Atlas of Genetics and Cytogenetics in Oncology and Haematology


Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA

RET (REarranged during Transfection)

Written2020-06Jean Loup Huret, Sylvie Yau Chun Wan-Senon
jean-loup.huret@atlasgeneticsoncology.org; sylvie.ycw@hotmail.com
This article is an update of :
2003-10Patricia Niccoli-Sire
Service d'Endocrinologie, Diaböte et Maladies Métaboliques, Hôpital de la Timone, 254, rue St Pierre, 13385 Marseille cedex 05, France

Abstract Review on RET gene and protein, a membrane tyrosine kinase receptor involved in various cancers, including papillary thyroid carcinoma, lung cancer, breast cancer, colorectal cancer, salivary glands cancer, skin melanomas/spitz tumors and soft tissue sarcomas, but also in inherited diseases, including multiple endocrine neoplasia type 2, familial medullary thyroid carcinoma, familial pheochromocytoma predisposition, Hirschsprung disease, congenital central hypoventilation syndrome and renal hypodysplasia/aplasia 1.

Keywords Papillary thyroid carcinoma, Lung cancer, Breast cancer; Colorectal carcinoma; Multiple endocrine neoplasia type 2; Familial medullary thyroid carcinoma; Familial pheochromocytoma predisposition; Hirschsprung disease; Congenital central hypoventilation syndrome; Renal hypodysplasia/aplasia 1; MEN2A; MEN2B; FMTC; CCHS; RHDA1; Epithelial ovarian cancer; Uterine endometrioid carcinoma; Esophageal adenocarcinoma; Gastric adenocarcinoma; Pancreatic ductal adenocarcinoma; Leukemias; Bladder urothelial carcinoma; Papillary renal cell carcinoma; Astrocytoma; Glioblastoma multiforme; Neuroblastoma; Head and neck squamous cell carcinoma; Salivary glands tumors; Prostate cancer; Skin squamous cell carcinoma; skin melanoma; Spitz tumors; Soft tissue sarcomas; Pediatric cancers.

(Note : for Links provided by Atlas : click)

Identity

Alias (NCBI)HSCR1
MEN2A
MTC1
MEN2B
multiple endocrine neoplasia and medullary thyroid carcinoma 1
Hirschsprung disease 1
PTC
CDHF12
RET51
CDHR16
HGNC (Hugo) RET
HGNC Alias symbPTC
CDHF12
RET51
CDHR16
HGNC Alias namecadherin-related family member 16
 RET receptor tyrosine kinase
 rearranged during transfection
HGNC Previous nameHSCR1
 MEN2A
 MTC1
 MEN2B
HGNC Previous namemultiple endocrine neoplasia and medullary thyroid carcinoma 1
 Hirschsprung disease 1
LocusID (NCBI) 5979
Atlas_Id 76
Location 10q11.21  [Link to chromosome band 10q11]
Location_base_pair Starts at 43077069 and ends at 43130349 bp from pter ( according to GRCh38/hg38-Dec_2013)  [Mapping RET.png]
Local_order centromere <-- BMS1, LINC02623, LINC01264, MIR5100, RET, CSGALNACT2, RASGEF1A, FXYD4, HNRNPF, ZNF487 --> telomere
Fusion genes
(updated 2017)
Data from Atlas, Mitelman, Cosmic Fusion, Fusion Cancer, TCGA fusion databases with official HUGO symbols (see references in chromosomal bands)
ACBD5 (10p12.1)::RET (10q11.21)AFAP1 (4p16.1)::RET (10q11.21)AKAP13 (15q25.3)::RET (10q11.21)
BCR (22q11.23)::RET (10q11.21)CCDC6 (10q21.2)::RET (10q11.21)CUX1 (7q22.1)::RET (10q11.21)
ERC1 (12p13.33)::RET (10q11.21)FGFR1OP (6q27)::RET (10q11.21)FKBP15 (9q32)::RET (10q11.21)
GOLGA5 (14q32.12)::RET (10q11.21)HOOK3 (8p11.21)::RET (10q11.21)HRH4 (18q11.2)::RET (10q11.21)
KIAA1468 (18q21.33)::RET (10q11.21)KIF5B (10p11.22)::RET (10q11.21)KTN1 (14q22.3)::RET (10q11.21)
MBD1 (18q21.1)::RET (10q11.21)MYH13 (17p13.1)::RET (10q11.21)NCOA4 (10q11.22)::RET (10q11.21)
NCOA4 (10q11.23)::RET (10q11.21)PARG (10q11.23)::RET (10q11.21)PCM1 (8p22)::RET (10q11.21)
PRKAR1A (17q24.2)::RET (10q11.21)RET (10q11.21)::ANK3 (10q21.2)RET (10q11.21)::CCDC6 (10q21.2)
RET (10q11.21)::ERC1 (12p13.33)RET (10q11.21)::GOLGA5 (14q32.12)RET (10q11.21)::HOOK3 (8p11.21)
RET (10q11.21)::HRH4 (18q11.2)RET (10q11.21)::KIF5B (10p11.22)RET (10q11.21)::KTN1 (14q22.3)
RET (10q11.21)::MBD1 (18q21.1)RET (10q11.21)::NCOA4 (10q11.22)RET (10q11.21)::NCOA4 (10q11.23)
RET (10q11.21)::NTRK1 (1q23.1)RET (10q11.21)::PCM1 (8p22)RET (10q11.21)::PRKAR1A (17q24.2)
RET (10q11.21)::PTCH2 (1p34.1)RET (10q11.21)::RET (10q11.21)RET (10q11.21)::TAS2R38 (7q34)
RET (10q11.21)::TRIM24 (7q33)RET (10q11.21)::TRIM27 (6p22.1)RET (10q11.21)::TRIM33 (1p13.2)
SPECC1L (22q11.23)::RET (10q11.21)TBL1XR1 (3q26.32)::RET (10q11.21)TRIM24 (7q33)::RET (10q11.21)
TRIM27 (6p22.1)::RET (10q11.21)TRIM33 (1p13.2)::RET (10q11.21)

DNA/RNA

Transcription Transcript (hg38), including UTRs: chr10:43,077,069-43,127,504; Size: 50,436bp on strand +; coding region: chr10:43,077,259-43,126,754 Size: 49,496 bp, according to UCSC. RET has at least 6 transcripts. In the 2 splice variants coding for a protein NM8020630 (19 exons) and NM8020975 (20 exons). Exon nineteen is partly different: exon 19 Asp1014 - Phe1072: DYLDLAASTPSDSLIYDDGLSEEETPLVDCNNAPLPRALPSTWIENKLYGRISHAFTRF, versus exon 19 Asp1014 - Gly1063: DYLDLAASTPSDSLIYDDGLSEEETPLVDCNNAPLPRALPSTWIENKLYG and exon 20 Gly1063 - Ser1114: MSDPNWPGESPVPLTRADGTNTGFPRYPNDSVYANWMLSPSAAKLMDTFDS.

Protein

 
  Figure 1: RET amino acids sequence with Cadherin-like, Cysteine-rich, Transmembrane and Protein kinase domains with activation loop and LDRE, DXD, GEGEFGK, HRD, and DFG motifs and tyrosines.
Description There are three protein isoforms with 9 (RET9; short isoform, 1072 amino acids), 43 (RET43; middle isoform, 1106 amino acids), or 51 amino acids (RET51; long isoform, 1114 amino acids) from different splicing in C term.
RET is composed of an extracellular region (amino acids (aa) 29-635, coded by exons 1-10, and part of exon 11), a transmembrane region (aa 636-657, coded by part of exon 11), and a cytoplasmic region (aa 658-1114 or 1072, coded by part of exon 11, and exon 12-19 or 12-20) (Figures 1 and 2).
RET has a Signal peptide (aa 1-28). RET contains a region of RET previously reported as having similarity to cadherins and named "cadherin domain" in databases (aa 168-272, coded by part of exon 3 and part of exon 4) and a bipartite protein kinase domain separated by a hinge (aa 805-812); (aa 724-1016, coded by part of exon 12, exons 13-18, and part of exon 19).
However, a detailed study shows that there are four cadherin-like domains (CLD): CLD1: aa 28-156 (exon 2 and part of exon 3), CLD2 aa 166-272 (part exon 3 and part of exon 4), CLD3 aa 273-387 (part exon 4, exon 5 and part of exon 6), CLD4: aa 401-516 (part exon 6, exon 7 and beginning of exon 8), with spacer sequences between CLD1 and CLD2 and between CLD3 and CLD4 (Anders et al., 2001).
There is a cysteine-rich domain (CRD, aa 515-634, coded by exons 8, 9, 10 and beginning of exon-11), and a calcium-binding sites (CA domain, aa 229-380, coded by part of exon 4, exon 5 and part of exon 6). The cysteine- rich domain is important for receptor dimerization. The cadherin domain adopts a β -sandwich fold, and calcium-binding sites are formed in between adjacent cadherin domains by the LDRE motif (aa 229-232) of CLD2 and the DXD motifs of CLD3 (aa 264-266 and 300-302). Ca2+ binding is required for the interaction of RET with GDNF.
Tyrosines: Tyrosine kinases usually have one or two tyrosines in the activation loop, in the case of RET there are two, Y900 and Y905, within the RDVYEEDSYVKRSQG peptide, both of which can be phosphorylated. Activation loop: Y905 is required for the transforming activity and signaling of RET-MEN2A mutations. The transforming activity of RET-MEN2B implicates Y864 or Y952. Y1062 is a multidocking site that interacts with a number of transduction molecules including SHC1, GRB2, FRS2, DOK4 / DOK5, IRS1 / IRS2, and PDLIM7. (Anders et al., 2001; Kouvaraki et al., 2005).
Other sites:
- GEGEFGK glycine-rich loop: nucleotide-binding loop 731-737, binding ATP
- K758: ATP binding site.
- DFG 892-894 motif: magnesium-binding loop
- R897 and R912: activation loop.
- HRD motif (aa 871-874) is responsible for nucleophilic attack (kinases lacking the HRD arginine are not phosphorylated in the activation loop). Activation loop phosphorylation can counteract the positive charge of the arginine in the catalytic loop by the HRD motif.
- Leucine rich: aa 11-22.
Other remarkable sites according to Prosite:
- Protein kinase C phosphorylation sites: aa 65 (phosphoserine), 75 (phosphothreonine), 110 (S), 131 (S), 159 (S), 173 (S), 224 (S), 295 (T), 328 (T), 413 (S), 492 (T), 522 (S), 538 (T), 561 (S), 675 (T), 811 (S), 819 (S)
- cAMP- and cGMP-dependent protein kinase phosphorylation sites: 315 (T), 696 (S)
- Casein kinase II phosphorylation sites: 104 (S), 131 (S), 261 (T), 350 (T), 363 (S), 456 (T), 457 (T), 564 (T), 670 (S), 729 (T), 765 (S), 836 (S), 847 (T), 922 (S), 930 (T), 1022 (T), 1034 (S), 1055 (T), 1078 (T)
- Tyrosine kinase phosphorylation site 2: 1089-1096: RypnDsvY
- N-myristoylation sites (role in membrane targeting): 28, 74, 275, 446, 453, 506, 514, 535, 550, 588, 601, 607, 810, 828, 830, 831, 1082
- N-glycosylation sites: 98, 151, 199, 336, 343, 361, 367, 377, 394, 448, 468, 554, 834, 975, 1092
- Amidation site XGRK (protects from proteolysis): 884-887.
 
  Figure 2: RET gene and protein
Expression RET is particularly expressed in neural tissues (brain and autonomic nervous system: enteric, sympathetic, and parasympathetic), neuroendocrine cells, including thyroid C cells, adrenal medullary cells, parathyroid cells and in the developing kidney, but also in lung, digestive tract, adult kidney, female organs, male organs, skin, and blood apparatus.
 
