1000324. Epub 2009 Mar 6.
PMID 19266083
Delineation of prognostic biomarkers in prostate cancer.
Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM.
Nature. 2001 Aug 23;412(6849):822-6.
PMID 11518967
Developmental expression of pim kinases suggests functions also outside of the hematopoietic system.
Eichmann A, Yuan L, Breant C, Alitalo K, Koskinen PJ.
Oncogene. 2000 Feb 24;19(9):1215-24.
PMID 10713710
miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts.
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D.
Cell. 2010 Mar 5;140(5):652-65. doi: 10.1016/j.cell.2010.01.007.
PMID 20211135
Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus.
Evans KE, Fox SW.
BMC Cell Biol. 2007 Jan 19;8:4.
PMID 17239241
PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis.
Gu JJ, Wang Z, Reeves R, Magnuson NS.
Oncogene. 2009 Dec 3;28(48):4261-71. doi: 10.1038/onc.2009.276. Epub 2009 Sep 14.
PMID 19749799
Overexpression of Pim-1 in bladder cancer.
Guo S, Mao X, Chen J, Huang B, Jin C, Xu Z, Qiu S.
J Exp Clin Cancer Res. 2010 Dec 11;29:161. doi: 10.1186/1756-9966-29-161.
PMID 21143989
Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma.
Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J, Kernohan N, Meek D.
J Biol Chem. 2008 Jun 27;283(26):18012-23. doi: 10.1074/jbc.M709695200. Epub 2008 May 8.
PMID 18467333
Pim-1 protein expression is regulated by its 5'-untranslated region and translation initiation factor elF-4E.
Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS.
Cell Growth Differ. 1997 Dec;8(12):1371-80.
PMID 9419425
Evidence that the Pim1 kinase gene is a direct target of HOXA9.
Hu YL, Passegue E, Fong S, Largman C, Lawrence HJ.
Blood. 2007 Jun 1;109(11):4732-8. Epub 2007 Feb 27.
PMID 17327400
Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation.
Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ.
Mol Cell. 2009 Sep 24;35(6):856-67. doi: 10.1016/j.molcel.2009.09.006.
PMID 19782034
Pim-1 translocates sorting nexin 6/TRAF4-associated factor 2 from cytoplasm to nucleus.
Ishibashi Y, Maita H, Yano M, Koike N, Tamai K, Ariga H, Iguchi-Ariga SM.
FEBS Lett. 2001 Sep 28;506(1):33-8.
PMID 11591366
Pim-1 regulates RANKL-induced osteoclastogenesis via NF-?B activation and NFATc1 induction.
Kim K, Kim JH, Youn BU, Jin HM, Kim N.
J Immunol. 2010 Dec 15;185(12):7460-6. doi: 10.4049/jimmunol.1000885. Epub 2010 Nov 10.
PMID 21068407
Synergism of cytoplasmic kinases in IL6-induced ligand-independent activation of androgen receptor in prostate cancer cells.
Kim O, Jiang T, Xie Y, Guo Z, Chen H, Qiu Y.
Oncogene. 2004 Mar 11;23(10):1838-44.
PMID 14981536
Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1).
Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM.
FEBS Lett. 2000 Feb 4;467(1):17-21.
PMID 10664448
Pim-1 kinase and p100 cooperate to enhance c-Myb activity.
Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB, Eisenman RN, Ness SA.
Mol Cell. 1998 Oct;2(4):417-25.
PMID 9809063
Protein phosphatase 2A regulates the stability of Pim protein kinases.
Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB.
J Biol Chem. 2003 Feb 14;278(7):4800-5. Epub 2002 Dec 6.
PMID 12473674
ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells.
Magistroni V, Mologni L, Sanselicio S, Reid JF, Redaelli S, Piazza R, Viltadi M, Bovo G, Strada G, Grasso M, Gariboldi M, Gambacorti-Passerini C.
PLoS One. 2011;6(11):e28162. doi: 10.1371/journal.pone.0028162. Epub 2011 Nov 30.
PMID 22140532
Why target PIM1 for cancer diagnosis and treatment?
Magnuson NS, Wang Z, Ding G, Reeves R.
Future Oncol. 2010 Sep;6(9):1461-78. doi: 10.2217/fon.10.106. (REVIEW)
PMID 20919829
Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL-2Ralpha, c-myc, and pim-1 genes in human T cells.
Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I.
Blood. 1999 Mar 15;93(6):1980-91.
PMID 10068671
Cloning and characterization of the human PIM-1 gene: a putative oncogene related to the protein kinases.
Meeker TC, Nagarajan L, ar-Rushdi A, Croce CM.
J Cell Biochem. 1987 Oct;35(2):105-12.
PMID 3429489
Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations.
Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, Steffen B, Matsumura I, Kanakura Y, Bohmer FD, Muller-Tidow C, Berdel WE, Serve H.
Blood. 2003 Apr 15;101(8):3164-73. Epub 2002 Dec 5.
PMID 12468433
Regulation of Pim-1 by Hsp90.
Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M, Hirano T.
Biochem Biophys Res Commun. 2001 Mar 2;281(3):663-9.
PMID 11237709
Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway.
Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y.
J Biol Chem. 1999 Jun 25;274(26):18659-66.
PMID 10373478
Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels.
Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N.
Cancer Res. 2008 Jul 1;68(13):5076-85. doi: 10.1158/0008-5472.CAN-08-0634.
PMID 18593906
Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes.
Mumenthaler SM, Ng PY, Hodge A, Bearss D, Berk G, Kanekal S, Redkar S, Taverna P, Agus DB, Jain A.