  Figure 3: RET Electron Microscopy Structure 29-270 correspond to the cadherin-like domains CLD1 and CLD2 (see figure 2), 554-1009 correspond to part of crd (cysteine-rich domain), TM (transmembrane domain), and most of the tyrosine kinase domains; 29-635 correspond to the extracellular domains of RET. Images are taken from PhosphoSitePlus and ModBase:
Localisation RET is localized predominantly in the plasma membrane and in the cytoplasm; RET is also localized in the nucleus, indicating that intact RET can translocate into the nucleus (Bagheri-Yarmand et al. 2015). RET staining shows strong signals in both the cytoplasm, Golgi apparatus and cell membrane, whereas Hirschsprung mutant RET shows less pronounced staining on the cell membrane and more closer to the nucleolus/endoplasmic reticulum (The Human Protein Atlas).
Function Ligands: there are four possible ligands for RET: GDNF (glial cell line-derived neurotrophic factor), NRTN (neurturin), PSPN (persephin), and ARTN (artemin). A multimetric complex composed of RET, one of the four ligands above mentioned, and one of four different high affinity glycosyl-phosphatidylinositol-anchored co-receptors, named GDNF family receptor-alpha GFRA 1 to 4.
Co-receptors: the four RET ligands GDNF, NRTN, PSPN, and ARTN interact preferentially with GFRA1, GFRA2, GFRA3, and GFRA4, respectively. The ligand (e.g. NRTN) forms a homodimer with a cystine knot at its center and requires its co-receptor (e.g. GFRA2) to activate RET. The NRTN-GFRA2 complex is composed of a dimer of dimers with the NRTN homodimer at the center and two GFRA2 monomers attached (see figure 4). GFRAs are located in lipid rafts of the plasma membrane, and RET is recruited. GFRAs can come from the same cell as RET, or from a different cell. When the co-receptor is produced by the same cell as RET, it is termed cis signaling. When the co-receptor is produced by another cell, it is termed trans signaling. Cis and trans activation of RET can occur (Reactome).
RET binding: the NRTN-GFRA2 complex binds two copies of the RET extra cellular domain ("RET-ecd") (--> RET dimerization), thereby forming a heterohexamer. RET-ecd consists of four cadherin-like domains (RET-CLD1-4) and a cysteine-rich domain (RET-crd). RET-CLD2 and RET-CLD3 coordinate calcium ions that are critical for RET folding.
Signaling: RET dimerization results in tyrosine autophosphorylation on specific tyrosine residues. (e.g. GDNF-GFRA1-activated RET is autophosphorylated at tyrosine-sites, Y981, Y1015, Y1062, and Y1096 (Note: Y1096 in found only in RET51 isoform)). RET activates various signaling pathways, mainly through Y1062, such as PI3K/AKT/MTOR, RAS/RAF/MAPK, and JUN pathways to activate transcription factors, including EIF4EBP1, RPS6KB1, MYC, JUN, ATF1, ATF2, TP53) (Kouvaraki et al., 2005; Goodman et al., 2014; Bigalke et al., 2019).
The frequently mutated C634 in patients with MEN2A is part of the RET-crd, in which wild-type RET forms a disulfide bond with C630. The C634R mutation causes ligand-independent dimerization of RET (Goodman et al., 2014; Bigalke et al., 2019).
Phosphatases: Protein tyrosine phosphorylation is regulated by opposite activities of protein tyrosine kinases (PTKs) and phosphatases (PTPs). GDNF and GRB2 form a complex with the protein tyrosine phosphatase PTPRA. PTPRA dephosphorylates RET and inhibits the RET-RAS/RAF/MAPK signaling pathway. PTPRA also regulates the RET mutant found in MEN2A, whereas the MEN2B mutant is insensitive to PTPRA (Yadav et al., 2020). Other phosphatases are also known to balance the phosphorylation and oncogenic activity of RET: PTPRF, PTPN6 and PTPN11.
Feedback loop: ATF4 overexpression induces cell death. ATF4 promotes RET degradation and inhibits RET signaling pathways. In a feedback loop, RET represses expression of the ATF4 target proapoptotic genes PMAIP1 (known as NOXA) and BBC3 (PUMA) through phosphorylation-dependent degradation of ATF4 (Bagheri-Yarmand et al. 2015; Bagheri-Yarmand et al. 2017).
 
  Figure 4: RET Pathway. An homodimer of Ligand (either GDNF, NRTN, PSPN, or ARTN) binds an homodimer of co-factors GFRA 1 to 4). The complex binds two RET proteins, forming a heterohexamer. RET dimerization results in tyrosine autophosphorylation which induces signaling pathways, such as PI3K/AKT/MTOR, RAS/RAF/MAPK, and JUN pathways (Figure 4). Note the so-called JUN pathway is the following RAC1 --> MAP3K proteins (misnamed MAPKKK... or JNKKK,e.g "MEKK1" or "MEKK4" for MAP3K1 and MAP3K4) --> MAP2K proteins (also called MAPKK... or JNKK, e.g "MKK4" or "MKK7" for MAP2K4 and MAP2K7) --> MAPK proteins (MAPK... or JNK, e.g "p38" or "JNK" for MAPK14 and MAPK8). Various processes are stimulated or repressed such as autophagy, angiogenesis, ribosomes biogenesis, translation, survival, apoptosis, differentiation, migration ...

Mutations

Note Gain of function mutations affecting the extracellular cysteine-rich domain of RET result in covalent dimerization and constitutively activation of the receptor. Loss of function mutations inactivate the signaling pathway. Note: if needed, see "Nomenclature for the description of mutations and other sequence variations"
RET role in the tumor microenvironment: The tumor microenvironment (TME) consists of extracellular matrix, mesenchymal cells (i.e., fibroblasts, pericytes, adipocytes and other stromal cells), immune-inflammatory cells, blood and lymphatic vessels particularly in the perineural environment. Activation of the RET pathway has been found to be responsible for high expression and activation of cancer-associated fibroblasts-related proinflammatory proteins including cytokines, chemokines and their receptors (e.g. CCL2, CXCR4, CXCL8 (also called IL8), CXCL12, CCL20, CSF1, CSF2RA (GM-CSF), CSF3 (G-CSF), IL1B, SPP1). Cancer-associated fibroblasts promote tumorigenesis and metastasis, tumor angiogenesis and recruitment of immune-inflammatory cells (reviews in Castellone and Melillo 2018; Mulligan 2019).
 
  Figure 5: RET Translocations t(Var;10)(Var;q11) 5' Partner / 3' RET
Germinal Mutations in RET have been found in various closely related inherited diseases, namely: multiple endocrine neoplasia type 2A (MEN2A), multiple endocrine neoplasia type 2B (MEN2B), familial medullary thyroid carcinomas (FMTC), familial pheochromocytoma predisposition, Hirschsprung disease, congenital central hypoventilation syndrome, and renal hypodysplasia/aplasia 1 (see below).
MEN2A/ MEN2B/ FMTC: 199 variants are described in MEN2 database (https://arup.utah.edu/database/MEN2/MEN2_display.php), of which 82 are said pathogenic. Mutations are dispersed through exons 7 to 16, many of them occurring in exons 10 or 11, in the cysteine rich domain: C609, C611, C618, C620 (exon 10), C630, D631, C634, T636, K666, D707 (exon 11). Other mutations are E505 (exon 7), C515, C531, G533, G548 (exon 8), E768, L790, Q781 (exon 13), V804 (exon 14), A883, S891, S904 (exon 15), M918, R912 (exon 16). The more common disease phenotype-specific mutations found in MEN2 are: E768D, L790F, Y791F, S891A, V804M/L (FMTC) and A883F, M918T (MEN2B). M918T catalytic domain mutants enhances autophosphorylation kinetics. M918T is a well characterized MEN2 mutation, and it correlates with the most aggressive and consistent disease phenotype (i.e. MEN2B) (Plaza-Menacho, 2017).
Somatic Kato et al., 2017 studied 4,871 diverse cancer cases. RET aberrations were identified in 88 cases (1.8%). It was an amplification in 25% of cases (rounded numbers), a mutation in 40%, a translocation/fusion gene in 30%. Although subgroups are very small, it can be noted that mutations were found in medullary thyroid carcinoma (80%, 4 of 5 cases), paraganglioma (25%, 1/4), anaplastic thyroid carcinoma (17%, 2/12), and urothelial carcinoma (17%, 1/6). translocations/fusion genes were found in lung carcinosarcoma (17%, 1/6), papillary thyroid carcinoma (9%, 2/23) and lung adenocarcinoma (4%, 16/412), and amplifications were found in fallopian tube adenocarcinoma (8%, 1/12), uterine carcinosarcoma (5%, 1/19), and duodenal adenocarcinoma (5%, 1/20).
According to the review by Subbiah and Cote, 2020, the frequencies of somatic RET translocations/fusion genes and mutations associated with oncogenesis are the following: medullary thyroid cancer: 60-90%, papillary thyroid cancer: 10-20%, urothelial carcinoma: 16.7%, basal cell carcinoma: 12.5%, meningioma: 5.6%, non-small cell lung carcinoma: 1-2%, ovarian epithelial carcinoma: 1.9%, esophageal carcinoma: 1.4%, colorectal carcinoma: 0.7%, gastric adenocarcinoma: 0.7% , melanoma: 0.7%, and breast carcinoma: 0.2%,
in a series of 32,989 advanced cancers RET alterations included 143 in-frame fusions found in 141 patients and 33 single-nucleotide variants (SNV) resulting in an amino acid substitution found in 29 patients. RET fusions were most prevalent among patients with non-small cell lung carcinoma (NSCLC), thyroid cancer, or colorectal cancer. Seven different fusion partners (KIF5B, CCDC6, NCOA4, TRIM24, TRIM33, ERC1, APAF1) were observed. The most common fusion partner was KIF5B, which was only observed in NSCLC (n = 75) (Rich et al., 2019).
Copy number variations according to Genomic Data Commons Data Portal are: CNV gains in: sarcomas (11% of cases, rounded numbers), ovarian serous cystadenocarcinoma (10%), lung squamous cell carcinoma (8%), bladder urothelial carcinoma (7%), breast carcinoma (6%), lung adenocarcinoma (6%), esophageal carcinoma (6%), cholangiocarcinoma (6%), uterine carcinosarcoma (5%), adrenocortical carcinoma (4%), head and neck squamous cell carcinoma (4%), gastric adenocarcinoma (3%), hepatocellular carcinoma (3%), glioblastoma multiforme (3%), uterine endometrial carcinoma (2%), cervical carcinoma (2%), skin cutaneous melanoma (2%), colorectal adenocarcinoma (1-2%), pancreatic adenocarcinoma (1 %); CNV losses in: ovarian serous cystadenocarcinoma (9%), sarcomas (6%), uterine carcinosarcoma (5 %), bladder urothelial carcinoma (5%), mesothelioma (4%), esophageal carcinoma (3%), prostate adenocarcinoma (3%), breast carcinoma (3%), adrenocortical carcinoma (2%), uterine endometrial carcinoma (2%), head and neck squamous cell carcinoma (2%),cervical carcinoma (2%), gastric adenocarcinoma (2%), lung adenocarcinoma (1%), colon adenocarcinoma (1%), hepatocellular carcinoma (1%), lung squamous cell carcinoma (1%).
Kohno et al, 2020 reviewed the mutations and fusion genes involving RET in various cancers detected in two large studies (Project Genie and TCGA PanCancer Atlas Studies):
Mutations: medullary thyroid carcinoma: 55% of cases presented a mutation in RET; breast carcinoma: 8%; of cases parathyroid carcinoma: 6 %; pheochromocytoma: 3.4 - 4.0%; T-cell lymphoblastic leukemia: 3%; lung carcinoma (neuroendocrine): 3%; upper tract urothelial carcinoma: 0,4%; uterine endometrioid carcinoma (serous/papillary serous): 0,3%.
Translocations/fusion genes: RET translocations/fusion genes result in hybrid genes and proteins (Figure 5) with constitutive dimerization and activation of RET pathways. RET translocations/fusion genes were found in: papillary thyroid carcinoma, where 1.4 - 4.4% of cases presented a gene fusion implicating RET; poorly differentiated thyroid carcinoma: 3% of cases; pleomorphic lung carcinoma: 2.5%; thyroid carcinoma (hurthle cell): 2%; anaplastic thyroid carcinoma: 1%; lung adenocarcinoma: 0.2 - 0.6%; poorly differentiated non-small cell lung carcinoma: 0.5%; colon adenocarcinoma 0.26%; gastric adenocarcinoma 0.2%; serous ovarian carcinoma: 0,17%; non-small cell lung carcinoma: 0,16%.
TABLE 1: RET and 73 translocations/fusion partners
RET Partner GeneChrom.Location: band (bp)Translocation / fusion geneDisease
TRIM33
1
1p13.2 (114392777)t(1;10)(p13;q11) TRIM33/RETLung: non-small cell lung carcinoma
Thyroid: papillary thyroid carcinoma
RASAL21q25.2 (178093729)t(1;10)(q25;q11) RASAL2/RETSoft tissue sarcoma
EML4
2
2p21 (42169338))t(2;10)(p21;q11) EML4/RETLung: non-small cell lung carcinoma
EML62p16.1 (54725012t(2;10)(p16;q11) EML6/RETLung: non-small cell lung carcinoma
TFG
3
3q12.2 (100709331)t(3;10)(q12;q11) TFG/RETSoft tissues: spindle cell tumors
TBL1XR13q26.32 (177019355)t(3;10)(q26;q11) TBL1XR1/RETThyroid: papillary thyroid carcinoma
EPHA5
4
4q13.1 (65319563)t(4;10)(q13;q11) APHA5/RETLung: non-small cell lung carcinoma
SQSTM1
5
5q35.3 (179820842)t(5;10)(q35;q11) SQSTM1/RETThyroid: papillary thyroid carcinoma
KIF13A
6
6p22.3 (17763693)t(6;10)(p22;q11) KIF13A/RETLung: adenocarcinoma
TRIM276p22.1 (28903002)t(6;10)(p22;q11) TRIM27/RETSalivary glands: intraductal carcinoma
Thyroid: papillary thyroid carcinoma
Neuro-endocrine tumor: multiple endocrine neoplasia
TBC1D326q22.31 (121079494)t(6;10)(q22;q11) TBC1D32/RETLung: adenocarcinoma
PTPRK6q22.33 (127968779)t(6;10)(q22;q11) PTPRK/RETLung: non-small cell lung carcinoma
FGFR1OP6q27 (166,999,317)t(6;10)(q27;q11) FGFR1OP/RETChronic myeloproliferative neoplasm
CLIP2
7
7q11.23 (74289475)t(7;10)(q11;q11) CLIP2/RETSoft tissues: spindle mesenchymal neoplasm
CUX17q22.1 (101817602)t(7;10)(q22,q11) CUX1/RETLung: non-small cell lung carcinoma
TRIM247q33 (138460334)t(7;10)(q33;q11) TRIM24/RETLung: non-small cell lung carcinoma
Thyroid: papillary thyroid carcinoma
TAS2R387q34 (141972631)t(7;10)(q34;q11) TAS2R38/RETThyroid: papillary thyroid carcinoma
PCM1
8
8p22 (17922857)t(8;10)(p22;q11) PCM1/RETLung: non-small cell lung carcinoma
Thyroid: papillary thyroid carcinoma
RBPMS8p12 (30384501)t(8;10)(p12;q11) RBPMS/RETLung: non-small cell lung carcinoma
HOOK38p11.21 (42896890)t(8;10)(p11;q11) HOOK3/RETThyroid: papillary thyroid carcinoma
FKBP15
9
9q32 (113165520)t(9;10)(q32;q11) FKBP15/RETThyroid: papillary thyroid carcinoma
PRKCQ
10
10p15.1 (6427143)t(10;10)(p15;q11) PRKCQ/RETLung: non-small cell lung carcinoma
TAF3 10p14 (7818504)t(10;10)(p14;q11) TAF3/RETThyroid: papillary thyroid carcinoma
CCDC310p13 (12896625)t(10;10)(p13;q11) CCDC3/RETLung: non-small cell lung carcinoma
PRPF1810p13 (13586939)t(10;10)(p13;q11) PRPF18/RETLung: non-small cell lung carcinoma
FRMD4A10p13 (13643706)t(10;10)(p13;q11) FRMD4A/RETLung: non-small cell lung carcinoma
KIAA121710p12.2 (24208791)t(10;10)(p12;q11) KIAA1217/RETLung: adenocarcinoma
Soft tissues: spindle mesenchymal neoplasm
ANKRD2610p12.1 (27004116) t(10;10)(p12,q11) ANKRD26/RETThyroid: papillary thyroid carcinoma
ACBD510p12.1 (27195214)t(10;10)(p12;q11) ACBD5/RETThyroid: papillary thyroid carcinoma
WAC10p12.1 (28533492)t(10;10)(p12;q11) WAC/RETLung: non-small cell lung carcinoma
ARHGAP1210p11.22 (31805398)t(10;10)(p11;q11) ARHGAP12/RETLung: non-small cell lung carcinoma
KIF5B10p11.22 (32009010 )t(10;10)(p11;q11) KIF5B/RETLung: non-small cell lung carcinoma
Skin: melanomas/Spitz tumors
Thyroid: papillary thyroid carcinoma
PARD310p11.22 (34109560)t(10;10)(p11;q11) PARD3/RETLung: non-small cell lung carcinoma
CCNYL210q11.21 (42408174)CCNYL2/RET (10q11)Lung: non-small cell lung carcinoma
RASGEF1A10q11.21 (43194533)RASGEF1A/RET (10q11)Breast cancer
RASSF410q11.21 (44959771)RASSF4/RET (10q11)Lung: non-small cell lung carcinoma
NCOA410q11.23 (46005088)NCOA4/RET (10q11)Breast cancer
Colorectal cancer 
Lung: adenocarcinoma
Ovary: Germ cell tumours 
Salivary glands: intraductal carcinoma
Soft tissues: spindle cell tumors
Thyroid: papillary thyroid carcinoma
PRKG110q11.23 (51074474)PRKG1/RET (10q11)Lung: non-small cell lung carcinoma
ANK310q21.2 (60026298)t(10;10)(q11;q21) ANK3/RETThyroid: papillary thyroid carcinoma
SLC16A9 10q21.2 (59650764)t(10;10))(q11;q21) SLC16A9/RETThyroid: papillary thyroid carcinoma
CCDC610q21.2 (59788748)t(10;10)(q11;q21) CCDC6/RETColorectal cancer 
Lung: non-small cell lung carcinoma
Thyroid: papillary thyroid carcinoma
CTNNA310q21.3 (65912518)t(10;10)(q11;q21) CTNNA3/RETLung: non-small cell lung carcinoma
SIRT110q21.3 (67884669)t(10;10)(q11;q21) SIRT1/RETLung: non-small cell lung carcinoma
RUFY210q21.3 (68343518)t(10;10)(q11;q21) RUFY2/RETLung: non-small cell lung carcinoma
Thyroid: papillary thyroid carcinoma
DYDC110q23.1 (80336106)t(10;10)(q11;q23) DYDC1/RETLung: non-small cell lung carcinoma
SORBS110q24 (110005804)t(10;10)(q11;q24) SORBS1/RETLung: non-small cell lung carcinoma
ADD310q25.1 (114161608)t(10;10)(q11;q25) ADD3/RETLung: non-small cell lung carcinoma
CCDC18610q25.3 (114294824)t(10;10)(q11;q25) CCDC186/RETLung: non-small cell lung carcinoma
AFAP1L210q25.3 (126905409)t(10;10)(q11;q25) AFAP1L2/RETThyroid: papillary thyroid carcinoma
DOCK110q26.2 (126905409)t(10;10)(q11;q26) DOCK1/RETLung: non-small cell lung carcinoma
CLRN310q26.2 (127877841)t(10;10)(q11;q26) CLRN3/RETThyroid: papillary thyroid carcinoma
PPFIBP2
11
11p15.4 (7513765)t(10;11)(q11;p15) PPFIBP2/RETThyroid: papillary thyroid carcinoma
PICALM11q14.2 (85957171)t(10;11)(q11;q14) PICALM/RETLung: non-small cell lung carcinoma
ETV6
12
12p13.2 (11649854)t(10;12)(q11;p13) ETV6/RETSalivary glands: mammary analog secretory carcinoma
ERC112q13.33 (991208 )t(10;12)(q11;q13) ERC1/RETBreast cancer
Lung: non-small cell lung carcinoma
Thyroid: papillary thyroid carcinoma
ANKS1B12q23.1 (98743974)t(10;12)(q11;q23) ANKS1B/RETLung: non-small cell lung carcinoma
CLIP112q24.31 (122271434)t(10;12)(q11;q24) CLIP1/RETLung: non-small cell lung carcinoma
TSSK4
14
14q12 (24205720)t(10;14)(q11;q12) TSSK4/RETLung: non-small cell lung carcinoma
KTN114q22.3 (55580207)t(10;14)(q11;q22) KTN1/RETThyroid: papillary thyroid carcinoma
CCDC88C14q32.11 (91271323)t(10;14)(q11;q32) CCDC88C/RETLung: non-small cell lung carcinoma
GOLGA514q32.12 (92794231)t(10;14)(q11;q32) GOLGA5/RETSkin: melanomas/Spitz tumors
Thyroid: papillary thyroid carcinoma
MYO5C
15
15q21.2 (52192318)t(10;15)(q11;q21) MYO5C/RETLung: non-small cell lung carcinoma
AKAP1315q25.3 (85380616)t(10;15)(q11;q25) AKAP13/RETThyroid: papillary thyroid carcinoma
MYH10
17
17p13.1 (8474205)t(10;17)(q11;p13) MYH10/RETSoft tissues: Infantile myofibromatosis
Soft tissues: spindle mesenchymal neoplasm
MYH1317p13.1 (10300866)t(10;17)(q11;p13) MYH13/RETThyroid: papillary thyroid carcinoma
MPRIP17p11.2 (17042760)t(10;17)(q11;p11) MPRIP/RETLung: non-small cell lung carcinoma
PRKAR1A17q24.2 (68512379)t(10;17)(q11;q24) PRKAR1A/RETLung: non-small cell lung carcinoma
Neuro-endocrine tumor
RELCH (KIAA1468)
18
18q21.33 (62187291)t(10;18)(q11;q21) KIAA1468/RETLung: adenocarcinoma
Lung: non-small cell lung carcinoma
Thyroid: papillary thyroid carcinoma
LSM14A
19
19q13.11 (34172447)t(10;19)(q11;q13) LSM14A/RETLung: adenocarcinoma
RRBP1
20
20p12.1 (17613678)t(10;20)(q11;p12) RRBP1/RETColorectal cancer 
BCR
22
22q11.23 (23180365)t(10;22)(q11;q11) BCR/RET Chronic myeloproliferative neoplasm
SPECC1L22q11.23 (24270817)t(10;22)(q11;q11) SPECC1L/RETThyroid: papillary thyroid carcinoma
TIMP322q12.3 (32800816)t(10;22)(q11 ;q12) TIMP3/RETSoft tissues: Inflammatory myofibroblastic tumor

Implicated in

  
Entity Multiple endocrine neoplasia type 2A (MEN2A)
Note RET mutations in MEN2A are gain-of-function mutations.
Disease Multiple endocrine neoplasia type 2A is an autosomal dominant syndrome of multiple endocrine neoplasms, including medullary thyroid carcinoma (MTC), a tumor of the calcitonin-secreting parafollicular C-cells in 100% of the cases, pheochromocytoma, a tumor of the adrenal chromaffin cells in 50% of the cases, and primary hyperparathyroidism in 20-30% of the cases. It is caused by missense mutations in RET. There is a cluster of mutations concerning six cysteines (aa 609, 611, 618, 620, exon 10 and aa 630, 634, exon 11, cysteine-rich domain) in MEN2A (Giraud, 2001; Somnay et al., 2012; Krampitz and Norton, 2014; Plaza-Menacho, 2017).
  
  
Entity Multiple endocrine neoplasia type 2B (MEN2B)
Note RET mutations in MEN2B are gain-of-function mutations.
Disease Multiple endocrine neoplasia type 2B, is an autosomal dominant syndrome defined by the presence of medullary thyroid carcinoma, pheochromocytomas, ganglioneuromatosis of the gastrointestinal tract, mucosal neuromas of the lips and tongue, and a Marfanoid habitus, but no hyperparathyroidism. It is caused by missense mutations in RET. The major mutation is M918T (coded by exon 16, tyrosine kinase domain) (Giraud, 2001; Somnay et al., 2012; Krampitz and Norton, 2014).
  
  
Entity Familial medullary thyroid carcinomas (FMTC)
Note RET mutations in FMTC are gain-of-function mutations.
Disease Medullary thyroid carcinomas (MTC) develop in either sporadic (75%) or hereditary form (25%). Familial Medullary thyroid carcinomas is an autosomal dominant syndrome of tumors of neuroendocrine origin that arise from para-follicular C cells which secrete a variety of peptides and hormones including calcitonin. FMTC can be an isolated condition, or part of MEN2A or MEN2B. It is caused by missense mutations in RET. Germline-activating RET mutations are found in 95%-98% of hereditary MTC, most often mutations in one of the 5 cysteines (aa 609, 611, 618, 620, exons 10 and aa 634, exon 11, cysteine-rich domain), mutations in aa 768, 790, 791, exon 14 or aa 804, 844 and aa 891, exon 15 being less frequent (in the tyrosine kinase domain). RET mutations are present in 25%-40% of sporadic MTC. Activating point mutations in RAS genes ( HRAS, KRAS, and NRAS) has been described in RET-negative sporadic MTC. Patients with a RET mutation had a worse outcome. The most frequent mutation in sporadic MTC was RET M918T (from c.2753T>C). RET C634W (from c.1902C>G) was also found frequently (Ceolin et al, 2012; Somnay et al., 2012; Krampitz and Norton, 2014; Ciampi et al., 2019).
  
  
Entity Familial pheochromocytoma predisposition
Note RET mutations in familial pheochromocytoma predisposition are gain-of-function mutations.
Disease Pheochromocytomas are adrenal medullary tumors (while paragangliomas arise from extra-adrenal ganglial sympathetic/parasympathetic chains) secreting catechocatecholamines with tachycardia, sweating and hypertension. It is an inherited form of cancer (autosomal dominant syndrome) in 10% to 25% of cases. In familial cases, pheochromocytoma is a component of one of the four following autosomal dominant syndromic diseases, Multiple Endocrine Neoplasia type 2, Von-Hippel-Lindau disease, hereditary paraganglioma syndrome and neurofibromatosis type 1. Pheochromocytoma is associated with germline and/or somatic mutations in more than 20 genes, mainly genes of the hypoxia-inducible factor (HIF) signaling pathway, succinate dehydrogenase genes and VHL, the kinase signaling pathway, including RET and RAS genes, and Wnt and Hedgehog pathways. In 75 to 90% cases, it is a sporadic or a non-syndromic disease of an unknown etiology (Gimenez-Roqueplo 2003; Jochmanova and Pacak, 2018).
RET mutations in pheochromocytoma are mainly found in exons 10, 11, 13 and 16. Carriers of codon 634 germline mutations present with much younger mean age of onset, and have a higher risk of developing pheochromocytomas.
  
  
Entity Hirschsprung disease
Note RET mutations in Hirschsprung disease are loss of function mutations.
Disease Hirschsprung disease or aganglionic megacolon is an autosomal dominant syndrome characterized by congenital absence of ganglion cells of the gastrointestinal tract (deficit in enteric nervous system), due to defective neural crest cell development. More than 10 genes are known to be possibly implicated in this disease, including RET, SOX10, ZEB2, EDNRB, EDN3 and PHOX2B.
Expression and penetrance of a RET mutation is variable and sex dependent (penetrance is 70% in males and 50% in females). More than 80 mutations have been identified, in particular: S32L, Y36C, L40P, P64L, L72P, R77C, G93S, L123F, A143G, C197Y, R231H, D264K, R287K, D300K, D300N, F329FfsX24, R330Q, R330N, R360W, P399L, R418X, D469N, R475Q, C611G, C620Y, all in the extracellular region (Anders et al., 2001; Butler Tjaden et al., 2013; Plaza-Menacho, 2017; Lorente-Ros et al., in press).
  
  
Entity Congenital central hypoventilation syndrome (CCHS)
Note RET mutations in CCHS are loss of function mutations.
Disease Congenital central hypoventilation syndrome (also called Haddad syndrome, Ondine-Hirschsprung disease), is a life-threatening syndrome characterized by impaired ventilatory response to hypercarbia and hypoxemia, Hirschsprung disease and tumors of neural-crest derivatives. It is sporadic in the majority of cases, and autosomal dominant in other cases, implicating PHOX2B, RET, GDNF, ASCL1 or EDN3 (Bolk et al., 1996; Amiel et al., 2003).
  