Mol Cancer Ther. 2009 Oct;8(10):2882-93. doi: 10.1158/1535-7163.MCT-09-0293.
PMID 19825806
Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders.
Naramura M, Nadeau S, Mohapatra B, Ahmad G, Mukhopadhyay C, Sattler M, Raja SM, Natarajan A, Band V, Band H.
Oncotarget. 2011 Mar;2(3):245-50.
PMID 21422499
Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1.
Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST, Ghoshal K.
J Biol Chem. 2008 Nov 28;283(48):33394-405. doi: 10.1074/jbc.M804788200. Epub 2008 Sep 25.
PMID 18818206
PIM-1 kinase expression in adipocytic neoplasms: diagnostic and biological implications.
Nga ME, Swe NN, Chen KT, Shen L, Lilly MB, Chan SP, Salto-Tellez M, Das K.
Int J Exp Pathol. 2010 Feb;91(1):34-43. doi: 10.1111/j.1365-2613.2009.00673.x. Epub 2009 Oct 28.
PMID 19878356
Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis.
Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T.
Blood. 2002 Jun 15;99(12):4531-9.
PMID 12036885
Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3.
Peltola KJ, Paukku K, Aho TL, Ruuska M, Silvennoinen O, Koskinen PJ.
Blood. 2004 May 15;103(10):3744-50. Epub 2004 Feb 5.
PMID 14764533
Cutting edge: Transcriptional activity of NFATc1 is enhanced by the Pim-1 kinase.
Rainio EM, Sandholm J, Koskinen PJ.
J Immunol. 2002 Feb 15;168(4):1524-7.
PMID 11823475
Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma.
Reiser-Erkan C, Erkan M, Pan Z, Bekasi S, Giese NA, Streit S, Michalski CW, Friess H, Kleeff J.
Cancer Biol Ther. 2008 Sep;7(9):1352-9. Epub 2008 Sep 2.
PMID 18708761
The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG.
Saris CJ, Domen J, Berns A.
EMBO J. 1991 Mar;10(3):655-64.
PMID 1825810
The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases.
Selten G, Cuypers HT, Boelens W, Robanus-Maandag E, Verbeek J, Domen J, van Beveren C, Berns A.
Cell. 1986 Aug 15;46(4):603-11.
PMID 3015420
Potential roles for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal.
Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M.
Eur J Cancer. 2008 Oct;44(15):2144-51. doi: 10.1016/j.ejca.2008.06.044. Epub 2008 Aug 18. (REVIEW)
PMID 18715779
Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway.
Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS.
Mol Cancer Res. 2005 Mar;3(3):170-81.
PMID 15798097
Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis.
Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T.
Immunity. 1999 Dec;11(6):709-19.
PMID 10626893
The proto-oncogene Pim-1 is a target of miR-33a.
Thomas M, Lange-Grunweller K, Weirauch U, Gutsch D, Aigner A, Grunweller A, Hartmann RK.
Oncogene. 2012 Feb 16;31(7):918-28. doi: 10.1038/onc.2011.278. Epub 2011 Jul 11.
PMID 21743487
Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase.
Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS.
Biochim Biophys Acta. 2002 Dec 16;1593(1):45-55.
PMID 12431783
Cryptic promoter activity in the DNA sequence corresponding to the pim-1 5'-UTR.
Wang Z, Weaver M, Magnuson NS.
Nucleic Acids Res. 2005 Apr 20;33(7):2248-58. Print 2005.
PMID 15843687
The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes.
Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE, Walz C, Reiter A, Podar K, Royer Y, Constantinescu SN, Tomasson MH, Griffin JD, Gilliland DG, Sattler M.
Blood. 2008 Apr 1;111(7):3751-9. doi: 10.1182/blood-2007-07-102186. Epub 2008 Jan 23.
PMID 18216297
The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines.
White E.
Genes Dev. 2003 Aug 1;17(15):1813-6. (REVIEW)
PMID 12897050
Pim-1 phosphorylates the DNA binding domain of c-Myb.
Winn LM, Lei W, Ness SA.
Cell Cycle. 2003 May-Jun;2(3):258-62.
PMID 12734436
The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs.
Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H, Qiu Y.
Oncogene. 2006 Jan 5;25(1):70-8.
PMID 16186805
Transcriptional induction of pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor.
Yip-Schneider MT, Horie M, Broxmeyer HE.
Blood. 1995 Jun 15;85(12):3494-502.
PMID 7540064
Identification of heterologous translocation partner genes fused to the BCL6 gene in diffuse large B-cell lymphomas: 5'-RACE and LA - PCR analyses of biopsy samples.
Yoshida S, Kaneita Y, Aoki Y, Seto M, Mori S, Moriyama M.
Oncogene. 1999 Dec 23;18(56):7994-9.
PMID 10637510
PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells.
Zhang F, Beharry ZM, Harris TE, Lilly MB, Smith CD, Mahajan S, Kraft AS.
Cancer Biol Ther. 2009 May;8(9):846-53. Epub 2009 May 18.
PMID 19276681
Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells.
Zhang Y, Wang Z, Magnuson NS.
Mol Cancer Res. 2007 Sep;5(9):909-22.
PMID 17855660
PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation.
Zippo A, De Robertis A, Serafini R, Oliviero S.
Nat Cell Biol. 2007 Aug;9(8):932-44. Epub 2007 Jul 22.
PMID 17643117
Pim1 regulates androgen-dependent survival signaling in prostate cancer cells.
van der Poel HG, Zevenhoven J, Bergman AM.
Urol Int. 2010;84(2):212-20. doi: 10.1159/000277601. Epub 2010 Mar 4.
PMID 20215828