  
Entity Renal hypodysplasia/aplasia 1 (RHDA1)
Note RET mutations in RHDA1 are loss of function mutations.
Disease Renal hypodysplasia/aplasia 1 is an autosomal recessive syndrome which usually results in death in utero or in the perinatal period, and is associated with 3 genes ITGA8, PAX2, and RET according to LOVD. About 5% of living patients with congenital anomalies of the kidneys or lower urinary tract harbor mutations in the RET pathway, and RET mutations are present in 30% of fetuses with unilateral or bilateral renal agenesis. RET mutations or other alteration of the RET signaling pathway provokes delayed attachment of Wolffian duct to reach the cloaca, delayed degeneration of the mesonephros, renal agenesis or cystic dysplastic kidneys and ureters (Davis et al., 2014).
  
  
Entity Thyroid cancers
Disease Thyroid cancer includes papillary thyroid carcinoma (PTC, 80% of thyroid cancers), follicular thyroid carcinoma (FTC, 10%-15% of thyroid cancers), medullary thyroid cancer (MTC, 5%-8% of thyroid cancers), and anaplastic thyroid cancer (less than 5%). Squamous and mucoepidermoid carcinomas account for 1% and 0.5 % of thyroid carcinomas.
RET translocations/fusion genes have been described in 20-40% of patients with papillary thyroid carcinoma, with higher frequency in radiation-exposed patients and mutations in RET have been reported in 40-70% of patients with medullary thyroid carcinoma (Kato et al., 2017)
Oncogenesis RET polymorphisms and thyroid cancer: G691S, L769L and S904S polymorphisms were associated with predisposition to the development of sporadic MTC (Ceolin et al, 2012).
Medullary thyroid cancer: Amplification: 30% of medullary thyroid carcinomas harbour RET gene amplification with no alterations in chromosome 10 or a polysomy of chromosome 10, in variable percentage of cells, suggesting cell heterogeneity. RET copy number alterations can be considered a poor prognostic factor potentiating the poor prognostic role of RET mutation (Ciampi et al., 2012). Mutations: The far most frequent mutation in medullary thyroid cancer is M918T. Other mutations are: D631_L633delinsE, D631_L633delinsA, E632_L633del, C634R (cBioPortal). ATF4 promotes RET degradation. Low ATF4 expression correlates with poor overall survival of patients with MTC (Bagheri-Yarmand et al. 2017).
Papillary thyroid cancer: The most common rearrangements are translocation/fusion gene t(10;10)(q11;q21) CCDC6/RET and fusion gene NCOA4/RET, accounting for about 90%. Translocations/fusion genes in papillary thyroid cancer: t(1;10)(p13;q11) TRIM33/RET, t(3;10)(q26;q11) TBL1XR1/RET, t(5;10)(q35;q11) SQSTM1/RET, t(6;10)(p22;q11) TRIM27/RET, t(7;10)(q33;q11) TRIM24/RET, t(7;10)(q34;q11) TAS2R38/RET, t(8;10)(p22;q11) PCM1/RET, t(8;10)(p11;q11) HOOK3/RET, t(9;10)(q32;q11) FKBP15/RET, t(10;10)(p14;q11) TAF3/RET, t(10;10)(p12,q11) ANKRD26/RET, t(10;10)(p12;q11) ACBD5/RET, t(10;10)(p11;q11) KIF5B/RET, t(10;11)(q11;p15) PPFIBP2/RET, NCOA4/RET (10q11), t(10;10)(q11;q21) ANK3/RET, t(10;10))(q11;q21) SLC16A9/RET, t(10;10)(q11;q21) CCDC6/RET, t(10;10)(q11;q21) RUFY2/RET, t(10;10)(q11;q25) AFAP1L2/RET, t(10;10)(q11;q26) CLRN3/RET, t(10;12)(q11;q13) ERC1/RET, t(10;14)(q11;q22) KTN1/RET, t(10;14)(q11;q32) GOLGA5/RET, t(10;15)(q11;q25) AKAP13/RET, t(10;17)(q11;p13) MYH13/RET, t(10;18)(q11;q21) RELCH/RET, t(10;22)(q11;q11) SPECC1L/RET (PMID 8634704, 10337992, 10439047, 10741739, 10850414, 10980597, 11156407, 16946010, 17639057, 25175022, 25204415, 25417114, 25500544, 25546157, 27683183, 28351223, 28911147, 30466862, 31425920, 31715421 and data from Atlas Band 10q11 ).
Poorly differentiated thyroid cancer: mutation A1105V was found, and also translocations/fusion genes t(3;10)(q12;q11)TFG/RET, t(3;10)(q26;q11) PDCD10/RET and t(10;10)(q11;q21) CCDC6/RET.
  
  
Entity Lung cancers
Disease Non-small cell lung carcinomas (NSCLC) are classified as: adenocarcinomas (30-40% of lung tumors), squamous cell carcinomas (40% of tumors), adenosquamous carcinomas, large cell carcinomas, sarcomatoid carcinomas, carcinoid tumors, and salivary gland tumors. Small cell lung carcinoma (SCLC), 20% of tumors, is a pulmonary neuroendocrine tumor. Other neuroendocrine tumors of the lungs are large cell neuroendocrine carcinomas, typical carcinoids, and atypical carcinoids.
RET translocations/fusion genes have been reported in 1% to 2% of patients with non-small cell lung cancer. Most cases of RET fusion-positive NSCLCs are adenocarcinoma, although Cai et al., 2013 screening 392 patients with NSCLC found 6 patients (1.5%) with a KIF5B/RET fusion: 4 had adenocarcinoma, 1 had a malignant neuroendocrine tumor, and 1 had squamous cell carcinoma. However, a meta-analysis of 165 patients with RET-rearranged NSCLC from 29 centers across Europe, Asia, and the United States was conducted. Median age was 61 years (range, 29 to 89 years). The majority of patients were never smokers (63%) with lung adenocarcinomas (98%); squamous cell (1%) and advanced disease (91%). The most frequent rearrangement was KIF5B/RET (72%); CCDC6/RET was found in 19 patients (23%), NCOA4/RET in two patients (2%), EPHA5/RET in one patient (1%), and PICALM/RET in one patient (1%) (Gautschi et al., 2017). In a study screening 1139 lung adenocarcinoma patients, ALK fusions were detected in 5.1% of cases, RET fusions in 1.3%, and ROS1 fusions in 1%. No significant difference in survival was observed between fusion-positive and fusion-negative patients (Pan el al., 2014). RET mutations in small-cell (neuroendocrine) lung cancer is extremely rare (Rudin et al., 2014).
Oncogenesis Cells expressing oncogenic KIF5B/RET are sensitive to multi-kinase inhibitors that inhibit RET (Lipson et al., 2012).
A study on non-small-cell lung cancer showed RET amplification in 3%, low RET gene copy number gain in 8%, and RET over expression in 8% of cases (Platt et al., 2015).
RET translocations/fusion genes in NSCLC: t(1;10)(p13;q11) TRIM33/RET, t(2;10)(p21;q11) EML4/RET, t(2;10)(p16;q11) EML6/RET, t(4;10)(q13;q11) APHA5/RET, t(6;10)(p22;q11) KIF13A/RET, t(6;10)(q22;q11) TBC1D32/RET, t(6;10)(q22;q11) PTPRK/RET, t(7;10)(q22,q11) CUX1/RET, t(7;10)(q33;q11) TRIM24/RET, t(8;10)(p22;q11) PCM1/RET, t(8;10)(p12;q11) RBPMS/RET, t(10;10)(p13;q11) CCDC3/RET, t(10;10)(p13;q11) PRPF18/RET, t(10;10)(p13;q11) FRMD4A/RET, t(10;10)(p12;q11) KIAA1217/RET, t(10;10)(p12;q11) WAC/RET, t(10;10)(p11;q11) PRKCQ/RET, t(10;10)(p11;q11) ARHGAP12/RET, t(10;10)(p11;q11), KIF5B/RET, t(10;10)(p11;q11) PARD3/RET, CCNYL2/RET (10q11), RASSF4/RET (10q11), NCOA4/RET (10q11), PRKG1/RET (10q11), t(10;10)(q11;q21) CCDC6/RET, t(10;10)(q11;q21) CTNNA3/RET, t(10;10)(q11;q21) SIRT1/RET, t(10;10)(q11;q21) RUFY2/RET, t(10;10)(q11;q23) DYDC1/RET, t(10;10)(q11;q24) SORBS1/RET, t(10;10)(q11;q25) ADD3/RET, t(10;10)(q11;q25) CCDC186/RET, t(10;10)(q11;q26) DOCK1/RET, t(10;11)(q11;q14) PICALM/RET, t(10;12)(q11;q13) ERC1/RET, t(10;12)(q11;q23) ANKS1B/RET, t(10;12)(q11;q24) CLIP1/RET, t(10;14)(q11;q12) TSSK4/RET, t(10;14)(q11;q32) CCDC88C/RET, t(10;15)(q11;q21) MYO5C/RET, t(10;17)(q11;p11) MPRIP/RET, t(10;17)(q11;q24) PRKAR1A/RET, t(10;18)(q11;q21) KIAA1468/RET, t(10;19)(q11;q13) LSM14A/RET (PMID 22327623, 23150706, 23533264, 27150058, 28115111, 28851076, 29571998, 29935851, 30429449, 30579554, 32127187, 32216946, Ignatius Ou and Zhu, in press, and data from Atlas Band 10q11).
mutations in lung adenocarcinoma: L56M, E61K, T75K, R77C, R77L, H103N, L109I, X113_splice, K124*, E164K, P181H, E251Q, D290N, R297L, T350N, H352P, R355M, Q371K, V374M, L375Q, S406R, X421_splice, E428G, G453W, D460V, A479S, M484T, R494M, A496G, G506W, A510S, A513E, C541F, P560H, P566T, D567Y, X587_splice, G588D, G593R, C611S, V648I, F719L, P720L, V739F, V755L, V757M, M759I, N763K, P766Q, L790*, G798V, A807P, R817H, D839N, M848V, Q860P, S891*, E901K, S932N, E978Q, E1006*, M1009K, R1013K, D1031Y, L1048Pfs*11, E1072K, dispersed through all the RET length.
mutations in lung squamous cell carcinoma, according to cBioPortal: R33Kfs*29, A59S, R114S, R114H, E235Q, M255I, W324C, E366*, S462L, E530*, T564N, G691Vfs*40, A756G, E775Sfs*5, F776S, G825C, W856L, W917R, A919S, V934=, W942S, P951S, E979Q, R1013T, V1095.
  
  
Entity Breast carcinoma
Note The treatment-relevant subtypes of invasive carcinoma are based on "ER" (estrogen receptors ESR1 and ESR2), "PR" (progesterone receptor PGR) and "HER2" (ERBB2) status: ER+, ER-, PR+, PR-, HER2+, HER2-. Last, ER-/PR-/HER2- are called basal-like or triple negative breast cacinoma.
Oncogenesis Tumor-specific expression of GDNF and ARTN is relatively frequent and can promote autocrine activation of RET downstream signaling. RET is an estrogen receptor target gene. IL6 and RET form a positive feed-forward loop that stimulates migration. ET activation increases migration and proliferation of ER+ (estrogen receptor +) breast cancer. Elevated RET levels are found not only in ER+ tumors, but in other sub-types of human breast cancer and correlate with decreased metastasis-free survival and poor prognosis in breast cancer patients. RET alterations (amplifications/copy number gains, mutations or chromosome rearrangements) were found in 1.2% in a large cohort of 9693 breast cancers. RET amplifications were the most commonly observed and mainly found in ER- and HER2- breast cancers, followed by missense mutations and rearrangements. RET missense mutations were more frequently associated with ER+ breast cancers. NCOA4/RET positive breast cancer responds to cabozantinib. Expression is higher in recurrent cancers and is correlated with larger tumor size, higher tumor stage and reduced metastasis-free and overall survival. RET expression in breast cancer is also correlated with resistance to endocrine therapies via stimulation of the PI3K/AKT/MTOR signaling pathway. Tyrosine kinase inhibitors could be useful treatments (Gattelli et al., 2013; Morandi et al., 2013; Hatem et al., 2016; Paratala et al., 2018; Mulligan 2019).
RET mutations: P117T, S148del, F195L, R330Q, R368C, A479T, P537Qfs*101, S518C, A604D, C611Y, I625M, C634R/G, F663Lfs*12, V778I, A793Pfs*76, G828A, D842H, L846I, I852M, M868I, M918T, P951Lfs*12, X934_splice L963V, E991*, L1101V, dispersed through all the RET length (cBioPortal); and translocations/fusion genes: t(10;12)(q11;q13) ERC1/RET, NCOA4/RET (10q11), RASGEF1A/RET (10q11) (Stransky et al., 2014; Paratala et al., 208; Rich et al., 2019).
  
  
Entity Epithelial ovarian cancer.
Oncogenesis Genomic RET missense mutations was found in 2% of patients. These mutations were: D58N, R114H, R205S; G248S; A342G, T636M, A680T, G727V, G751V, K780N, N879S, N879D, N879S, X934_splice, R959W, A1105G, and K1107N. Patients with RET alterations had shorter progression-free survival than those without RET alterations. R693H and A750T mutants of RET enhance the signal transduction of RET, the cell viability and colony formation of cells, and the growth of tumor xenografts of ovarian cancer (Guan et al., 2020). Translocations/fusion gene: NCOA4/RET fusion was found in an ovarian germ cell tumour. As a matter of fact, it was a papillary thyroid carcinoma arising in struma ovarii (struma ovarii originate from ovarian germ cells) (Richardson and Mulligan, 2009). KIF5B/RET and CCDC6/RET fusion genes were also found (Kato et al., 2017; Gao et al., 2018).
  
  
Entity Uterine endometrioid carcinoma
Note Endometrioid carcinoma is the most common endometrial cancer (75%), and endometrial carcinoma represents 95% of uterine corpus cancers. It is an epithelial neoplasia.
Oncogenesis Mutations G115S, R133C, K161E, R180*, L196S, C197Y, T225M, A241V, E251K, P273T, R313W, T317M, R330Q, R348Q, A349V, A373V, A386V, S396L, R418*, I422=, T451M, R474W, A487V, E511D, V573M, P596H, E623K, A640V, S649L, I657S, A672S, A680T, R721W, E768G, A793D, R844Q, I858V, S891L, R912W, S936Y, R969W, C976Y, E978D, R982H, A999V, E1006D, L1018I, A1019V, G1063D, X1063_splice, N1092H, L1108*, D1110G, dispersed through all the RET length. RET high expression is an unfavorable prognostic marker in endometrial cancer (The Human Protein Atlas).
  
  
Entity Colorectal cancer
Disease RET fusions have been described in less than 1% of colorectal cancers.
Oncogenesis A study on 37 cases determined 4 cases with RET mutations/variants: R77C, P270L, G533C, P1047S. RET activating mutations identified in colon cancer patients increase anchorage-dependent cell proliferation and clonogenic cell survival. Variant G533C is clearly oncogenic whereas RET variant P1047S is not. Cells expressing the RET G533C mutant are sensitive to treatment with the RET specific inhibitor vandetanib (Mendes Oliveira et al., 2018). RET fusions were more frequent in older patients, right-sided tumors, MSI-high, RAS and BRAF wild-type. Patients with RET fusion-positive tumors showed a significantly worse overall survival (Pietrantonio et al., 2018). The following RET mutations were found: A4E, T48M, G74S, R77H, R79W, F126C, R133H, R175H, R177W, E235G, V245M, V260*, K288N, A306V, G321R, T328S, R360Q, A373V, R418*, R418Q, A432V, T451M, Y508H, E511K, R525W, X550_splice, D571N, E595K, Q703H, V706M, X712_splice, P715S, T742M, T754M, A756V, R770*, K789E, R817C, M848V, Q860R, E867A, R912W, P914S, P951A, R959W, T1022A, L1016F, T1055A (cBioPortal) and translocations/fusion genes were: NCOA4/RET (10q11), t(5;10)(q33;q11) TNIP1/RET, t(7;10)(q34;q11) TRIM24/RET, t(10;10)(q11;q21) CCDC6/RET, t(10;19)(q11;q13) SNRNP70/RET and t(10;20)(q11;p12) RRBP1/RET (Stransky et al., 2014; Le Rolle et al., 2015; Kloosterman et al., 2017; Pietrantonio et al., 2018).
Aberrant methylation of RET is found in colon adenomas and adenocarcinomas, and is associated with decreased RET expression, potentially leading to inhibition of RET-induced apoptosis of colon cancer cells (Li et al., 2019).
  
  
Entity Esophageal adenocarcinoma
Oncogenesis Mutations E61K, Q187K, E238K, C565F, P582L, M848I, A1019V.
  
  
Entity Gastric adenocarcinoma
Oncogenesis Mutations G69D, R205G, A279T, R287W, R313W, A349V, A432V, N448S, T451M, F466S, Q583*, P613L, V706M, R721Q, A793T, R817H, R820H, R833C, K907T, E921D, N950Tfs*15, E978K, M1009V, N1045S, A1046T. Fusion gene: CCDC6/RET.
  
  
Entity Pancreatic ductal adenocarcinoma
Oncogenesis The common polymorphic variant G691S (polymorphism found in 30% of normal pancreas, allelic frequency of 15%) is over represented in pancreatic ductal adenocarcinomas patients (allelic frequency of 20%) Overexpression of G691S RET increased invasion of pancreatic cancer cells (Sawai et al., 2005). Activation of RET is capable of inducing invasive pancreatic carcinomas. RET mutations in pancreatic carcinomas, according to cBioPortal are: A4V, R57W, R57Q, V276I, F329L, A756D, R844W, R770*, R897*, P1070S.
  
  
Entity Leukemias
Oncogenesis RET expression in acute myeloid leukemia is maturation-associated: RET gene expression occurs more frequently in AMLs displaying either a monocytic (M4/M5) or intermediate-mature myeloid phenotype (M2/M3) than in leukemias reflecting an earlier stage of myeloid differentiation (M0/M1). (Gattei et al., 1998). The following RET mutations found in leukemias were: G691S in acute myeloid leukemia, G691S, R982C in B-lymphoblastic leukemia, L816P in T-lymphoblastic leukemia, N336T in diffuse large B-cell lymphoma, G115S in mature B-cell neoplasm NOS, X587_splice in angioimmunoblastic T-cell lymphoma, G691S in peripheral T-cell lymphoma NOS (BioPortal). and the following translocations: a t(6;10)(q27;q11) FGFR1OP/RET and a t(10;22)(q11;q11) BCR/RET were found in chronic myelomonocytic leukemia and in primary myelofibrosis with secondary acute myeloid leukemia, and a t(9;10)(q32;q11) FKBP15/RET in acute myeloid leukemia NOS (Ballerini et al., 2012; Bossi et al., 2014; Gao et al., 2018).
  
  
Entity Bladder urothelial carcinoma
Oncogenesis Mutations V245A, E337K, R348Q, E673K, R817C, E818D, E884K, G949Efs*16, F998L, A999E, M1009I, N1059D, D1081H, M1109I.
  
  
Entity Papillary renal cell carcinoma
Oncogenesis Cytoplasmic and nuclear expression of RET are strong negative predictors of survival in papillary renal cell carcinoma (Li et al., 2019).
  
  
Entity Nervous system tumors
Oncogenesis Astrocytoma : Mutations G47S, P182S, G435D, A807T, R813W, D1093G.
Glioblastoma multiforme : Mutations N113=, R133H, R133C, R171K, D219N, E289A, S339*, N361I, N437I, G546R, R635H, A682V, D892N.
Neuroblastoma (Peripheral neuroblastic tumours of the sympathetic nervous system, mainly found in infants and young children): RET was found to be highly expressed (Li et al., 2019).
  
  
Entity Head and neck squamous cell carcinoma
Oncogenesis Mutations Q44H, V63M, N84S, E284Q, E337V, E366*, A373V, A386T, Y483D, C585S, E616del, C634Y, K740N, T946A.
  
  
Entity Salivary glands tumors
Oncogenesis t(6;10)(p22;q11) TRIM27/RET, NCOA4/RET fusion and t(10;12)(q11;p13) ETV6/RET were found in intraductal carcinoma, invasive carcinoma and secretory carcinoma of the salivary glands (Skálová et al., 2018a; (Skálová et al., 2018b; Guilmette et al., 2018; Skálová et al., 2019).
  
  
Entity Prostate cancer
Oncogenesis RET is expressed in prostate cancer cell lines established from advanced prostate cancers. RET is also expressed in about 20% of localized prostate adenocarcinomas as well as in small cell neuroendocrine cancers of the prostate. GDNF is expressed by nerves, and nerve fibers secrete GDNF in the peritumoral stroma in prostate cancer. GDNF/RET signaling can enhance proliferation, invasion in prostate cancers (Ban et al. 2017). RET was overexpressed in patients with neuroendocrine prostate cancer (VanDeusen et al. in press). The following RET mutations were found: R57W, R67C, T130I, V202M, A281T, V782I, R886W, A1046S and translocations/fusion genes were: NCOA4/RET fusion (cBioPortal).
  
  
Entity Skin neoplasms
Oncogenesis RET G691S polymorphism is frequent in skin melanoma (found in 30% of the cases), particularly in desmoplastic subtypes (6%), compared to the general population (15-20%). The polymorphism was germline in 30% of the patients with desmoplastic melanomas and 21% of the patients with non-desmoplastic melanoma. RET G691S may be a genetic risk factor for the development of desmoplastic melanoma (Narita et al., 2009; Barr et al., 2012).
Mutations in squamous cell carcinoma : X25_splice, W85*, E107K, R114H, T120S, D547G, P599S, S705F, G736E, Y826F, Y826*, E843K, R844W, P957L.
Mutations in skin melanoma are the following: X25_splice, A55V, E62K, R67C, W85*, T92I, G141S, P155S, E208D, P259Q, X290_splice, G308V, E309K, P320S, D322N, W324L, E337K, A342V, E366Q, N367S, S379*, R417C, A472V, E480K, L481R, D627N, V685I, S696*, D698N, W717*, G736R, A741T, F744Y, H745N, G823ED839N, P841S, L851I, R873W, R897P, K907N, R912Q, S936F, M970I, D1000N, G1032D, E1036Q, P1049S, E1058K, D1093N, L1108* (cBioPortal).
Translocations in melanomas/ Spitz tumors were: t(10;10)(p11;q11) KIF5B/RET and t(10;14)(q11;q32) GOLGA5/RET (Wiesner et al., 2014).
  
  
Entity Soft tissue sarcomas
Disease A t(7;10)(q11;q11) CLIP2/RET, a t(10;10)(p12;q11) KIAA1217/RET, and a t(10;17)(q11;p13) MYH10/RET were found in spindle mesenchymal neoplasms (Davis et al., 2020). A t(3;10)(q12;q11) TFG/RET and NCOA4/RET (10q11) were found in spindle cell tumors (Michal et al., 2019; Loong et al., 2020). A t(10;22)(q11;q12) TIMP3/RET was found in an inflammatory myofibroblastic tumor of the uterus (Cheek et al., 2020). A t(10;17)(q11;p13) MYH10/RET was found in an infantile myofibromatosis (Rosenzweig et al., 2017). A t(1;10)(q25;q11) RASAL2/RET was found in high-grade sarcoma (Zhou et al., 2020).
  
  
Entity Pediatric cancers
Note RET gene fusions have been reported in 20% to 45% of papillary thyroid carcinomas and less frequently in pediatric and young adult patients with glioma and various pediatric soft tissue tumors. CSGALNACT2/RET fusion gene was found in a paediatric high grade glioma (Carvalho et al., 2014). A VCL/RET fusion gene was found in 7 year-old boy with lipofibromatosis, a rare pediatric soft tissue tumor (Al-Ibraheemi et al., 2019). Ortiz et al., 2020 described 5 patients: 2 cases of medullary thyroid cancer, aged 7yrs and 15yrs with RET mutation; a 7mth-old baby with infantile myofibroma/hemangiopericytoma and a MYH10/RET fusion gene; a 2mth-old baby with mesoblastic nephroma / infantile fibrosarcoma and a SPECC1L/RET fusion gene; and a case of lipofibromatosis presenting at birth with a NCOA4/RET fusion. Infantile myofibromatosis may also harbour RET chromosomal rearrangements see above).
  

Breakpoints

 
  Figure 6: RET Partners
Note In a series of from 32,989 advanced cancers twenty-five different breakpoint combinations were observed, >95% of which involved intron 11 of RET, most commonly fused with intron 15 of KIF5B in 80%, intron 1 of CCDC6 in 90%, or intron 8 or 10 of NCOA4 in 36 and 57% respectively. KIF5B/RET translocations were highly specific for non-small cell lung carcinoma (Rich et al., 2019). Santoro et al., 2020 present a lovely representative scheme of RET and 50 fusion partners, indicating the most frequent breakpoint sites in partner proteins, and their domains retained in the fusion protein.
TABLE 2: Breakpoints according to Cosmic
Hybrid GenePartner Gene Last Exon Breakpoint RET RET First Exon Breakpoint Tissue
TRIM33/RET5' TRIM33 161_2976 3' RET 122369_5659 Thyroid (0.7%)
TRIM27/RET5' TRIM27 31_1104+6742 3' RET 122369-1668_5659 Thyroid (1.4%)
TRIM24/RET5' TRIM24 91_1745 3' RET 122369_5659Thyroid (0.7%)
PCM1/RET5' PCM1 291_5266 3' RET 122369_5659Thyroid (1.8%)
HOOK3/RET5' HOOK3 111_1322 3' RET 122369_5659 Thyroid (1.8%)
KIF5B/RET5' KIF5B 151_2183 3' RET 122369_5659 
5' KIF5B 161_2372 3' RET 122369_5659Skin 2.6%; Lung (1.5%)
NCOA4/RET5' NCOA4 81_907 3' RET 122369_5659 Thyroid (8%), Lung, Soft tissue
CCDC6/RET5' CCDC6 11_535 3' RET 122369_5659Thyroid (12.7%;) Lung 50.5%
ERC1/RET5' ERC1111_2338 3' RET 122369_5659Thyroid (1%)
KTN1/RET5' KTN1 291_2960 3' RET 122369_5659Thyroid (1.4%)
GOLGA5/RET5' GOLGA5 71_1747 3' RET 122369_5659Skin (2.6%); Thyroid (0.8%)
PRKAR1A/RET5' PRKAR1A71_825 3' RET 122369_5659Thyroid (2.7%)
RELCH/RET5' RELCH 101_1852 3' RET 122369_5659Lung (0.2%)