This paper should be referenced as such :
Yeung, SCJ
PIM1 (pim-1 oncogene)
Atlas Genet Cytogenet Oncol Haematol. 2013;17(10):704-708.
Free journal version : [ pdf ]   [ DOI ]
On line version :
History of this paper:
Huret, JL. PIM1 (pim-1 oncogene). Atlas Genet Cytogenet Oncol Haematol. 2000;4(4):183-184.

Other Leukemias implicated (Data extracted from papers in the Atlas) [ 8 ]
  t(3;6)(q27;p21) PIM1/BCL6
t(3;6)(q27;p21) BCL6/PIM1
3q27 rearrangements (BCL6) in non Hodgkin lymphoma::t(3;Var)(q27;Var) in non Hodgkin lymphoma
Classical Hodgkin lymphoma
Hodgkin lymphoma
Nodular lymphocyte-predominant Hodgkin lymphoma
t(3;6)(q27;p21) PIM1/BCL6
t(3;6)(q27;p21) BCL6/PIM1

External links

Genomic and cartography
Gene and transcription
RefSeq transcript (Entrez)
RefSeq genomic (Entrez)
SOURCE (Princeton)Expression in : [Datasets]   [Normal Tissue Atlas]  [carcinoma Classsification]  [NCI60]
BioGPS (Tissue expression)5292
Protein : pattern, domain, 3D structure
Domain families : Pfam (Sanger)
Domain families : Pfam (NCBI)
Protein Interaction databases
Ontologies - Pathways
Clinical trials, drugs, therapy
canSAR (ICR) (select the gene name)
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Thu Oct 18 17:47:35 CEST 2018

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us