1p13 TRIM33/RET PMID 10439047, 11786418, 14668719
6p22 TRIM27/RET PMID 12787916, 14668719
7q33 TRIM24/RET PMID 10439047, 11786418, 14668719
8p22 PCM1/RET PMID 10980597, 14668719
8p11 HOOK3/RET PMID 14668719, 17639057
10p11 KIF5B/RET PMID 22194472, 22327622, 22327623, 22327624, 22797671, 23150706, 23418494, 23891510, 24133367, 24158231, 24346091, 24445538, 24469108, 24481316, 24700479, 24722163, 24727320, 24810493, 25348872
10q11 NCOA4/RET PMID 8180971, 8187085, 8290261, 8545102, 8806699, 8806700, 9001272, 9466701, 9482114, 9516913, 9528832, 9669285, 9935226, 10083732, 10675479, 10720057, 10773666, 10946873, 1111778111117782, 11443191, 11747322, 11786418, 11788677, 11927965, 12057919, 12720532, ,, 14668719, 15737050, 15788648, 15876154, 16015630, 16595592, 16784981, 17464312, 17727338, 17786355, 18226854, 18393128, 18757433, 19495791, 19958951, 20012784, 20099311, 20447069, 20564403, 20703476, 20712653, 20840674, 20924280, 21048359, 21173509, 21219595, 21411555, 21498916, 22481925, 22682753, 22745248, 22895275, 22961909, 23150706, 23436219, 23806056, 23966419, 24277231, 24417340, 24503805, 24613930, 24915144, 25111330, 26971368
10q21 CCDC6/RET PMID 2406025, 8545102, 8634704, 9001272, 9466701, 9508203, 9516913, 9528832, 9669285, 9935226, 10083732, 10675479, 10720057, 10773666, 10931090, 10946873, 10951397, 11117781, 11117782, 11443191, 11493988, 11747322, 11786418, 11788677, 11927965, 12057919, 12720532, 14668719, 15737050, 15788648, 15876154, 16015630, 16595592, 16784981, 17464312, 17727338, 17786355, 18226854, 18393128, 18757433, 19055826, 19495791, 19958951, 20012784, 20099311, 20447069, 20564403, 20703476, 20712653, 20840674, 20924280, 21048359, 21173509, 21219595, 21411555, 21498916, 22327623,22481925,22682753, 22745248, 22895275, 22961909, 23150706, 23436219, 23806056, 23966419, 24133367, 24158231, 24277231, 24327398, 24346091, 24417340, 24469108, 24503805, 24613930, 24700479, 24727320, 24810493, 24915144, 25111330, 25348872, 26187428, 26971368, 27588476
12q13 ERC1/RET PMID 10337992, 14668719, 15876154
14q22 KTN1/RET PMID 10850414, 11786418, 14668719, 18757433
14q32 GOLGA5/RET PMID 9443391, 10675479, 10773666, 11786418, 14668719, 24445538
17q24 PRKAR1A/RET PMID 7519046, 7678053, 8545102, 9466701, 9516913, 9528832, 9669285, 9935226, 10083732, 10675479, 10720057, 10773666, 10946873, 11117781, 11117782, 11747322, 11786418, 11788677, 14668719, 15876154, 18393128, 20447069, 22481925, 24277231
18q21 RELCH/RET PMID 24727320

To be noted

Treatments with RET inhibitors are promising therapeutic targets.

Bibliography

Aberrant receptor tyrosine kinase signaling in lipofibromatosis: a clinicopathological and molecular genetic study of 20 cases
Al-Ibraheemi A, Folpe AL, Perez-Atayde AR, Perry K, Hofvander J, Arbajian E, Magnusson L, Nilsson J, Mertens F
Mod Pathol 2019 Mar;32(3):423-434.
PMID 30310176
 
Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome
Amiel J, Laudier B, Attié-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S
Nat Genet 2003 Apr;33(4):459-61.
PMID 12640453
 
Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site
Anders J, Kjar S, Ibez CF
J Biol Chem 2001 Sep 21;276(38):35808-17.
PMID 11445581
 
ATF4 Targets RET for Degradation and Is a Candidate Tumor Suppressor Gene in Medullary Thyroid Cancer
Bagheri-Yarmand R, Williams MD, Grubbs EG, Gagel RF
J Clin Endocrinol Metab 2017 Mar 1;102(3):933-941.
PMID 27935748
 
RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation
Ballerini P, Struski S, Cresson C, Prade N, Toujani S, Deswarte C, Dobbelstein S, Petit A, Lapillonne H, Gautier EF, Demur C, Lippert E, Pages P, Mansat-De Mas V, Donadieu J, Huguet F, Dastugue N, Broccardo C, Perot C, Delabesse E
Leukemia 2012 Nov;26(11):2384-9.
PMID 22513837
 
RET Signaling in Prostate Cancer
Ban K, Feng S, Shao L, Ittmann M
Clin Cancer Res 2017 Aug 15;23(16):4885-4896.
PMID 28490466
 
The RET G691S polymorphism is a germline variant in desmoplastic malignant melanoma
Barr J, Amato CM, Robinson SE, Kounalakis N, Robinson WA
Melanoma Res 2012 Feb;22(1):92-5.
PMID 22189301
 
Cryo-EM structure of the activated RET signaling complex reveals the importance of its cysteine-rich domain
Bigalke JM, Aibara S, Roth R, Dahl G, Gordon E, Dorbéus S, Amunts A, Sandmark J
Sci Adv 2019 Jul 31;5(7):eaau4202.
PMID 31392261
 
Congenital central hypoventilation syndrome: mutation analysis of the receptor tyrosine kinase RET
Bolk S, Angrist M, Schwartz S, Silvestri JM, Weese-Mayer DE, Chakravarti A
Am J Med Genet 1996 Jun 28;63(4):603-9.
PMID 8826440
 
Functional characterization of a novel FGFR1OP-RET rearrangement in hematopoietic malignancies
Bossi D, Carlomagno F, Pallavicini I, Pruneri G, Trubia M, Raviele PR, Marinelli A, Anaganti S, Cox MC, Viale G, Santoro M, Di Fiore PP, Minucci S
Mol Oncol 2014 Mar;8(2):221-31.
PMID 24315414
 
The developmental etiology and pathogenesis of Hirschsprung disease
Butler Tjaden NE, Trainor PA
Transl Res 2013 Jul;162(1):1-15.
PMID 23528997
 
KIF5B-RET fusions in Chinese patients with non-small cell lung cancer
Cai W, Su C, Li X, Fan L, Zheng L, Fei K, Zhou C
Cancer 2013 Apr 15;119(8):1486-94.
PMID 23378251
 
The prognostic role of intragenic copy number breakpoints and identification of novel fusion genes in paediatric high grade glioma
Carvalho D, Mackay A, Bjerke L, Grundy RG, Lopes C, Reis RM, Jones C
Acta Neuropathol Commun 2014 Feb 18;2:23.
PMID 24548782
 
RET-mediated modulation of tumor microenvironment and immune response in multiple endocrine neoplasia type 2 (MEN2)
Castellone MD, Melillo RM
Endocr Relat Cancer 2018 Feb;25(2):T105-T119.
PMID 28931560
 
Molecular basis of medullary thyroid carcinoma: the role of RET polymorphisms
Ceolin L, Siqueira DR, Romitti M, Ferreira CV, Maia AL
Int J Mol Sci 2012;13(1):221-39.
PMID 22312249
 
Uterine inflammatory myofibroblastic tumors in pregnant women with and without involvement of the placenta: a study of 6 cases with identification of a novel TIMP3-RET fusion
Cheek EH, Fadra N, Jackson RA, Davila JI, Sukov WR, Uckerman MT, Clayton A, Keeney GL, Halling KC, Torres-Mora J, Schoolmeester JK
Hum Pathol 2020 Mar;97:29-39.
PMID 31917155
 
Genetic Landscape of Somatic Mutations in a Large Cohort of Sporadic Medullary Thyroid Carcinomas Studied by Next-Generation Targeted Sequencing
Ciampi R, Romei C, Ramone T, Prete A, Tacito A, Cappagli V, Bottici V, Viola D, Torregrossa L, Ugolini C, Basolo F, Elisei R
iScience 2019 Oct 25;20:324-336.
PMID 31605946
 
Recurrent RET gene fusions in paediatric spindle mesenchymal neoplasms
Davis JL, Vargas SO, Rudzinski ER, López Marti JM, Janeway K, Forrest S, Winsnes K, Pinto N, Yang SE, VanSandt M, Boyd TK, Corless CL, Liu YJ, Surrey LF, Harris MH, Church A, Al-Ibraheemi A
Histopathology 2020 Jun;76(7):1032-1041.
PMID 31994201
 
To bud or not to bud: the RET perspective in CAKUT
Davis TK, Hoshi M, Jain S
Pediatr Nephrol 2014 Apr;29(4):597-608.
PMID 24022366
 
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers
Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, Liao WW, Reynolds SM, Wyczalkowski MA, Yao L, Yu L, Sun SQ, , , Chen K, Lazar AJ, Fields RC, Wendl MC, Van Tine BA, Vij R, Chen F, Nykter M, Shmulevich I, Ding L
Cell Rep 2018 Apr 3;23(1):227-238.e3.
PMID 29617662
 
Differential expression of the RET gene in human acute myeloid leukemia
Gattei V, Degan M, Aldinucci D, De Iuliis A, Rossi FM, Mazzocco FT, Rupolo M, Zagonel V, Pinto A
Ann Hematol 1998 Nov;77(5):207-10.
PMID 9858145
 
Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells
Gattelli A, Nalvarte I, Boulay A, Roloff TC, Schreiber M, Carragher N, Macleod KK, Schlederer M, Lienhard S, Kenner L, Torres-Arzayus MI, Hynes NE
EMBO Mol Med 2013 Sep;5(9):1335-50.
PMID 23868506
 
Targeting RET in Patients With RET-Rearranged Lung Cancers: Results From the Global, Multicenter RET Registry
Gautschi O, Milia J, Filleron T, Wolf J, Carbone DP, Owen D, Camidge R, Narayanan V, Doebele RC, Besse B, Remon-Masip J, Janne PA, Awad MM, Peled N, Byoung CC, Karp DD, Van Den Heuvel M, Wakelee HA, Neal JW, Mok TSK, Yang JCH, Ou SI, Pall G, Froesch P, Zalcman G, Gandara DR, Riess JW, Velcheti V, Zeidler K, Diebold J, Früh M, Michels S, Monnet I, Popat S, Rosell R, Karachaliou N, Rothschild SI, Shih JY, Warth A, Muley T, Cabillic F, Mazières J, Drilon A
J Clin Oncol 2017 May 1;35(13):1403-1410.
PMID 28447912
 
Neuroendocrine tumors: Phaeochromocytoma
Gimenez-Roqueplo, AP
Atlas Genet Cytogenet Oncol Haematol. 2003;7(2):125-128.http://AtlasGeneticsOncology.org/Tumors/pheochromocytomaID5026.html
 
Multiple endocrine neoplasia type 2 (MEN2)
Giraud, S
Atlas Genet Cytogenet Oncol Haematol. 2001;5(2):142-144.
 
RET recognition of GDNF-GFRα1 ligand by a composite binding site promotes membrane-proximal self-association
Goodman KM, Kjær S, Beuron F, Knowles PP, Nawrotek A, Burns EM, Purkiss AG, George R, Santoro M, Morris EP, McDonald NQ
Cell Rep 2014 Sep 25;8(6):1894-1904.
PMID 25242331
 
Oncogenic and drug-sensitive RET mutations in human epithelial ovarian cancer
Guan L, Li Z, Xie F, Pang Y, Zhang C, Tang H, Zhang H, Chen C, Zhan Y, Zhao T, Jiang H, Jia X, Wang Y, Lu Y
J Exp Clin Cancer Res 2020 Mar 23;39(1):53.
PMID 32293499
 
Novel gene fusions in secretory carcinoma of the salivary glands: enlarging the ETV6 family
Guilmette J, Dias-Santagata D, Nosé V, Lennerz JK, Sadow PM
Hum Pathol 2019 Jan;83:50-58.
PMID 30130630
 
Vandetanib as a potential new treatment for estrogen receptor-negative breast cancers
Hatem R, Labiod D, Château-Joubert S, de Plater L, El Botty R, Vacher S, Bonin F, Servely JL, Dieras V, Bièche I, Marangoni E
Int J Cancer 2016 May 15;138(10):2510-21.
PMID 26686064
 
Catalog of 5' fusion partners in RET+ NSCLC circa 2020
Ignatius Ou S-H, Zhu VW,
JTO Clinical and Research Reports (2020), doi: https://doi.org/10.1016/j.jtocrr.2020.100037.
 
Genomic Landscape of Pheochromocytoma and Paraganglioma
Jochmanova I, Pacak K
Trends Cancer 2018 Jan;4(1):6-9.
PMID 29413423
 
Difficulties of parathyroidectomy after previous thyroidectomy
Kadowaki MH, Fulton N, Schark C, Ryan JW, Yousefzadeh DK, Fedorak I, Kaplan EL
Surgery 1989 Dec;106(6):1018-23, discussion 1023-4.
PMID 2588107
 
RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients
Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R
Clin Cancer Res 2017 Apr 15;23(8):1988-1997.
PMID 27683183
 
A Systematic Analysis of Oncogenic Gene Fusions in Primary Colon Cancer
Kloosterman WP, Coebergh van den Braak RRJ, Pieterse M, van Roosmalen MJ, Sieuwerts AM, Stangl C, Brunekreef R, Lalmahomed ZS, Ooft S, van Galen A, Smid M, Lefebvre A, Zwartkruis F, Martens JWM, Foekens JA, Biermann K, Koudijs MJ, Ijzermans JNM, Voest EE
Cancer Res 2017 Jul 15;77(14):3814-3822.
PMID 28512242
 
REToma: a cancer subtype with a shared driver oncogene
Kohno T, Tabata J, Nakaoku T
Carcinogenesis 2020 Apr 22;41(2):123-129.
PMID 31711124
 
RET proto-oncogene: a review and update of genotype-phenotype correlations in hereditary medullary thyroid cancer and associated endocrine tumors
Kouvaraki MA, Shapiro SE, Perrier ND, Cote GJ, Gagel RF, Hoff AO, Sherman SI, Lee JE, Evans DB
Thyroid 2005 Jun;15(6):531-44.
PMID 16029119
 
RET gene mutations (genotype and phenotype) of multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma
Krampitz GW, Norton JA
Cancer 2014 Jul 1;120(13):1920-31.
PMID 24699901
 
Identification and characterization of RET fusions in advanced colorectal cancer
Le Rolle AF, Klempner SJ, Garrett CR, Seery T, Sanford EM, Balasubramanian S, Ross JS, Stephens PJ, Miller VA, Ali SM, Chiu VK
Oncotarget 2015 Oct 6;6(30):28929-37.
PMID 26078337
 
RET fusions in solid tumors
Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, Arensmeyer K, Mehra R, Adamo V, Rolfo C
Cancer Treat Rev 2019 Dec;81:101911.
PMID 31715421
 
Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies
Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Jänne PA, Stephens PJ
Nat Med 2012 Feb 12;18(3):382-4.
PMID 22327622
 
Novel TFG-RET fusion in a spindle cell tumour with S100 and CD34 coexpresssion
Loong S, Lian DWQ, Kuick CH, Lim TH, Nah SA, Wong KPL, Chang KTE
Histopathology 2020 Jan;76(2):333-336.
PMID 31411754
 
[New mutations associated with Hirschsprung disease]
Lorente-Ros M, Andrés AM, Sánchez-Galán A, Amiñoso C, García S, Lapunzina P, Solera García J
An Pediatr (Barc) 2020 Jan 23;S1695-4033(19)30424-2.
PMID 31983649
 
Next-generation sequencing analysis of receptor-type tyrosine kinase genes in surgically resected colon cancer: identification of gain-of-function mutations in the RET proto-oncogene
Mendes Oliveira D, Grillone K, Mignogna C, De Falco V, Laudanna C, Biamonte F, Locane R, Corcione F, Fabozzi M, Sacco R, Viglietto G, Malanga D, Rizzuto A
J Exp Clin Cancer Res 2018 Apr 17;37(1):84.
PMID 29665843
 
Activity of the Highly Specific RET Inhibitor Selpercatinib (LOXO-292) in Pediatric Patients With Tumors Harboring RET Gene Alterations
Michael V. Ortiz, Ulrike Gerdemann, Sandya Govinda Raju, Dahlia Henry, Steve Smith, S. Michael Rothenberg, Michael C. Cox, Stéphanie Proust, Julia Glade Bender, A. Lindsay Frazier, Peter Anderson, and Alberto S.
JCO Precision Oncology 2020 :4, 341-347
 
S100 and CD34 positive spindle cell tumor with prominent perivascular hyalinization and a novel NCOA4-RET fusion
Michal M, Ptáková N, Martínek P, Gatalica Z, Kazakov DV, Michalová K, Stoláriková L, Svajdler M, Michal M
Genes Chromosomes Cancer 2019 Sep;58(9):680-685.
PMID 30938880
 
GDNF and the RET Receptor in Cancer: New Insights and Therapeutic Potential
Mulligan LM
Front Physiol 2019 Jan 7;9:1873.
PMID 30666215
 
RET oncogene amplification in thyroid cancer: correlations with radiation-associated and high-grade malignancy
Nakashima M, Takamura N, Namba H, Saenko V, Meirmanov S, Matsumoto N, Hayashi T, Maeda S, Sekine I
Hum Pathol 2007 Apr;38(4):621-8.
PMID 17270245
 
Functional RET G691S polymorphism in cutaneous malignant melanoma
Narita N, Tanemura A, Murali R, Scolyer RA, Huang S, Arigami T, Yanagita S, Chong KK, Thompson JF, Morton DL, Hoon DS
Oncogene 2009 Aug 27;28(34):3058-68.
PMID 19561646
 
Rearranged During Transfection Fusions in Non-Small Cell Lung Cancer
O', Leary C, Xu W, Pavlakis N, Richard D, O', Byrne K
Cancers (Basel) 2019 May 3;11(5):620.
PMID 31058838
 
ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features
Pan Y, Zhang Y, Li Y, Hu H, Wang L, Li H, Wang R, Ye T, Luo X, Zhang Y, Li B, Cai D, Shen L, Sun Y, Chen H
Lung Cancer 2014 May;84(2):121-6.
PMID 24629636
 
RET rearrangements are actionable alterations in breast cancer
Paratala BS, Chung JH, Williams CB, Yilmazel B, Petrosky W, Williams K, Schrock AB, Gay LM, Lee E, Dolfi SC, Pham K, Lin S, Yao M, Kulkarni A, DiClemente F, Liu C, Rodriguez-Rodriguez L, Ganesan S, Ross JS, Ali SM, Leyland-Jones B, Hirshfield KM
Nat Commun 2018 Nov 16;9(1):4821.
PMID 30446652
 
RET fusions in a small subset of advanced colorectal cancers at risk of being neglected
Pietrantonio F, Di Nicolantonio F, Schrock AB, Lee J, Morano F, Fucà G, Nikolinakos P, Drilon A, Hechtman JF, Christiansen J, Gowen K, Frampton GM, Gasparini P, Rossini D, Gigliotti C, Kim ST, Prisciandaro M, Hodgson J, Zaniboni A, Chiu VK, Milione M, Patel R, Miller V, Bardelli A, Novara L, Wang L, Pupa SM, Sozzi G, Ross J, Di Bartolomeo M, Bertotti A, Ali S, Trusolino L, Falcone A, de Braud F, Cremolini C
Ann Oncol 2018 Jun 1;29(6):1394-1401.
PMID 29538669
 
Structure and function of RET in multiple endocrine neoplasia type 2
Plaza-Menacho I
Endocr Relat Cancer 2018 Feb;25(2):T79-T90.
PMID 29175871
 
Analysis of Cell-Free DNA from 32,989 Advanced Cancers Reveals Novel Co-occurring Activating RET Alterations and Oncogenic Signaling Pathway Aberrations
Rich TA, Reckamp KL, Chae YK, Doebele RC, Iams WT, Oh M, Raymond VM, Lanman RB, Riess JW, Stinchcombe TE, Subbiah V, Trevarthen DR, Fairclough S, Yen J, Gautschi O
Clin Cancer Res 2019 Oct 1;25(19):5832-5842.
PMID 31300450
 
Ovary: inv(10)(q11q11) in ovarian germ cell tumors
Richardson, DS ; Mulligan, LM
Atlas Genet Cytogenet Oncol Haematol. 2010;14(8):804-805. http://atlasgeneticsoncology.org/Tumors/inv10q11q11OvaryGermID5465.html
 
A case of advanced infantile myofibromatosis harboring a novel MYH10-RET fusion
Rosenzweig M, Ali SM, Wong V, Schrock AB, Laetsch TW, Ahrens W, Heilmann A, Morley S, Chudnovsky Y, Erlich RL, Wang K, Stephens PJ, Ross JS, Miller VA, Oesterheld J
Pediatr Blood Cancer 2017 Jul;64(7).
PMID 28028925
 
RET mutations in neuroendocrine tumors: including small-cell lung cancer
Rudin CM, Drilon A, Poirier JT
J Thorac Oncol 2014 Sep;9(9):1240-2.
PMID 25122419
 
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
Santoro M, Moccia M, Federico G, Carlomagno F
Genes (Basel) 2020 Apr 15;11(4):424.
PMID 32326537
 
Association of RET genetic polymorphisms and haplotypes with papillary thyroid carcinoma in the Portuguese population: a case-control study
Santos M, Azevedo T, Martins T, Rodrigues FJ, Lemos MC
PLoS One 2014 Oct 17;9(10):e109822.
PMID 25330015
 
The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling
Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ, Reber HA, Hoon DS, Eibl G
Cancer Res 2005 Dec 15;65(24):11536-44.
PMID 16357163
 
NCOA4-RET and TRIM27-RET Are Characteristic Gene Fusions in Salivary Intraductal Carcinoma, Including Invasive and Metastatic Tumors: Is "Intraductal" Correct?
Skálová A, Ptáková N, Santana T, Agaimy A, Ihrler S, Uro-Coste E, Thompson LDR, Bishop JA, Bankova M, Rupp NJ, Morbini P, de Sanctis S, Schiavo-Lena M, Vanecek T, Michal M, Leivo I
Am J Surg Pathol 2019 Oct;43(10):1303-1313.
PMID 31162284
 
Molecular Profiling of Mammary Analog Secretory Carcinoma Revealed a Subset of Tumors Harboring a Novel ETV6-RET Translocation: Report of 10 Cases
Skalova A, Vanecek T, Martinek P, Weinreb I, Stevens TM, Simpson RHW, Hyrcza M, Rupp NJ, Baneckova M, Michal M, Slouka D, Svoboda T, Metelkova A, Etebarian A, Pavelka J, Potts SJ, Christiansen J, Steiner P, Michal M
Am J Surg Pathol 2018 Feb;42(2):234-246.
PMID 29076873
 
Thyroid: Medullary carcinoma
Somnay, Y ; Schneider, D ; Mazeh, H
Atlas Genet Cytogenet Oncol Haematol. 2013;17(4):291-296. http://AtlasGeneticsOncology.org/Tumors/MedullaryThyroidCarcID5080.html
 
The landscape of kinase fusions in cancer
Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C
Nat Commun 2014 Sep 10;5:4846.
PMID 25204415
 
Advances in Targeting RET-Dependent Cancers
Subbiah V, Cote GJ
Cancer Discov 2020 Apr;10(4):498-505.
PMID 32094155
 
Targeting RET Kinase in Neuroendocrine Prostate Cancer
VanDeusen HR, Ramroop JR, Morel KL, Bae SY, Sheahan AV, Sychev Z, Lau NA, Cheng LC, Tan VM, Li Z, Petersen A, Lee JK, Park JW, Yang R, Hwang JH, Coleman I, Witte ON, Morrissey C, Corey E, Nelson PS, Ellis L, Drake JM
Mol Cancer Res 2020 May 27.
PMID 32461304
 
Kinase fusions are frequent in Spitz tumours and spitzoid melanomas
Wiesner T, He J, Yelensky R, Esteve-Puig R, Botton T, Yeh I, Lipson D, Otto G, Brennan K, Murali R, Garrido M, Miller VA, Ross JS, Berger MF, Sparatta A, Palmedo G, Cerroni L, Busam KJ, Kutzner H, Cronin MT, Stephens PJ, Bastian BC
Nat Commun 2014;5:3116.
PMID 24445538
 
PTPRA Phosphatase Regulates GDNF-Dependent RET Signaling and Inhibits the RET Mutant MEN2A Oncogenic Potential
Yadav L, Pietilä E, Öhman T, Liu X, Mahato AK, Sidorova Y, Lehti K, Saarma M, Varjosalo M
iScience 2020 Feb 21;23(2):100871.
PMID 32062451
 
RASAL2-RET: a novel RET rearrangement in a patient with high-grade sarcoma of the chest
Zhou Y, Qi C, Xiao MZ, Cai SL, Chen BJ
Ann Oncol 2020 May;31(5):659-661.
PMID 32220490
 

Citation

This paper should be referenced as such :
Huret JL, Yau Chun Wan-Senon S
RET (REarranged during Transfection)
Atlas Genet Cytogenet Oncol Haematol. 2021;25(1):1-19.
Free journal version : [ pdf ]   [ DOI ]
History of this paper:
Niccoli-Sire, P. RET (Rearranged during transfection). Atlas Genet Cytogenet Oncol Haematol. 2004;8(1):7-9.
http://documents.irevues.inist.fr/bitstream/handle/2042/38039/10-2003-RETID76.pdf


Other Leukemias implicated (Data extracted from papers in the Atlas) [ 3 ]
  t(6;10)(q27;q11) FGFR1OP::RET
t(6;10)(q27;q11) FGFR1OP::RET
t(10;22)(q11;q11) BCR::RET


Other Cancer prone implicated (Data extracted from papers in the Atlas) [ 1 ]
  Multiple endocrine neoplasia type 2 (MEN2)


External links

 

Nomenclature
HGNC (Hugo)RET   9967
LRG (Locus Reference Genomic)LRG_518
Cards
AtlasRETID76
Entrez_Gene (NCBI)RET    ret proto-oncogene
AliasesCDHF12; CDHR16; HSCR1; MEN2A; 
MEN2B; MTC1; PTC; RET-ELE1
GeneCards (Weizmann)RET
Ensembl hg19 (Hinxton)ENSG00000165731 [Gene_View]
Ensembl hg38 (Hinxton)ENSG00000165731 [Gene_View]  ENSG00000165731 [Sequence]  chr10:43077069-43130349 [Contig_View]  RET [Vega]
ICGC DataPortalENSG00000165731
TCGA cBioPortalRET
AceView (NCBI)RET
Genatlas (Paris)RET
SOURCE (Princeton)RET
Genetics Home Reference (NIH)RET
Genomic and cartography
GoldenPath hg38 (UCSC)RET  -     chr10:43077069-43130349 +  10q11.21   [Description]    (hg38-Dec_2013)
GoldenPath hg19 (UCSC)RET  -     10q11.21   [Description]    (hg19-Feb_2009)
GoldenPathRET - 10q11.21 [CytoView hg19]  RET - 10q11.21 [CytoView hg38]
ImmunoBaseENSG00000165731
Genome Data Viewer NCBIRET [Mapview hg19]  
OMIM142623   155240   162300   164761   171300   171400   209880   
Gene and transcription
Genbank (Entrez)AI472270 AJ844649 AK291807 AK294827 AW297789
RefSeq transcript (Entrez)NM_000323 NM_001355216 NM_020629 NM_020630 NM_020975
Consensus coding sequences : CCDS (NCBI)RET
Gene ExpressionRET [ NCBI-GEO ]   RET [ EBI - ARRAY_EXPRESS ]   RET [ SEEK ]   RET [ MEM ]
Gene Expression Viewer (FireBrowse)RET [ Firebrowse - Broad ]
GenevisibleExpression of RET in : [tissues]  [cell-lines]  [cancer]  [perturbations]  
BioGPS (Tissue expression)5979
GTEX Portal (Tissue expression)RET
Human Protein AtlasENSG00000165731-RET [pathology]   [cell]   [tissue]
Protein : pattern, domain, 3D structure
UniProt/SwissProtP07949   [function]  [subcellular_location]  [family_and_domains]  [pathology_and_biotech]  [ptm_processing]  [expression]  [interaction]
NextProtP07949  [Sequence]  [Exons]  [Medical]  [Publications]
With graphics : InterProP07949
Catalytic activity : Enzyme2.7.10.1 [ Enzyme-Expasy ]   2.7.10.12.7.10.1 [ IntEnz-EBI ]   2.7.10.1 [ BRENDA ]   2.7.10.1 [ KEGG ]   [ MEROPS ]
PhosPhoSitePlusP07949
Domaine pattern : Prosite (Expaxy)CADHERIN_2 (PS50268)    PROTEIN_KINASE_ATP (PS00107)    PROTEIN_KINASE_DOM (PS50011)    PROTEIN_KINASE_TYR (PS00109)   
Domains : Interpro (EBI)Cadherin-like_dom    Cadherin-like_sf    Kinase-like_dom_sf    Prot_kinase_dom    Protein_kinase_ATP_BS    Ret_CLD1    Ret_CLD3    RET_CLD4    Ser-Thr/Tyr_kinase_cat_dom    Tyr_kinase_AS    Tyr_kinase_cat_dom    Tyr_kinase_Ret_rcpt   
Domain families : Pfam (Sanger)Cadherin (PF00028)    PK_Tyr_Ser-Thr (PF07714)    RET_CLD1 (PF17756)    RET_CLD3 (PF17812)    RET_CLD4 (PF17813)   
Domain families : Pfam (NCBI)pfam00028    pfam07714    pfam17756    pfam17812    pfam17813   
Domain families : Smart (EMBL)TyrKc (SM00219)  
Conserved Domain (NCBI)RET
PDB (RSDB)1XPD    2IVS    2IVT    2IVU    2IVV    2X2K    2X2L    2X2M    2X2U    4CKI    4CKJ    4UX8    5AMN    5FM2    5FM3    6FEK    6GL7    6I82    6I83    6NE7    6NEC    6NJA    6Q2J    6Q2N    6Q2O    6Q2R    6Q2S    6VHG   
PDB Europe1XPD    2IVS    2IVT    2IVU    2IVV    2X2K    2X2L    2X2M    2X2U    4CKI    4CKJ    4UX8    5AMN    5FM2    5FM3    6FEK    6GL7    6I82    6I83    6NE7    6NEC    6NJA    6Q2J    6Q2N    6Q2O    6Q2R    6Q2S    6VHG   
PDB (PDBSum)1XPD    2IVS    2IVT    2IVU    2IVV    2X2K    2X2L    2X2M    2X2U    4CKI    4CKJ    4UX8    5AMN    5FM2    5FM3    6FEK    6GL7    6I82    6I83    6NE7    6NEC    6NJA    6Q2J    6Q2N    6Q2O    6Q2R    6Q2S    6VHG   
PDB (IMB)1XPD    2IVS    2IVT    2IVU    2IVV    2X2K    2X2L    2X2M    2X2U    4CKI    4CKJ    4UX8    5AMN    5FM2    5FM3    6FEK    6GL7    6I82    6I83    6NE7    6NEC    6NJA    6Q2J    6Q2N    6Q2O    6Q2R    6Q2S    6VHG   
Structural Biology KnowledgeBase1XPD    2IVS    2IVT    2IVU    2IVV    2X2K    2X2L    2X2M    2X2U    4CKI    4CKJ    4UX8    5AMN    5FM2    5FM3    6FEK    6GL7    6I82    6I83    6NE7    6NEC    6NJA    6Q2J    6Q2N    6Q2O    6Q2R    6Q2S    6VHG   
SCOP (Structural Classification of Proteins)1XPD    2IVS    2IVT    2IVU    2IVV    2X2K    2X2L    2X2M    2X2U    4CKI    4CKJ    4UX8    5AMN    5FM2    5FM3    6FEK    6GL7    6I82    6I83    6NE7    6NEC    6NJA    6Q2J    6Q2N    6Q2O    6Q2R    6Q2S    6VHG   
CATH (Classification of proteins structures)1XPD    2IVS    2IVT    2IVU    2IVV    2X2K    2X2L    2X2M    2X2U    4CKI    4CKJ    4UX8    5AMN    5FM2    5FM3    6FEK    6GL7    6I82    6I83    6NE7    6NEC    6NJA    6Q2J    6Q2N    6Q2O    6Q2R    6Q2S    6VHG   
SuperfamilyP07949
AlphaFold pdb e-kbP07949   
Human Protein Atlas [tissue]ENSG00000165731-RET [tissue]
HPRD01266
Protein Interaction databases
DIP (DOE-UCLA)P07949
IntAct (EBI)P07949
BioGRIDRET
STRING (EMBL)RET
ZODIACRET
Ontologies - Pathways
QuickGOP07949
Ontology : AmiGOMAPK cascade  activation of MAPK activity  ureteric bud development  neural crest cell migration  embryonic epithelial tube formation  protein tyrosine kinase activity  transmembrane receptor protein tyrosine kinase activity  transmembrane receptor protein tyrosine kinase activity  calcium ion binding  protein binding  ATP binding  early endosome  plasma membrane  plasma membrane  integral component of plasma membrane  integral component of plasma membrane  protein phosphorylation  homophilic cell adhesion via plasma membrane adhesion molecules  neuron cell-cell adhesion  signal transduction  transmembrane receptor protein tyrosine kinase signaling pathway  multicellular organism development  axon guidance  posterior midgut development  endosome membrane  positive regulation of gene expression  positive regulation of neuron projection development  positive regulation of neuron maturation  peptidyl-tyrosine phosphorylation  regulation of cell adhesion  positive regulation of cell migration  axon  dendrite  positive regulation of peptidyl-serine phosphorylation of STAT protein  membrane protein proteolysis  positive regulation of cell adhesion mediated by integrin  positive regulation of kinase activity  ureter maturation  glial cell-derived neurotrophic factor receptor signaling pathway  signaling receptor activity  response to drug  neuron maturation  neuronal cell body  receptor complex  receptor complex  positive regulation of MAPK cascade  membrane raft  positive regulation of cell size  positive regulation of transcription, DNA-templated  response to pain  enteric nervous system development  regulation of axonogenesis  positive regulation of protein kinase B signaling  retina development in camera-type eye  innervation  Peyer's patch morphogenesis  cellular response to retinoic acid  positive regulation of metanephric glomerulus development  lymphocyte migration into lymphoid organs  plasma membrane protein complex  positive regulation of extrinsic apoptotic signaling pathway in absence of ligand  
Ontology : EGO-EBIMAPK cascade  activation of MAPK activity  ureteric bud development  neural crest cell migration  embryonic epithelial tube formation  protein tyrosine kinase activity  transmembrane receptor protein tyrosine kinase activity  transmembrane receptor protein tyrosine kinase activity  calcium ion binding  protein binding  ATP binding  early endosome  plasma membrane  plasma membrane  integral component of plasma membrane  integral component of plasma membrane  protein phosphorylation  homophilic cell adhesion via plasma membrane adhesion molecules  neuron cell-cell adhesion  signal transduction  transmembrane receptor protein tyrosine kinase signaling pathway  multicellular organism development  axon guidance  posterior midgut development  endosome membrane  positive regulation of gene expression  positive regulation of neuron projection development  positive regulation of neuron maturation  peptidyl-tyrosine phosphorylation  regulation of cell adhesion  positive regulation of cell migration  axon  dendrite  positive regulation of peptidyl-serine phosphorylation of STAT protein  membrane protein proteolysis  positive regulation of cell adhesion mediated by integrin  positive regulation of kinase activity  ureter maturation  glial cell-derived neurotrophic factor receptor signaling pathway  signaling receptor activity  response to drug  neuron maturation  neuronal cell body  receptor complex  receptor complex  positive regulation of MAPK cascade  membrane raft  positive regulation of cell size  positive regulation of transcription, DNA-templated  response to pain  enteric nervous system development  regulation of axonogenesis  positive regulation of protein kinase B signaling  retina development in camera-type eye  innervation  Peyer's patch morphogenesis  cellular response to retinoic acid  positive regulation of metanephric glomerulus development  lymphocyte migration into lymphoid organs  plasma membrane protein complex  positive regulation of extrinsic apoptotic signaling pathway in absence of ligand  
Pathways : KEGGEndocytosis    Pathways in cancer    Thyroid cancer   
REACTOMEP07949 [protein]
REACTOME PathwaysR-HSA-8853659 [pathway]   
NDEx NetworkRET
Atlas of Cancer Signalling NetworkRET
Wikipedia pathwaysRET
Orthology - Evolution
OrthoDB5979
GeneTree (enSembl)ENSG00000165731
Phylogenetic Trees/Animal Genes : TreeFamRET
Homologs : HomoloGeneRET
Homology/Alignments : Family Browser (UCSC)RET
Gene fusions - Rearrangements
Fusion : MitelmanAKAP13::RET [15q25.3/10q11.21]  
Fusion : MitelmanBCR::RET [22q11.23/10q11.21]  
Fusion : MitelmanCCDC6::RET [10q21.2/10q11.21]  
Fusion : MitelmanERC1::RET [12p13.33/10q11.21]  
Fusion : MitelmanFGFR1OP::RET [6q27/10q11.21]  
Fusion : MitelmanFKBP15::RET [9q32/10q11.21]  
Fusion : MitelmanGOLGA5::RET [14q32.12/10q11.21]  
Fusion : MitelmanHOOK3::RET [8p11.21/10q11.21]  
Fusion : MitelmanKIF5B::RET [10p11.22/10q11.21]  
Fusion : MitelmanKTN1::RET [14q22.3/10q11.21]  
Fusion : MitelmanNCOA4::RET [10q11.23/10q11.21]  
Fusion : MitelmanPCM1::RET [8p22/10q11.21]  
Fusion : MitelmanPRKAR1A::RET [17q24.2/10q11.21]  
Fusion : MitelmanRET::ANK3 [10q11.21/10q21.2]  
Fusion : MitelmanRET::CCDC6 [10q11.21/10q21.2]  
Fusion : MitelmanRET::NCOA4 [10q11.21/10q11.23]  
Fusion : MitelmanSPECC1L::RET [22q11.23/10q11.21]  
Fusion : MitelmanTBL1XR1::RET [3q26.32/10q11.21]  
Fusion : MitelmanTRIM24::RET [7q33/10q11.21]  
Fusion : MitelmanTRIM27::RET [6p22.1/10q11.21]  
Fusion : MitelmanTRIM33::RET [1p13.2/10q11.21]  
Fusion : COSMICTRIM33 [1p13.2]  -  RET [10q11.21]  [fusion_1525]  
Fusion : QuiverRET
Polymorphisms : SNP and Copy number variants
NCBI Variation ViewerRET [hg38]
dbSNP Single Nucleotide Polymorphism (NCBI)RET
dbVarRET
ClinVarRET
MonarchRET
1000_GenomesRET 
Exome Variant ServerRET
GNOMAD BrowserENSG00000165731
Varsome BrowserRET
ACMGRET variants
VarityP07949
Genomic Variants (DGV)RET [DGVbeta]
DECIPHERRET [patients]   [syndromes]   [variants]   [genes]  
CONAN: Copy Number AnalysisRET 
Mutations
ICGC Data PortalRET 
TCGA Data PortalRET 
Broad Tumor PortalRET
OASIS PortalRET [ Somatic mutations - Copy number]
Cancer Gene: CensusRET 
Somatic Mutations in Cancer : COSMICRET  [overview]  [genome browser]  [tissue]  [distribution]  
Somatic Mutations in Cancer : COSMIC3DRET
Mutations and Diseases : HGMDRET
LOVD (Leiden Open Variation Database)[gene] [transcripts] [variants]
BioMutaRET
DgiDB (Drug Gene Interaction Database)RET
DoCM (Curated mutations)RET
CIViC (Clinical Interpretations of Variants in Cancer)RET
OncoKBRET
NCG (London)RET
Cancer3DRET
Impact of mutations[PolyPhen2] [Provean] [Buck Institute : MutDB] [Mutation Assessor] [Mutanalyser]
Diseases
OMIM142623    155240    162300    164761    171300    171400    209880   
Orphanet647    905    19539    19538    2656    8775    12163    14205    14376   
DisGeNETRET
MedgenRET
Genetic Testing Registry RET
NextProtP07949 [Medical]
GENETestsRET
Target ValidationRET
Huge Navigator RET [HugePedia]
ClinGenRET (curated)
Clinical trials, drugs, therapy
MyCancerGenomeRET
Protein Interactions : CTDRET
Pharm GKB GenePA34335
Pharm GKB PathwaysPA165959584   
PharosP07949
Clinical trialRET
Miscellaneous
canSAR (ICR)RET
HarmonizomeRET
DataMed IndexRET
Probes
Litterature
PubMed499 Pubmed reference(s) in Entrez
GeneRIFsGene References Into Functions (Entrez)
EVEXRET
REVIEW articlesautomatic search in PubMed
Last year publicationsautomatic search in PubMed

Search in all EBI   NCBI

© Atlas of Genetics and Cytogenetics in Oncology and Haematology
indexed on : Fri Oct 8 21:26:55 CEST 2021

Home   Genes   Leukemias   Solid Tumors   Cancer-Prone   Deep Insight   Case Reports   Journals  Portal   Teaching   

For comments and suggestions or contributions, please contact us

jlhuret@AtlasGeneticsOncology.org.